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THE SHRINKING PROJECTION METHODS FOR
HEMI-RELATIVELY NONEXPANSIVE MAPPINGS,
VARIATIONAL INEQUALITIES AND EQUILIBRIUM
PROBLEMS

Z1-MING WANG, M1 KwaANG KANG, AND YEOL JE CHO

ABSTRACT. In this paper, we introduce the shrinking projection method
for hemi-relatively nonexpansive mappings to find a common solution of
variational inequality problems and equilibrium problems in uniformly
convex and uniformly smooth Banach spaces and prove some strong con-
vergence theorems to the common solution by using the proposed method.

1. Introduction

Let E be a Banach space and E* the dual space of E. Let C' be a nonempty
closed convex subset of E. Let J be the normalized duality mapping from E
into 28" defined by

Jo={f € EB":(f,a) = |=lI* = | [}, VzeE,

where (-, -) denotes the generalized duality pairing.
It is known that the duality mapping J has the following properties:

(1) If E is smooth, then J is single-valued;

(2) If E is strictly convex, then J is one-to-one;

(3) If E is reflexive, then J is surjective;

(4) If E is uniformly smooth, then J is uniformly norm-to-norm continuous
on each bounded subset of F;

(5) If E* is uniformly convex, then J is uniformly continuous on bounded
subsets of E and J is singe-valued and also one-to-one; see [1-4, 17, 19].
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As is well-known to all, variational inequalities are being used as a mathe-
matical programming tool in modeling a wide class of problems arising in sev-
eral branches of pure and applied sciences; for example, operations research,
economic equilibrium and engineering design.

In this paper, we consider the following variational inequality: Find x € C
such that

(1.1) (Az,y —x) >0, VyeC.

A point 2o € C is called a solution of the variational inequality (1.1) if
(Azo,y—x0) > 0. The solutions set of the variational inequality (1.1) is denoted
by VI(A,C). When A is provided with some monotonicity, many iterative
methods for solving the variational inequality (1.1) have been developed; see
[5-13].

Most recently, utilizing shrinking projection method, Ying Liu [11] estab-
lished the following strong convergence theorem for relatively weak nonexpan-
sive mapping and variational inequality in a uniformly convex and uniformly
smooth Bananch space.

Theorem 1.1 ([11, Theorem 3.1]). Let E be a uniformly convex and uniformly
smooth Banach space and C' be a nonempty closed convex subset of E. Assume
that A is a continuous operator of C into E* satisfying the conditions (1.2)
and (1.3) and S : C — C is a relatively weak nonexpansive mapping with
F:=F(S)NVI(A,C) # 0. Then the sequence {x,} generated by the following
iterative scheme:

xg € C' chosen arbitrarily,
zn = Ho(andJx, + (1 — @) JSxy),
n=J YnJxn + (1= 8,)JUc(J 2z, — BA2)),
Co={z€C:¢(z,50) < &(2,70)},
Crn={2€ Cro1NQn-1:0(2,yn) < ¢(2,25)},
Qo =C,
Qn={2€Ch1NQn-1: (Jrg— Jrpn,x, —z) >0},
Tn+1 = e, ng, JTo, Vn >1,

(1.2)

where the sequences {a,} and {6,} satisfy the following conditions:

0<6,<1, limsupd<1l, O0<a,<l1, Iliminfa,(l1-a)>0,
n—o0

n—o0

converges strongly to Illp(s)nvra,c)JTo-

Here, we remark that Theorem 1.1 improved the relevant result of Jinlu Li
[10] and Jianghua Fan [7], in detail that Theorem 1.1 removed the compactness
of J — BA instead by the continuity of A, and obtained a strong convergence
result.
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Recall that a mapping A : D(A) C E — E* is said to be monotone if the
following inequality holds:

(1.3) (Az — Ay,z —y) >0, Va,yc D(A).

A is said to be A-inverse strongly monotone if there exists a positive real number
A such that

(L4) (A — Ay,x —y) > A|Az — Ay|®, Va,y € D(A).

If A is A-inverse strongly monotone, then it is Lipschitz continuous with con-
stant 5, ie., [|[Az — Ay|| < 1|z — yl|, Vo, y € D(A), and hence uniformly
continuous.

