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THE SHRINKING PROJECTION METHODS FOR

HEMI-RELATIVELY NONEXPANSIVE MAPPINGS,

VARIATIONAL INEQUALITIES AND EQUILIBRIUM

PROBLEMS

Zi-Ming Wang, Mi Kwang Kang, and Yeol Je Cho

Abstract. In this paper, we introduce the shrinking projection method
for hemi-relatively nonexpansive mappings to find a common solution of
variational inequality problems and equilibrium problems in uniformly
convex and uniformly smooth Banach spaces and prove some strong con-
vergence theorems to the common solution by using the proposed method.

1. Introduction

Let E be a Banach space and E∗ the dual space of E. Let C be a nonempty
closed convex subset of E. Let J be the normalized duality mapping from E

into 2E
∗

defined by

Jx = {f ∈ E∗ : 〈f, x〉 = ‖x‖2 = ‖f‖2}, ∀x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing.
It is known that the duality mapping J has the following properties:

(1) If E is smooth, then J is single-valued;
(2) If E is strictly convex, then J is one-to-one;
(3) If E is reflexive, then J is surjective;
(4) If E is uniformly smooth, then J is uniformly norm-to-norm continuous

on each bounded subset of E;
(5) If E∗ is uniformly convex, then J is uniformly continuous on bounded

subsets of E and J is singe-valued and also one-to-one; see [1-4, 17, 19].
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As is well-known to all, variational inequalities are being used as a mathe-
matical programming tool in modeling a wide class of problems arising in sev-
eral branches of pure and applied sciences; for example, operations research,
economic equilibrium and engineering design.

In this paper, we consider the following variational inequality: Find x ∈ C

such that

(1.1) 〈Ax, y − x〉 ≥ 0, ∀y ∈ C.

A point x0 ∈ C is called a solution of the variational inequality (1.1) if
〈Ax0, y−x0〉 ≥ 0. The solutions set of the variational inequality (1.1) is denoted
by V I(A,C). When A is provided with some monotonicity, many iterative
methods for solving the variational inequality (1.1) have been developed; see
[5-13].

Most recently, utilizing shrinking projection method, Ying Liu [11] estab-
lished the following strong convergence theorem for relatively weak nonexpan-
sive mapping and variational inequality in a uniformly convex and uniformly
smooth Bananch space.

Theorem 1.1 ([11, Theorem 3.1]). Let E be a uniformly convex and uniformly

smooth Banach space and C be a nonempty closed convex subset of E. Assume

that A is a continuous operator of C into E∗ satisfying the conditions (1.2)
and (1.3) and S : C → C is a relatively weak nonexpansive mapping with

F := F (S)∩ V I(A,C) 6= ∅. Then the sequence {xn} generated by the following

iterative scheme:

(1.2)





x0 ∈ C chosen arbitrarily ,

zn = ΠC(αnJxn + (1− αn)JSxn),

yn = J−1(δnJxn + (1 − δn)JΠC(Jzn − βAzn)),

C0 = {z ∈ C : φ(z, y0) ≤ φ(z, x0)},

Cn = {z ∈ Cn−1 ∩Qn−1 : φ(z, yn) ≤ φ(z, xn)},

Q0 = C,

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈Jx0 − Jxn, xn − z〉 ≥ 0},

xn+1 = ΠCn∩Qn
Jx0, ∀n ≥ 1,

where the sequences {αn} and {δn} satisfy the following conditions:

0 ≤ δn < 1, lim sup
n→∞

δ < 1, 0 < αn < 1, lim inf
n→∞

αn(1− α) > 0,

converges strongly to ΠF (S)∩V I(A,C)Jx0.

Here, we remark that Theorem 1.1 improved the relevant result of Jinlu Li
[10] and Jianghua Fan [7], in detail that Theorem 1.1 removed the compactness
of J − βA instead by the continuity of A, and obtained a strong convergence
result.
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Recall that a mapping A : D(A) ⊂ E → E∗ is said to be monotone if the
following inequality holds:

(1.3) 〈Ax −Ay, x− y〉 ≥ 0, ∀x, y ∈ D(A).

A is said to be λ-inverse strongly monotone if there exists a positive real number
λ such that

(1.4) 〈Ax −Ay, x− y〉 ≥ λ‖Ax−Ay‖2, ∀x, y ∈ D(A).