For finding an element of a nonexpansive mapping and VI(A, C), Takahashi
and Toyoda [20] introduced the following iterative scheme in a Hilbert space

H:
(1.5) Tpt1 = QT + (1 — apn)SPo(xn — pnAxy,), Yn>1,

where z¢ € C, P¢ is a metric projection of H onto C, A is a Ad-inverse strongly
monotone operator. Furthermore they proved a weak convergence theorem:

Theorem 1.2 ([20, Theorem 3.1]). Let C be a closed convex subset of a real
Hilbert space H. Let A > 0. Let A be an A-inverse strongly-monotone mapping
of C into H, and let S be a nonexpansive mapping of C into itself such that
F(SYNVI(A,C) # 0. Let {z,} be a sequence generated by (1.5) for all n €
N U {0}, where {un} C [a,b] for some a, b € (0,2)\) and {an} C [c,d] for
somec, d € (0,1). Then {x,} converges weakly to z € F(S)NVI(A,C), where
z = limy 00 Pr(s)nvi(a,c)Zn-

On the other hand, the equilibrium problem introduced in [3] in 1994, is
always a hot topic of intensive research efforts, because it has a great impact
and influence in the development of several branches of pure and applied sci-
ences. It has been shown that equilibrium problem theory provided a novel and
unified treatment of a wide class of problems which arise in economics, finance,
physics, image reconstruction, ecology, transportation, network, elasticity and
optimization. Numerous problems in physics, optimization and economics re-
duce to finding a solution of equilibrium problem. Some methods have been
proposed to solve the equilibrium problem; see [10-13].

Let f: C x C — R be a bifunction. The equilibrium problem for f is as
follows: Find € C such that
(1.6) f(z,y) >0, Vyel.

The set of solutions of the problem (1.6) is denoted by EP(f). For solving
the equilibrium problem, ones always assume that a bifunction f satisfies the
following conditions:

(A1) f(z,z) =0 for all x € C;
(A2) f is monotone, that is, f(z,y) + f(y,z) <0 for all z,y € C;
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(A3) Forall z, y, z € C,

limsup f(tz + (1 — t)x,y) < f(z,y);
£10

(A4) For all z € C, f(x,-) is convex and lower semicontinuous.

For example, let A be a continuous and monotone operator of C' into E*
and define
flz,y) = (Az,y — x), Vax,yeC.
Then f satisfies (A1)-(A4).

In this paper, motivated and inspired by the results mentioned above, we
introduce a new hybrid projection algorithm based on the shrinking projec-
tion method for a closed hemi-relatively nonexpansive mapping, variational in-
equality, equilibrium problem. Using the new algorithm, we prove some strong
convergence theorem which approximate a common element in the fixed points
set of the closed hemi-relatively nonexpansive mappings, the solutions set of
a variational inequality and the solutions set of the equilibrium problem in a
uniformly convex and uniformly smooth Banach space. Our results extend and
improve the recent ones announced by Li [10], Fan [7], Liu [11], Takahashi and
Toyoda [3] and many others.

2. Preliminaries

A Banach space E is said to be strictly convex if ITJ”’ < 1 for all z,y €

E with ||| = |ly]]| = 1 and & # y. Tt is said to be uniformly convex if
limy, 00 ||Zn — ynl| = 0 for any two sequences {z,} and {y,} in E such that
[zl = lyall = 1 and lim_e || 22522 = 1.

Let Ug = {z € E : ||z|| = 1} be the unit sphere of E. Then the Banach
space F is said to be smooth provided

o) ety

t—0 t
exists for each x,y € Ug. It is also said to be uniformly smooth if the limit
(2.1) is attained uniformly for x,y € Ug.

It is well known that, if F is uniformly smooth, then J is uniformly norm-
to-norm continuous on each bounded subset of E and, if ' is uniformly smooth
if and only if E* is uniformly convex.

Let C be a closed convex subset of F and T' be a mapping from C into itself.
A point p in C is said to be an asymptotic fixed point of T' if C' contains a
sequence {x, } which converges weakly to p such that the strong lim,,—, oo (x5, —
Txz,) = 0. The set of asymptotic fixed points of T is denoted by ﬁ(T)

Recall that an operator 1" in Banach space E is said to be closed if xz,, — =
and Tz, — y implies Tx = y.

A mapping T from C' into itself is said to be nonexpansive if

[Tz =Tyl <llz—yl, Va,yeC.
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The mapping T is said to be relatively nonexpansive [14-16] if
F(T)=F(T)#0, ¢(p,Ta) < é(p,x), Vo€ C,pe F(T),

The asymptotic behavior of a relatively nonexpansive mapping was studied in
[14-16]. A point p € C is called a strong asymptotic fixed point of T if C
contains a sequence {x,} which converges strongly to p such that

lim (z, — Tx,) = 0.

n—oo

The set of strong asymptotic fixed points of T is denoted by ﬁ(T)

A mapping T from C into itself is said to be relatively weak nonexpansive if
F(T) = F(T)#0, (p,Te) < é(p,a), Vo e C pe F(T).
The mapping T is said to be hemi-relatively nonexpansive if
F(T)#0, ¢(p,Tz) < ¢(p,x), VzeC, peF(T)

It is obvious that a relatively nonexpansive mapping is a relatively and
weakly nonexpansive mapping and, further, a relatively and weakly nonexpan-
sive mapping are all hemi-relatively nonexpansive, but the converses are not
true as in the following example:

Example 2.1 ([18]). Let E be any smooth Banach space and xy # 0 be any
element of £. We define a mapping T : E — E as follows: For all n > 1,

Ty = L@ ez, e =Gt g,
Then T is a hemi-relatively nonexpansive mapping, but it is not relatively

nonexpansive mapping.

Next, we give an important example which is also hemi-relatively nonexpan-
sive.

Example 2.2 ([15]). Let E be a strictly convex reflexive smooth Banach space.
Let A be a maximal monotone operator of F into E* and J, be the resolvent
for A with r > 0. Then J, = (J +7A)"!J is a hemi-relatively nonexpansive
mapping from E onto D(A) with F(J,.) = A~10.

In [8, 2], Alber introduced the functional V' : E* x E — R defined by

(2.2) V(g,z) = [l9]* - 2(¢, ) + [|z]]%,
where ¢ € E* and = € E. It is easy to see that
(2.3) V(¢,2) > ([l - ll=ll)?

and so the functional V : E* x E — R™ is nonnegative.

In order to prove our results in the next section, we present several necessary
definitions and lemmas.
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Definition 2.3 ([9]). If E be a uniformly convex and uniformly smooth Banach
space, then the generalized projection Il : E* — C' is a mapping that assigns
an arbitrary point ¢ € E* to the minimum point of the functional V (¢, x), i.e.,
a solution to the minimization problem

(24) V(0.Te () = inf V(6.0).

Li [10] proved that the generalized projection operator Il : E* — C is
continuous if F is a reflexive, strictly convex and smooth Banach space.

Consider the function ¢ : E x E — R is defined by
o(z,y) =V(Jy,x), Va,yek.

The following properties of the operator Il and V' are useful for our paper;
see, for example, [1, 10].

(B1) V: E* x E — R is continuous;

(B2) V(¢,z) = 0 if and only if ¢ = Jux;

(B3) (JHC(qﬁ) z) <V(¢,z) for all $ € E* and = € E;

(B4) The operator Il is J fixed at each point € E* and z € E;

(B5) If E is smooth, then, for any given ¢ € E* and « € C, z € IIz(¢) if
and only if

(p—Jz,xz —y) >0, VyeC;

(B6) The operator Il : E* — c is single valued if and only if F is strictly
convex;

(B7) If E is smooth, then, for any given point ¢ € E* and = € TI¢(¢), the
following inequality holds:

(B8) v(¢, X) is convex with respect to ¢ when x is fixed and with respect
to z when ¢ is fixed;

(B9) If E is reflexive, then, for any point ¢ € E* I¢o(¢) is a nonempty
closed convex and bounded subset of C.

Using some properties of the generalized projection operator II¢, Alber [1]
proved the following theorem:

Lemma 2.4 ([1]). Let E be a strictly convex reflexive smooth Banach space.
Let A be an arbitrary operator from a Banach space E to E* and [ be an
arbitrary fixved positive number. Then x € C' C E is a solution of the variational
inequality (1.1) if and only if x is a solution of the following operator equation
in B

(2.5) z =1e(Jz — BAx).

Lemma 2.5 ([9]). Let E be a uniformly convexr smooth Banach space and
{yn}, {zn} be two sequences of E such that either {y,} or {z,} is bounded. If
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Lemma 2.6 ([5]). Let E be a uniformly convex and uniformly smooth Banach
space. We have

(2.6) lo+ @ < 6l* +2(®, J (¢ + @), Vo, € E”
From Qin et al. [16], the following lemma can be obtained immediately.