If A is λ-inverse strongly monotone, then it is Lipschitz continuous with con-
stant 1

λ
, i.e., ‖Ax − Ay‖ ≤ 1

λ
‖x − y‖, ∀x, y ∈ D(A), and hence uniformly

continuous.
For finding an element of a nonexpansive mapping and V I(A,C), Takahashi

and Toyoda [20] introduced the following iterative scheme in a Hilbert space
H :

(1.5) xn+1 = αnxn + (1− αn)SPC(xn − µnAxn), ∀n ≥ 1,

where x0 ∈ C, PC is a metric projection of H onto C, A is a λ-inverse strongly
monotone operator. Furthermore they proved a weak convergence theorem:

Theorem 1.2 ([20, Theorem 3.1]). Let C be a closed convex subset of a real

Hilbert space H. Let λ > 0. Let A be an λ-inverse strongly-monotone mapping

of C into H, and let S be a nonexpansive mapping of C into itself such that

F (S) ∩ V I(A,C) 6= ∅. Let {xn} be a sequence generated by (1.5) for all n ∈
N ∪ {0}, where {µn} ⊂ [a, b] for some a, b ∈ (0, 2λ) and {αn} ⊂ [c, d] for
some c, d ∈ (0, 1). Then {xn} converges weakly to z ∈ F (S)∩V I(A,C), where
z = limn→∞ PF (S)∩V I(A,C)xn.

On the other hand, the equilibrium problem introduced in [3] in 1994, is
always a hot topic of intensive research efforts, because it has a great impact
and influence in the development of several branches of pure and applied sci-
ences. It has been shown that equilibrium problem theory provided a novel and
unified treatment of a wide class of problems which arise in economics, finance,
physics, image reconstruction, ecology, transportation, network, elasticity and
optimization. Numerous problems in physics, optimization and economics re-
duce to finding a solution of equilibrium problem. Some methods have been
proposed to solve the equilibrium problem; see [10-13].

Let f : C × C → R be a bifunction. The equilibrium problem for f is as
follows: Find x̂ ∈ C such that

(1.6) f(x̂, y) ≥ 0, ∀ y ∈ C.

The set of solutions of the problem (1.6) is denoted by EP (f). For solving
the equilibrium problem, ones always assume that a bifunction f satisfies the
following conditions:

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
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(A3) For all x, y, z ∈ C,

lim sup
t↓0

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) For all x ∈ C, f(x, ·) is convex and lower semicontinuous.

For example, let A be a continuous and monotone operator of C into E∗

and define

f(x, y) = 〈Ax, y − x〉, ∀x, y ∈ C.

Then f satisfies (A1)-(A4).

In this paper, motivated and inspired by the results mentioned above, we
introduce a new hybrid projection algorithm based on the shrinking projec-
tion method for a closed hemi-relatively nonexpansive mapping, variational in-
equality, equilibrium problem. Using the new algorithm, we prove some strong
convergence theorem which approximate a common element in the fixed points
set of the closed hemi-relatively nonexpansive mappings, the solutions set of
a variational inequality and the solutions set of the equilibrium problem in a
uniformly convex and uniformly smooth Banach space. Our results extend and
improve the recent ones announced by Li [10], Fan [7], Liu [11], Takahashi and
Toyoda [3] and many others.

2. Preliminaries

A Banach space E is said to be strictly convex if x+y
2 < 1 for all x, y ∈

E with ‖x‖ = ‖y‖ = 1 and x 6= y. It is said to be uniformly convex if
limn→∞ ‖xn − yn‖ = 0 for any two sequences {xn} and {yn} in E such that
‖xn‖ = ‖yn‖ = 1 and lim→∞ ‖xn+yn

2 ‖ = 1.
Let UE = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the Banach

space E is said to be smooth provided

(2.1) lim
t→0

‖x+ ty‖ − ‖x‖

t

exists for each x, y ∈ UE . It is also said to be uniformly smooth if the limit
(2.1) is attained uniformly for x, y ∈ UE .

It is well known that, if E is uniformly smooth, then J is uniformly norm-
to-norm continuous on each bounded subset of E and, if E is uniformly smooth
if and only if E∗ is uniformly convex.

Let C be a closed convex subset of E and T be a mapping from C into itself.
A point p in C is said to be an asymptotic fixed point of T if C contains a
sequence {xn} which converges weakly to p such that the strong limn→∞(xn −

Txn) = 0. The set of asymptotic fixed points of T is denoted by F̂ (T ).
Recall that an operator T in Banach space E is said to be closed if xn → x

and Txn → y implies Tx = y.
A mapping T from C into itself is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.
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The mapping T is said to be relatively nonexpansive [14-16] if

F̂ (T ) = F (T ) 6= ∅, φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (T ).

The asymptotic behavior of a relatively nonexpansive mapping was studied in
[14-16]. A point p ∈ C is called a strong asymptotic fixed point of T if C
contains a sequence {xn} which converges strongly to p such that

lim
n→∞

(xn − Txn) = 0.

The set of strong asymptotic fixed points of T is denoted by F̃ (T ).

A mapping T from C into itself is said to be relatively weak nonexpansive if

F̃ (T ) = F (T ) 6= ∅, φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (T ).