Lemma 2.7. Let E be a uniformly convex Banach space, s > 0 be a positive
number and B4 (0) be a closed ball of E. Then there exists a continuous, strictly
increasing and convezx function g : [0,00) — [0, 00) with g(0) = 0 such that
(2.7) 121 (aza)[I” < B (il |?) — aiag(llzi — ;1))

for all z1,22,...,2n € Bs(0) = {z € E : ||z|| < s}, i # j for all i,j €
{1,2,...,N} and oy, az,...,ay € [0,1] such that Zi]\ilai =1.

Lemma 2.8 ([3]). Let C be a closed and convex subset of a smooth, strictly
convezr and reflexive Banach spaces E, f be a bifunction from C' x C to R

satisfying the conditions (B1)-(B4) and let r > 0, x € E. Then there exists
z € C such that

1
(2.8) f(z,y)+;<szJ:c,yfz>20, VyeC.

Lemma 2.9 ([21]). Let C be a closed and convex subset of a uniformly smooth,
strictly convex and reflexive Banach spaces E, let f be a bifunction from C x C
to R satisfying (B1)-(B4). For allr > 0 and x € E, define the mapping

1
Trx:{zGC:f(z,y)jL;(szJ:c,y—z} >0, VyeC}.

Then the following hold:
(C1) T, is single-valued,
(C2) T, is a firmly nonexpansive-type mapping, that is, for all x, y € E,

(JTox — JTvy, Trx — Try) < (Jx — Jy, Trx — Try);
(C3) F(T,) = F(T;,) = EP(f);
(C4) EP(f) is closed and conver.

Lemma 2.10 ([21]). Let C be a closed convex subset of a smooth, strictly
convez, and reflexive Banach space E, let f be a bifunction from C x C to R
satisfying (C1)-(C4) and let r > 0. Then, for all x € E and q € F(T,),

(2.9) ¢(q, Trz) + (T, x) < ¢(g, ).

Lemma 2.11 ([11, Lemma 2.5]). Let E be a uniformly convex and uniformly
smooth Banach space and let C' be a nonempty closed and convex subset of E.
Suppose that there exists a positive number n such that

(2.10) (Ax, J~Y(Jx —nAx)) >0, VazeC,
and

(2.11) (Az,y) <0, VaezeK, yeVIAC).
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Then VI(A,C) is closed and convez.

Lemma 2.12 ([11, Lemma 2.6]). If E is a reflexive, strictly convezx and smooth
Banach space, then Ilc = J L.

Lemma 2.13 ([11, Lemma 2.6]). Let E be a strictly convex and smooth real
Banach space, C be a closed convexr subset of E and T be a hemi-relatively
nonexpansive mapping from C into itself. Then F(T) is closed and convex.

3. Main results

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach
space and C be a nonempty closed convex subset of E. Let f be a bifunction
from C x C to R satisfying the conditions (A1)-(Ag). Assume that A is a
continuous operators of C into E* satisfying the conditions (2.10) and (2.11),
and T : C — C is a closed hemi-relatively nonexpansive mapping with F =
F(T)NVI(A,C)NEP(f)# 0. For an arbitrary element xo € C, put Cy = C
and let {x,} be a sequence generated by the following iterative scheme:
(3.1)
zn = e (Jxy — nAxy,),
Yn = HC(anJSCO + ﬂnJl'n + 'YnJTZn)v
u, € C such that f(un,y) + %(Jun —JYn,y —un) >0, VyeC,
CnJrl = {Z € Cn : d)(zvun) < ¢(Z;yn)

< an¢(z; :L'0> + ﬂn(b(z; zn) + 'Ynd)(zv Zn)

< an(b(za xO) + (1 - an)¢(zﬂxn)}’
Tny1 = e, Jxo, VR 2>1,

where {an}, {Bn} and {y,} are the sequences in [0,1] with the following re-
strictions:

(@) an + Bn + 9 =15

(b) {rn} C la,00) for some a > 0;

(¢) limy—y00 @ =0 and liminf, o Bnyn > 0.
Then the sequence {x,} converges strongly to a point Iy Jxo, where IIf is the
generalized projection from C onto F .