The mapping T is said to be hemi-relatively nonexpansive if

F (T ) 6= ∅, φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (T ).

It is obvious that a relatively nonexpansive mapping is a relatively and
weakly nonexpansive mapping and, further, a relatively and weakly nonexpan-
sive mapping are all hemi-relatively nonexpansive, but the converses are not
true as in the following example:

Example 2.1 ([18]). Let E be any smooth Banach space and x0 6= 0 be any
element of E. We define a mapping T : E → E as follows: For all n ≥ 1,

T (x) =

{
(12 + 1

2n+1 )x0, if x = (12 + 1
2n )x0,

−x, if x 6= (12 + 1
2n )x0.

Then T is a hemi-relatively nonexpansive mapping, but it is not relatively
nonexpansive mapping.

Next, we give an important example which is also hemi-relatively nonexpan-
sive.

Example 2.2 ([15]). Let E be a strictly convex reflexive smooth Banach space.
Let A be a maximal monotone operator of E into E∗ and Jr be the resolvent
for A with r > 0. Then Jr = (J + rA)−1J is a hemi-relatively nonexpansive
mapping from E onto D(A) with F (Jr) = A−10.

In [8, 2], Alber introduced the functional V : E∗ × E → R defined by

(2.2) V (φ, x) = ‖φ‖2 − 2〈φ, x〉+ ‖x‖2,

where φ ∈ E∗ and x ∈ E. It is easy to see that

(2.3) V (φ, x) ≥ (‖φ‖ − ‖x‖)2

and so the functional V : E∗ × E → R+ is nonnegative.

In order to prove our results in the next section, we present several necessary
definitions and lemmas.
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Definition 2.3 ([9]). If E be a uniformly convex and uniformly smooth Banach
space, then the generalized projection ΠC : E∗ → C is a mapping that assigns
an arbitrary point φ ∈ E∗ to the minimum point of the functional V (φ, x), i.e.,
a solution to the minimization problem

(2.4) V (φ,ΠC(φ)) = inf
y∈C

V (φ, y).

Li [10] proved that the generalized projection operator ΠC : E∗ → C is
continuous if E is a reflexive, strictly convex and smooth Banach space.

Consider the function φ : E × E → R is defined by

φ(x, y) = V (Jy, x), ∀x, y ∈ E.

The following properties of the operator ΠC and V are useful for our paper;
see, for example, [1, 10].

(B1) V : E∗ × E → R is continuous;
(B2) V (φ, x) = 0 if and only if φ = Jx;
(B3) V (JΠC(φ), x) ≤ V (φ, x) for all φ ∈ E∗ and x ∈ E;
(B4) The operator ΠC is J fixed at each point x ∈ E∗ and x ∈ E;
(B5) If E is smooth, then, for any given φ ∈ E∗ and x ∈ C, x ∈ ΠC(φ) if

and only if

〈φ− Jx, x − y〉 ≥ 0, ∀y ∈ C;

(B6) The operator ΠC : E∗ → c is single valued if and only if E is strictly
convex;

(B7) If E is smooth, then, for any given point φ ∈ E∗ and x ∈ ΠC(φ), the
following inequality holds:

V (Jx, y) ≤ V (φ, y)− V (φ, x), ∀y ∈ C;

(B8) v(φ,X) is convex with respect to φ when x is fixed and with respect
to x when φ is fixed;

(B9) If E is reflexive, then, for any point φ ∈ E∗, ΠC(φ) is a nonempty
closed convex and bounded subset of C.

Using some properties of the generalized projection operator ΠC , Alber [1]
proved the following theorem:

Lemma 2.4 ([1]). Let E be a strictly convex reflexive smooth Banach space.

Let A be an arbitrary operator from a Banach space E to E∗ and β be an

arbitrary fixed positive number. Then x ∈ C ⊂ E is a solution of the variational

inequality (1.1) if and only if x is a solution of the following operator equation

in E:

(2.5) x = ΠC(Jx− βAx).

Lemma 2.5 ([9]). Let E be a uniformly convex smooth Banach space and

{yn}, {zn} be two sequences of E such that either {yn} or {zn} is bounded. If

limn→∞ φ(yn, zn) = 0, then limn→∞ ‖yn − zn‖ = 0.
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Lemma 2.6 ([5]). Let E be a uniformly convex and uniformly smooth Banach

space. We have

(2.6) ‖φ+Φ‖2 ≤ ‖φ‖2 + 2〈Φ, J(φ+Φ)〉, ∀φ,Φ ∈ E∗.

From Qin et al. [16], the following lemma can be obtained immediately.

Lemma 2.7. Let E be a uniformly convex Banach space, s > 0 be a positive

number and Bs(0) be a closed ball of E. Then there exists a continuous, strictly

increasing and convex function g : [0,∞) → [0,∞) with g(0) = 0 such that

(2.7) ‖ΣN
i=1(αixi)‖

2 ≤ ΣN
i=1(αi‖xi‖

2)− αiαjg(‖xi − xj‖)

for all x1, x2, . . . , xN ∈ Bs(0) = {x ∈ E : ‖x‖ ≤ s}, i 6= j for all i, j ∈

{1, 2, . . . , N} and α1, α2, . . . , αN ∈ [0, 1] such that
∑N

i=1 αi = 1.

Lemma 2.8 ([3]). Let C be a closed and convex subset of a smooth, strictly

convex and reflexive Banach spaces E, f be a bifunction from C × C to R

satisfying the conditions (B1)-(B4) and let r > 0, x ∈ E. Then there exists

z ∈ C such that

(2.8) f(z, y) +
1

r
〈Jz − Jx, y − z〉 ≥ 0, ∀ y ∈ C.

Lemma 2.9 ([21]). Let C be a closed and convex subset of a uniformly smooth,

strictly convex and reflexive Banach spaces E, let f be a bifunction from C×C

to R satisfying (B1)-(B4). For all r > 0 and x ∈ E, define the mapping

Trx = {z ∈ C : f(z, y) +
1

r
〈Jz − Jx, y − z〉 ≥ 0, ∀ y ∈ C}.

Then the following hold:
(C1) Tr is single-valued;
(C2) Tr is a firmly nonexpansive-type mapping, that is, for all x, y ∈ E,

〈JTrx− JTry, Trx− Try〉 ≤ 〈Jx − Jy, Trx− Try〉;

(C3) F (Tr) = F̂ (Tr) = EP (f);

(C4) EP (f) is closed and convex.

Lemma 2.10 ([21]). Let C be a closed convex subset of a smooth, strictly

convex, and reflexive Banach space E, let f be a bifunction from C × C to R

satisfying (C1)-(C4) and let r > 0. Then, for all x ∈ E and q ∈ F (Tr),

(2.9) φ(q, Trx) + φ(Trx, x) ≤ φ(q, x).

Lemma 2.11 ([11, Lemma 2.5]). Let E be a uniformly convex and uniformly

smooth Banach space and let C be a nonempty closed and convex subset of E.

Suppose that there exists a positive number η such that

(2.10) 〈Ax, J−1(Jx− ηAx)〉 ≥ 0, ∀ x ∈ C,

and

(2.11) 〈Ax, y〉 ≤ 0, ∀ x ∈ K, y ∈ V I(A,C).
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Then V I(A,C) is closed and convex.

Lemma 2.12 ([11, Lemma 2.6]). If E is a reflexive, strictly convex and smooth

Banach space, then ΠC = J−1.

Lemma 2.13 ([11, Lemma 2.6]). Let E be a strictly convex and smooth real

Banach space, C be a closed convex subset of E and T be a hemi-relatively

nonexpansive mapping from C into itself. Then F (T ) is closed and convex.

3. Main results

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach

space and C be a nonempty closed convex subset of E. Let f be a bifunction

from C × C to R satisfying the conditions (A1)-(A4). Assume that A is a

continuous operators of C into E∗ satisfying the conditions (2.10) and (2.11),
and T : C → C is a closed hemi-relatively nonexpansive mapping with ̥ :=
F (T ) ∩ V I(A,C) ∩ EP (f) 6= ∅. For an arbitrary element x0 ∈ C, put C0 = C

and let {xn} be a sequence generated by the following iterative scheme:
(3.1)



zn = ΠC(Jxn − ηAxn),

yn = ΠC(αnJx0 + βnJxn + γnJTzn),

un ∈ C such that f(un, y) +
1
rn
〈Jun − Jyn, y − un〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, yn)

≤ αnφ(z, x0) + βnφ(z, xn) + γnφ(z, zn)

≤ αnφ(z, x0) + (1 − αn)φ(z, xn)},

xn+1 = ΠCn+1
Jx0, ∀n ≥ 1,

where {αn}, {βn} and {γn} are the sequences in [0, 1] with the following re-

strictions:
(a) αn + βn + γn = 1;

(b) {rn} ⊂ [a,∞) for some a > 0;

(c) limn→∞ αn = 0 and lim infn→∞ βnγn > 0.

Then the sequence {xn} converges strongly to a point Π̥Jx0, where Π̥ is the

generalized projection from C onto ̥.