Proof. We divide the proof into five steps.

Step 1. lIpJxzg and I, , Jxo are well defined.

From Lemma 2.9(C4), Lemma 2.11 and Lemma 2.13, one has that IIpJxg
is well defined.

Now, we show that C), is closed and convex for all n € NU {0}. From the
definitions of C,,, it is obvious that C,, is closed for all n € NU {0}.

Next, we prove that C), is convex for all n € NU{0}. Since ¢(z, un) < é(z,yn)
is equivalent to

2(Jyn — Jun, 2) < |lynll* = Junl*;
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¢(Z, yn) < an¢(z; 1'0) =+ ﬂn(b(z; zn) + 7n¢(wv Zn) is eqlﬁvalent to
2<anJ$O + BnJ:En + 'YnJZn - Jyna Z> S Oén”(E()HQ + ﬁn”-rnHQ + ’7n||zn||27

and o, d(z,x0) + Bnd(2,Tn) + d(2, 2n) < and(z,x0) + (1 — an)P(z,2,)} is
equivalent to

2(Jwn — Iz, 2) < ||zl = ||zall?.
It follows that C), is convex for all n € NU {0}. Thus, for all n € NU {0}, C,
is closed and convex and so Il¢, , , Jxo is well defined.

Step 2. F C C,, for all n € NU{0}.

Observe that F C Cy = C is obvious. Suppose that F C C), for some n € N.
Let w € F C C,. Then, from the definition of ¢ and V', the property (B3) of
V, Lemma 2.6, the conditions (2.10) and (2.11), it follows that

d(w, o (Jxy, — nAxy)) = V(Je(Jx, — nhx, ), w)
<V(Jx, —nAzx,,w)
= | Jan — nAz,||* = 2(Jzn — nAzy, w) + [Jw]|?
(3.2) < | Jznll? = 20(Azy,, T~ (Jx, — nAz,))
—2(Jx, — nAzy,w) + ||w|?
< N Jzal® = 2(J2n, w) + [lw]®
= ¢(w, xy,).

Since u,, = T}, Yn, applying Lemma 2.10, the properties (B3) and (BS8) of the
operator V' and (3.2), we obtain

P(w, un) = (W, T, yn) < d(w,yn) =V (Jyn, w)
< anV(Jzg,w) + BnV(Jxpn,w) + 4V (JT 20, w)
(3.3) < and(w, 20) + Bnd(w, zn) + Ynd(w, 25,
< and(w, 2o) + Bpd(w, Tn) + (W, Tn)
= and(w, z0) + (1 — an)d(w, z,),

which shows that w € C), 1. Depending on the randomicity of w, one can learn
that F C C, for all n € NU {0}.

Step 3. {x,} is a Cauchy sequence.
Since z,, = Il¢, Jxg, and from (2.4), one has

V(JSC(),SC”) S V(Jl'o,y), v Yy € Cv
and F C C,, C C, one also has
V(Jxo,zn) < V(Jxg,w), YweEF.

Therefore, {V(Jxzo,z,)} is bounded. Moreover, from the definition of V, it
follows that {x,} is bounded. Since z,+1 = ¢, ,,Jxo € Chy1 and z, =
II¢, Jxo, we have

n+1

V(Jzo,xn) < V(Jxo, Znt1), V0 > 0.
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Hence {V(Jxo,zn)} is nondecreasing and so lim, ., V(Jxo,z,) exists. By
the construction of C,,, we have that C,, C C, and z,, = Il¢,, Jxo € C,, for
any positive integer m > n. From the property (B3), we have

V(Jzn, zm) < V(Jze,xm) — V(Jxo, x4)
for all n € NU {0} and any positive integer m > n. This implies that
V(JZn,Tm) =0 (n,m — 00).
The definition of ¢ implies that
(3.4) A(Tm,Tn) =0 (n,m — 00).
Applying Lemma 2.5, we obtain
(3.5) |Xm — zn]l =0 (n,m — o).

Hence {z,} is a Cauchy sequence. In view of the completeness of a Banach
space F and the closeness of C, it follows that

(3.6) lim z, =p

n—oo

for some p € C.

Step 4. p € F.
First, we show that p € F(T). In fact, since 2,41 € Cp41, we have

¢(zn+1; un) S ¢(xn+1;zn)-
Thus, by (3.4) and Lemma 2.5, we have
[Znt1 —un]l = 0 (n — o)
and hence
(3.7) [z = un| < [|#n = Tniall + |Tnt1 — un| = 0 (n — 00),
which implies that
(3.8) lim w, = lim z, = p.

On the other hand, since J is uniformly norm-to-norm continuous on boun-
ded sets, one has

(3.9) nl;rrgo |[Jzpn, — Juy|| = 0.

Since {x,} is bounded, {Jz,}, {JTz,} and {JSx,} are also bounded. Since
F is a uniformly smooth Banach space, one knows that E* is a uniformly
convex Banach space. Let r = sup,~o{llJzoll, | Jznl, || JTxx|}. Therefore,
from Lemma 2.7, it follows that there exists a continuous strictly increasing
convex function g : [0, 00) — [0, o) satisfying g(0) = 0 and the inequality (2.7).
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It follows from the property (B3) of the operator V', (3.2) and the definition of
T that
(3.10)
P(w, yn) =V (Jyn, w)
< V(anJzo + Bndxn + YnJTzn, w)
= ¢(w, J N anJzo + BnJrn + T z2,))
= ||lw||? = 200 (Jzo, W) — 2B (J 20, w) — 29 (JT 20, w)

+ lanJzo + BndTn + YnJT 2,
< lwl|* = 200 (Jzo, w) — 2By (Jxp, w) — 27, (JT 2y, w)

+ an||J$0||2 + ﬁn||an||2 + 'YnHJTZn||2 = Bung(| Jxn — JT 2 ||)
= and(w, o) + Bnd(w, zn) + Vd(w, T2n) — B Yng([|J2n — JT2n||)
< and(w, o) + Bnd(w, Tn) + Vnd(w, Tn) — BuYng(| J2n — JT 20 |)
= and(w, o) + (1 — an)d(w, xn) = Buyng([|Jzn — JT2|).

And from (3.3), we get
(3.11) P(w, un) = ¢(w, T, yn) < d(w,yn).
Substituting (3.10) into (3.11), we obtain
B, 1) < 000w, 20) + (1~ 0)0(w, 20) ~ Butng( 2 — IT20]).
The above inequality implies that
(3.12) g 720 — ITzall) < and(w, 20) + (1 — an)b(w, ) — S, n).
On the other hand, we have
P(w,zn) — p(w, un) = 2(Jun — Jzp, w) + ”In”2 - ”un”2
< 2(Jun = Jon, p) + ([|2n]] = [lunlD (2]l + [lun]])
<20 Jun = Jon |[[wl] + ([0 — wnl|([|2n]] + [Jun]])-
It follows from (3.7) and (3.9) that

(3.13) lim (¢p(w, zy,) — Pp(w,uy)) = 0.

n—oo

In view of lim,, o @, = 0, iminf,, o Bnyn > 0, the inequality (3.12) implies
that

g(|Jxp, — JT2,]])) = 0 (n — o).
Therefore, from the property of g, we get

|Jxy — JTzp]| = 0 (0 — 00).

Furthermore, since J~! is uniformly norm to norm continuous on bounded sets,
we see that

(3.14) lxn = Tzn]| =0 (n— 0).
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On the other hand, by the construction of C,,, we know that
D(2,un) < G(2,Yn) < and(z,20) + Brd(2,2n) + 1nd(2, 2n)
< and)(z,:co) + (1 - ozn)d)(z,:cn)

From z,,+1 =g, ,Jxg € Cry1, we have

1
A(Tnt1,Uun) < A(Tnt1,Yn) < nd(@Tnt1,70) + Bud(Tnt1, Tn) + Vnd(Tni1, 2n)
< an@(@nt1, o) + (1 — an)P(Tns1, Tn).
From (3.4) and lim,,_,+ v, = 0, the above inequality implies that
O(Tnt1,2n) = 0 (n = 00).
Applying Lemma 2.5, one has
|Znt1 — znl] = 0 (n — c0)
and, by (3.5), we obtain that
(3.15) [n = zull < llzn = Zniall + 2041 — 2l = 0 (2 — 00).
Thus, from (3.14) and (3.15), one sees that
lznn = Tznll < |20 — Znll + [|2n — T2n|| = 0 (n = 00).
Thus, from the closedness of T', we obtain that p € F(T).