Proof. We divide the proof into five steps.
Step 1. ΠF Jx0 and ΠCn+1

Jx0 are well defined.
From Lemma 2.9(C4), Lemma 2.11 and Lemma 2.13, one has that ΠF Jx0

is well defined.
Now, we show that Cn is closed and convex for all n ∈ N ∪ {0}. From the

definitions of Cn, it is obvious that Cn is closed for all n ∈ N ∪ {0}.
Next, we prove that Cn is convex for all n ∈ N∪{0}. Since φ(z, un) ≤ φ(z, yn)

is equivalent to

2〈Jyn − Jun, z〉 ≤ ‖yn‖
2 − ‖un‖

2;
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φ(z, yn) ≤ αnφ(z, x0) + βnφ(z, xn) + γnφ(w, zn) is equivalent to

2〈αnJx0 + βnJxn + γnJzn − Jyn, z〉 ≤ αn‖x0‖
2 + βn‖xn‖

2 + γn‖zn‖
2;

and αnφ(z, x0) + βnφ(z, xn) + γnφ(z, zn) ≤ αnφ(z, x0) + (1 − αn)φ(z, xn)} is
equivalent to

2〈Jxn − Jzn, z〉 ≤ ‖xn‖
2 − ‖zn‖

2.

It follows that Cn is convex for all n ∈ N ∪ {0}. Thus, for all n ∈ N ∪ {0}, Cn

is closed and convex and so ΠCn+1
Jx0 is well defined.

Step 2. ̥ ⊂ Cn for all n ∈ N ∪ {0}.
Observe that ̥ ⊂ C0 = C is obvious. Suppose that ̥ ⊂ Cn for some n ∈ N.

Let w ∈ ̥ ⊂ Cn. Then, from the definition of φ and V , the property (B3) of
V , Lemma 2.6, the conditions (2.10) and (2.11), it follows that

(3.2)

φ(w,ΠC(Jxn − ηAxn)) = V (JΠC(Jxn − ηAxn), w)

≤ V (Jxn − ηAxn, w)

= ‖Jxn − ηAxn‖
2 − 2〈Jxn − ηAxn, w〉+ ‖w‖2

≤ ‖Jxn‖
2 − 2η〈Axn, J

−1(Jxn − ηAxn)〉

− 2〈Jxn − ηAzn, w〉+ ‖w‖2

≤ ‖Jxn‖
2 − 2〈Jxn, w〉+ ‖w‖2

= φ(w, xn).

Since un = Trnyn, applying Lemma 2.10, the properties (B3) and (B8) of the
operator V and (3.2), we obtain

(3.3)

φ(w, un) = φ(w, Trnyn) ≤ φ(w, yn) = V (Jyn, w)

≤ αnV (Jx0, w) + βnV (Jxn, w) + γnV (JTzn, w)

≤ αnφ(w, x0) + βnφ(w, xn) + γnφ(w, zn)

≤ αnφ(w, x0) + βnφ(w, xn) + γnφ(w, xn)

= αnφ(w, x0) + (1− αn)φ(w, xn),

which shows that w ∈ Cn+1. Depending on the randomicity of w, one can learn
that ̥ ⊂ Cn for all n ∈ N ∪ {0}.

Step 3. {xn} is a Cauchy sequence.
Since xn = ΠCn

Jx0, and from (2.4), one has

V (Jx0, xn) ≤ V (Jx0, y), ∀ y ∈ C,

and ̥ ⊂ Cn ⊂ C, one also has

V (Jx0, xn) ≤ V (Jx0, w), ∀ w ∈ ̥.

Therefore, {V (Jx0, xn)} is bounded. Moreover, from the definition of V , it
follows that {xn} is bounded. Since xn+1 = ΠCn+1

Jx0 ∈ Cn+1 and xn =
ΠCn

Jx0, we have

V (Jx0, xn) ≤ V (Jx0, xn+1), ∀ n ≥ 0.
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Hence {V (Jx0, xn)} is nondecreasing and so limn→∞ V (Jx0, xn) exists. By
the construction of Cn, we have that Cm ⊂ Cn and xm = ΠCm

Jx0 ∈ Cn for
any positive integer m ≥ n. From the property (B3), we have

V (Jxn, xm) ≤ V (Jx0, xm)− V (Jx0, xn)

for all n ∈ N ∪ {0} and any positive integer m ≥ n. This implies that

V (Jxn, xm) → 0 (n,m → ∞).

The definition of φ implies that

(3.4) φ(xm, xn) → 0 (n,m → ∞).

Applying Lemma 2.5, we obtain

(3.5) ‖xm − xn‖ → 0 (n,m → ∞).

Hence {xn} is a Cauchy sequence. In view of the completeness of a Banach
space E and the closeness of C, it follows that

(3.6) lim
n→∞

xn = p

for some p ∈ C.

Step 4. p ∈ ̥.

First, we show that p ∈ F (T ). In fact, since xn+1 ∈ Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn).

Thus, by (3.4) and Lemma 2.5, we have

‖xn+1 − un‖ → 0 (n → ∞)

and hence

(3.7) ‖xn − un‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − un‖ → 0 (n → ∞),

which implies that

(3.8) lim
n→∞

un = lim
n→∞

xn = p.

On the other hand, since J is uniformly norm-to-norm continuous on boun-
ded sets, one has

(3.9) lim
n→∞

‖Jxn − Jun‖ = 0.

Since {xn} is bounded, {Jxn}, {JTxn} and {JSxn} are also bounded. Since
E is a uniformly smooth Banach space, one knows that E∗ is a uniformly
convex Banach space. Let r = supn≥0{‖Jx0‖, ‖Jxn‖, ‖JTxn‖}. Therefore,
from Lemma 2.7, it follows that there exists a continuous strictly increasing
convex function g : [0,∞) → [0,∞) satisfying g(0) = 0 and the inequality (2.7).
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It follows from the property (B3) of the operator V , (3.2) and the definition of
T that
(3.10)
φ(w, yn) = V (Jyn, w)

≤ V (αnJx0 + βnJxn + γnJTzn, w)

= φ(w, J−1(αnJx0 + βnJxn + γnJTzn))

= ‖w‖2 − 2αn〈Jx0, w〉 − 2βn〈Jxn, w〉 − 2γn〈JTzn, w〉

+ ‖αnJx0 + βnJxn + γnJTzn‖
2

≤ ‖w‖2 − 2αn〈Jx0, w〉 − 2βn〈Jxn, w〉 − 2γn〈JTzn, w〉

+ αn‖Jx0‖
2 + βn‖Jxn‖

2 + γn‖JTzn‖
2 − βnγng(‖Jxn − JTzn‖)

= αnφ(w, x0) + βnφ(w, xn) + γnφ(w, Tzn)− βnγng(‖Jxn − JTzn‖)

≤ αnφ(w, x0) + βnφ(w, xn) + γnφ(w, xn)− βnγng(‖Jxn − JTzn‖)

= αnφ(w, x0) + (1− αn)φ(w, xn)− βnγng(‖Jxn − JTzn‖).

And from (3.3), we get

(3.11) φ(w, un) = φ(w, Trnyn) ≤ φ(w, yn).

Substituting (3.10) into (3.11), we obtain

φ(w, un) ≤ αnφ(w, x0) + (1− αn)φ(w, xn)− βnγng(‖Jxn − JTzn‖).

The above inequality implies that

(3.12) βnγng(‖Jxn − JTzn‖) ≤ αnφ(w, x0) + (1− αn)φ(w, xn)− φ(w, un).

On the other hand, we have

φ(w, xn)− φ(w, un) = 2〈Jun − Jxn, w〉 + ‖xn‖
2 − ‖un‖

2

≤ 2〈Jun − Jxn, p〉+ (‖xn‖ − ‖un‖)(‖xn‖+ ‖un‖)

≤ 2‖Jun − Jxn‖‖w‖+ ‖xn − un‖(‖xn‖+ ‖un‖).

It follows from (3.7) and (3.9) that

(3.13) lim
n→∞

(φ(w, xn)− φ(w, un)) = 0.

In view of limn→∞ αn = 0, lim infn→∞ βnγn > 0, the inequality (3.12) implies
that

g(‖Jxn − JTzn‖) → 0 (n → ∞).

Therefore, from the property of g, we get

‖Jxn − JTzn‖ → 0 (n → ∞).

Furthermore, since J−1 is uniformly norm to norm continuous on bounded sets,
we see that

(3.14) ‖xn − Tzn‖ → 0 (n → ∞).
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On the other hand, by the construction of Cn, we know that

φ(z, un) ≤ φ(z, yn) ≤ αnφ(z, x0) + βnφ(z, xn) + γnφ(z, zn)

≤ αnφ(z, x0) + (1− αn)φ(z, xn).

From xn+1 = ΠCn+1
Jx0 ∈ Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, yn) ≤ αnφ(xn+1, x0) + βnφ(xn+1, xn) + γnφ(xn+1, zn)

≤ αnφ(xn+1, x0) + (1− αn)φ(xn+1, xn).

From (3.4) and limn→∞ αn = 0, the above inequality implies that

φ(xn+1, zn) → 0 (n → ∞).

Applying Lemma 2.5, one has

‖xn+1 − zn‖ → 0 (n → ∞)

and, by (3.5), we obtain that

(3.15) ‖xn − zn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − zn‖ → 0 (n → ∞).

Thus, from (3.14) and (3.15), one sees that

‖zn − Tzn‖ ≤ ‖zn − xn‖+ ‖xn − Tzn‖ → 0 (n → ∞).

Thus, from the closedness of T , we obtain that p ∈ F (T ).