Secondly, we show that p € EP(f). From w,, = T;. x, and the construction
of C),, one has

¢(unsyn) = A(Tr, Yn, Yn)
< d(w,yn) — d(w, Tr, yn)
< o(w,zn) — d(w, Tr, Yn)
< P(w, ) — Pp(w, up,).

And, by (3.13), it follows that
¢(tn,yn) = 0 (n — 00).
Applying Lemma 2.5, we obtain
|t —ynll = 0 (n — o).
Since J is a uniformly norm-to-norm continuous on bounded sets, one has
lim ||Ju, — Jyn| = 0.
n—o0
From the assumption that r,, > a, one has
Jun — Jyn
L = Tyl

n—00 Tn

=0.
Observing that u,, = T} yn, one obtains

1

n
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From (A2), one gets
| Jun, — Jyn| < 1

lym — a1 =T S L gy — )
Tn Tn

< fly,un), YyeC.

Taking n — oo in above inequality, it follows from (A4) and (3.8) that

fly,p) <0, VyeC.
For all 0 < t <1 and y € C, define y; = ty + (1 — ¢)p. Note that y, p € C and
so one obtains y; € C, which yields that f(y:,p) < 0. It follows from (A1) that
0= f(ytayt) S tf(ytay) + (1 - t)f(ytap) S tf(ytay)a

that is,

Let t | 0. From (A3), we obtain f(p,y) > 0 for all y € C, which imply that
p € EP(f).

Finally, we show that p € VI(A,C). In fact, by (3.15), we have
e (Jzn — nAx,) —z,|| = 0 (n — 00).
Since lim,, ., £, = p, we obtain

lim z, = p.
n—oo

By the continuity of the operator J, A, I1x, we have
Jim [[Tlo(Jzp —nAz,) — o (Jp —nAp)|| = 0.
Note that
Mo (Jzn —nAzy) —p)
< |Ue(Jzy — nAzxy) — 2| + ||zn — 2|l = 0 (R — 00).

Hence it follows from the uniqueness of the limit that p = ¢ (Jp—nAp). From
Lemma 2.4, we have p € VI(A, C). Therefore, we have p € F.

Step 5. p =1y Jxyp.

Since p € F, from the property (B3) of the operator I, we have
(3.16) V(I Jzo,p) + V(Jxo, U Jxg) < V(Jx0,p).

On the other hand, since 2,41 = ¢, ., Jrg and F C Cpy1 for alln € NU{0},
it follows from the property (B7) of the operator Il that

(317) V(JSCerl, HFJZL'()) + V(JSC(), anrl) S V(Jl'o, HFJZL'()).
Furthermore, by the continuity of the operator V', we get

(3.18) ILm V(Jzo, xny1) = V(Jzo,p).
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Combining (3.16), (3.17) with (3.18), we obtain
V(Jxo,p) =V (Jxo, f Jxo).

Therefore, it follows from the uniqueness of Il Jxy that p = Iy Jxg. This
completes the proof. (I

Remark 3.2. Theorem 3.1 improves Theorem 3.1 of Liu [11] in the following
senses:

(1) The hemi-relatively nonexpansive mapping is more general than the rel-
atively weak nonexpansive one in Liu [11].

(2) Our iterative algorithm (3.1) is completely different from the iterative
algorithm of Theorem 3.1 of Liu [11].

(3) In contrast to Theorem 3.1 of Liu [11], our algorithm in Theorem 3.1 is
related to three problems, that is, the fixed point, variational inequality and
equilibrium problems.

When a,, =0 in (3.1), we can obtain the new modified Mann iteration for
the hemi-relatively nonexpansive mapping T, the variational inequality (1.1),
the equilibrium problem (1.6) as follows:

Corollary 3.3. Let E be a uniformly convex and uniformly smooth Banach
space and C be a nonempty closed convex subset of E. Let f be a bifunction
from C x C to R satisfying the conditions (A1)-(Ag). Assume that A is a
continuous operators of C into E* satisfying the conditions (2.10) and (2.11),
and T : C — C is a closed hemi-relatively nonexpansive mapping with F =
F(T)NVI(A,C)NEP(f)# 0. For an arbitrary element xo € C, put Cy = C

and let {x,} be a sequence generated by the following iterative scheme:

zn = o (Jx, — nAxy,),

yn = Ho(anJa, + (1 — an)JTz,),

un, € C such that  f(un,y) + %(Jun — JYn,y —un) >0, VyeC,

Cnt1 =1{2 € Cp 1 ¢(2,un) < d(2,yn) < and(z, ) + (1 — an)p(2, 2n)
< ¢z, mn)},

Tny1 =g, Jzo, Vn2>1,

where {a, } is a sequence in [0, 1], and {a,} and {r,} satisfies that liminf,
an(l —ay) > 0 and {r,} C [a,00) for some a > 0. Then the sequence {z,}
converges strongly to a point Iy Jxg, where Iy s the generalized projection
from C onto F .