Secondly, we show that p ∈ EP (f). From un = Trnxn and the construction
of Cn, one has

φ(un, yn) = φ(Trnyn, yn)

≤ φ(w, yn)− φ(w, Trnyn)

≤ φ(w, xn)− φ(w, Trnyn)

≤ φ(w, xn)− φ(w, un).

And, by (3.13), it follows that

φ(un, yn) → 0 (n → ∞).

Applying Lemma 2.5, we obtain

‖un − yn‖ → 0 (n → ∞).

Since J is a uniformly norm-to-norm continuous on bounded sets, one has

lim
n→∞

‖Jun − Jyn‖ = 0.

From the assumption that rn ≥ a, one has

lim
n→∞

‖Jun − Jyn‖

rn
= 0.

Observing that un = Trnyn, one obtains

f(un, y) +
1

rn
〈Jun − Jy, y − un〉 ≥ 0, ∀ y ∈ C.
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From (A2), one gets

‖yn − un‖
‖Jun − Jyn‖

rn
≥

1

rn
〈Jun − Jyn, y − un〉

≤ −f(un, y)

≤ f(y, un), ∀ y ∈ C.

Taking n → ∞ in above inequality, it follows from (A4) and (3.8) that

f(y, p) ≤ 0, ∀ y ∈ C.

For all 0 < t < 1 and y ∈ C, define yt = ty + (1 − t)p. Note that y, p ∈ C and
so one obtains yt ∈ C, which yields that f(yt, p) ≤ 0. It follows from (A1) that

0 = f(yt, yt) ≤ tf(yt, y) + (1− t)f(yt, p) ≤ tf(yt, y),

that is,

f(yt, y) ≥ 0.

Let t ↓ 0. From (A3), we obtain f(p, y) ≥ 0 for all y ∈ C, which imply that
p ∈ EP (f).

Finally, we show that p ∈ V I(A,C). In fact, by (3.15), we have

‖ΠC(Jxn − ηAxn)− xn‖ → 0 (n → ∞).

Since limn→∞ xn = p, we obtain

lim
n→∞

zn = p.

By the continuity of the operator J , A, ΠC , we have

lim
n→∞

‖ΠC(Jxn − ηAxn)−ΠC(Jp− ηAp)‖ = 0.

Note that

‖ΠC(Jxn − ηAxn)− p)‖

≤ ‖ΠC(Jxn − ηAxn)− xn‖+ ‖xn − p‖ → 0 (n → ∞).

Hence it follows from the uniqueness of the limit that p = ΠC(Jp−ηAp). From
Lemma 2.4, we have p ∈ V I(A,C). Therefore, we have p ∈ F.

Step 5. p = Π̥Jx0.

Since p ∈ ̥, from the property (B3) of the operator ΠC , we have

(3.16) V (JΠ̥Jx0, p) + V (Jx0,Π̥Jx0) ≤ V (Jx0, p).

On the other hand, since xn+1 = ΠCn+1
Jx0 and F ⊂ Cn+1 for all n ∈ N∪{0},

it follows from the property (B7) of the operator ΠC that

(3.17) V (Jxx+1,Π̥Jx0) + V (Jx0, xn+1) ≤ V (Jx0,Π̥Jx0).

Furthermore, by the continuity of the operator V , we get

(3.18) lim
n→∞

V (Jx0, xn+1) = V (Jx0, p).
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Combining (3.16), (3.17) with (3.18), we obtain

V (Jx0, p) = V (Jx0,Π̥Jx0).

Therefore, it follows from the uniqueness of Π̥Jx0 that p = Π̥Jx0. This
completes the proof. �

Remark 3.2. Theorem 3.1 improves Theorem 3.1 of Liu [11] in the following
senses:

(1) The hemi-relatively nonexpansive mapping is more general than the rel-
atively weak nonexpansive one in Liu [11].

(2) Our iterative algorithm (3.1) is completely different from the iterative
algorithm of Theorem 3.1 of Liu [11].

(3) In contrast to Theorem 3.1 of Liu [11], our algorithm in Theorem 3.1 is
related to three problems, that is, the fixed point, variational inequality and
equilibrium problems.

When αn ≡ 0 in (3.1), we can obtain the new modified Mann iteration for
the hemi-relatively nonexpansive mapping T , the variational inequality (1.1),
the equilibrium problem (1.6) as follows:

Corollary 3.3. Let E be a uniformly convex and uniformly smooth Banach

space and C be a nonempty closed convex subset of E. Let f be a bifunction

from C × C to R satisfying the conditions (A1)-(A4). Assume that A is a

continuous operators of C into E∗ satisfying the conditions (2.10) and (2.11),
and T : C → C is a closed hemi-relatively nonexpansive mapping with ̥ :=
F (T ) ∩ V I(A,C) ∩ EP (f) 6= ∅. For an arbitrary element x0 ∈ C, put C0 = C

and let {xn} be a sequence generated by the following iterative scheme:




zn = ΠC(Jxn − ηAxn),

yn = ΠC(αnJxn + (1− αn)JTzn),

un ∈ C such that f(un, y) +
1
rn
〈Jun − Jyn, y − un〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, yn) ≤ αnφ(z, xn) + (1 − αn)φ(z, zn)

≤ φ(z, xn)},

xn+1 = ΠCn+1
Jx0, ∀n ≥ 1,

where {αn} is a sequence in [0, 1], and {αn} and {rn} satisfies that lim infn→∞

αn(1 − αn) > 0 and {rn} ⊂ [a,∞) for some a > 0. Then the sequence {xn}
converges strongly to a point Π̥Jx0, where Π̥ is the generalized projection

from C onto ̥.

If T = I in the iteration algorithm of Corollary 3.3, it reduces to the new
modified Mann iteration for the variational inequality (1.1) and the generalized
equilibrium problem (1.6) as follows:

Corollary 3.4. Let E be a uniformly convex and uniformly smooth Banach

space and C be a nonempty closed convex subset of E. Let f be a bifunction
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from C × C to R satisfying the conditions (A1)-(A4). Assume that A is a

continuous operators of C into E∗ satisfying the conditions (2.10) and (2.11)
with ̥ := V I(A,C)∩EP (f) 6= ∅. For an arbitrary element x0 ∈ C, put C0 = C

and let {xn} be a sequence generated by the following iterative scheme:




yn = ΠC(αnJxn + (1− αn)JΠC(Jxn − ηAxn)),

un ∈ C such that f(un, y) +
1
rn
〈Jun − Jyn, y − un〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, yn) ≤ αnφ(z, xn) + (1 − αn)φ(z, zn)

≤ φ(z, xn)},

xn+1 = ΠCn+1
Jx0, ∀n ≥ 1,

where {αn} is a sequence in [0, 1] and {αn} and {rn} satisfies that lim infn→∞

αn(1 − αn) > 0 and {rn} ⊂ [a,∞) for some a > 0. Then the sequence {xn}
converges strongly to a point Π̥Jx0, where Π̥ is the generalized projection

from C onto ̥.

Remark 3.5. See Remark 3.1 of Liu [11], Corollary 3.4 also does the corre-
sponding promotions about Li [10] and Fan [7] as Liu [11]’s job.

If the mapping A is a λ-inverse strongly monotone mapping in Corollary 3.3,
then the following result can be also obtained by Corollary 3.3 and Theorem
3.1.

Corollary 3.6. Let E be a uniformly convex and uniformly smooth Banach

space and C be a nonempty closed convex subset of E. Let f be a bifunction

from C × C to R satisfying the conditions (A1)-(A4). Assume that A is a

λ−inverse strongly monotone mapping of C into E∗ satisfying the conditions

(2.10) and (2.11) and T : C → C is a closed hemi-relatively nonexpansive

mapping with ̥ := F (T ) ∩ V I(A,C) ∩ EP (f) 6= ∅. For an arbitrary element

x0 ∈ C, put C0 = C and let {xn} be a sequence generated by the following

iterative scheme:




zn = ΠC(Jxn − ηAxn),

yn = ΠC(αnJxn + (1− αn)JTzn),

un ∈ C such that f(un, y) +
1
rn
〈Jun − Jyn, y − un〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, yn) ≤ αnφ(z, xn) + (1 − αn)φ(z, zn)

≤ φ(z, xn)},

xn+1 = ΠCn+1
Jx0, ∀n ≥ 1,

where {αn} is a sequence in [0, 1] with lim infn→∞ αn(1− αn) > 0 and {rn} ⊂
[a,∞) for some a > 0. Then the sequence {xn} converges strongly to a point

Π̥Jx0, where Π̥ is the generalized projection from C onto ̥.

Proof. Since A is λ-inverse strongly monotone, by (1.6), we have

‖Ax−Ay‖ ≤
1

λ
‖x− y‖,
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for all x, y ∈ C, then it is Lipschitz continuous with constant 1
λ
. By Corollary

3.5, we can directly obtain that the sequence {xn} converges strongly to a point
ΠFJx0. �

Remark 3.7. Corollary 3.6 improves Theorem 3.1 of Takahashi and Toyoda [20]
in the following senses:

(1) The hemi-relatively nonexpansive mapping is more general than a non-
expansive one in Takahashi and Toyoda [20].

(2) Our modified Mann iteration obtains strong convergence result about a
λ-inverse strongly monotone mapping and a closed hemi-relatively nonexpan-
sive mapping and generalized equilibrium problem (1.9) in a uniformly convex
and uniformly smooth Banach space.
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