If T = I in the iteration algorithm of Corollary 3.3, it reduces to the new
modified Mann iteration for the variational inequality (1.1) and the generalized
equilibrium problem (1.6) as follows:

Corollary 3.4. Let E be a uniformly convex and uniformly smooth Banach
space and C be a nonempty closed convex subset of E. Let f be a bifunction
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from C x C to R satisfying the conditions (A1)-(Ag). Assume that A is a
continuous operators of C into E* satisfying the conditions (2.10) and (2.11)
with F :=VI(A,C)NEP(f) # 0. For an arbitrary element o € C, put Cy = C
and let {xz,} be a sequence generated by the following iterative scheme:

Yn = e (apJz, + (1 — ap)Je(Jx, —ndzy,)),
un, € C such that  f(un,y)+ %(Jun —JYn,y —un) >0, VyeC,
Crt1={z € Oy : d(2,un) < d(2,yn) < and(z,75) + (1 — an)d(z, 2,)
S ¢(2,$n)},
Tny1 =g, Jzo, Vn2>1,
where {ay,} is a sequence in [0,1] and {an} and {r,} satisfies that liminf,
an(l —ay) > 0 and {r,} C [a,00) for some a > 0. Then the sequence {xy}

converges strongly to a point Iy Jxg, where Iy s the generalized projection
from C onto F.

Remark 3.5. See Remark 3.1 of Liu [11], Corollary 3.4 also does the corre-
sponding promotions about Li [10] and Fan [7] as Liu [11]’s job.

If the mapping A is a A-inverse strongly monotone mapping in Corollary 3.3,
then the following result can be also obtained by Corollary 3.3 and Theorem
3.1.

Corollary 3.6. Let E be a uniformly convex and uniformly smooth Banach
space and C be a nonempty closed convex subset of E. Let f be a bifunction
from C x C to R satisfying the conditions (A1)-(Ag). Assume that A is a
A—inverse strongly monotone mapping of C' into E* satisfying the conditions
(2.10) and (2.11) and T : C — C is a closed hemi-relatively nonerpansive
mapping with F == F(T)NVI(A,C)NEP(f) # 0. For an arbitrary element
29 € C, put Cy = C and let {x,} be a sequence generated by the following
iterative scheme:
zn = o (Jx, — nAxy,),
yn = He(anJx, + (1 — ap)JT zy,),
un € C such that  f(un,y) + = (Jup — Jyn,y —un) >0, Vy € C,
CVnJrl = {Z eCy: ¢(z;un) < d)(zvyn) < Oénd)(zvxn) + (1 - an)¢(z;zn)

S ¢(Za xn)}a

Tny1 = e, Jzo, VN 2>1,

where {an} is a sequence in [0,1] with liminf, o (1 —ay) > 0 and {r,} C
[a,00) for some a > 0. Then the sequence {x,} converges strongly to a point
Iy Jxo, where Iy is the generalized projection from C' onto F .

Proof. Since A is M-inverse strongly monotone, by (1.6), we have

1
Az — Ay|| < Sz —yll,
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for all z, y € C, then it is Lipschitz continuous with constant % By Corollary
3.5, we can directly obtain that the sequence {x.,,} converges strongly to a point
HF Jxo. O

Remark 3.7. Corollary 3.6 improves Theorem 3.1 of Takahashi and Toyoda [20)]
in the following senses:

(1) The hemi-relatively nonexpansive mapping is more general than a non-
expansive one in Takahashi and Toyoda [20].

(2) Our modified Mann iteration obtains strong convergence result about a
A-inverse strongly monotone mapping and a closed hemi-relatively nonexpan-
sive mapping and generalized equilibrium problem (1.9) in a uniformly convex
and uniformly smooth Banach space.
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