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Abstract. We investigate strong convergence of Halpern’s iteration for a countable fam-

ily of strongly relatively nonexpansive mappings in the framework of uniformly convex and

uniformly smooth Banach spaces. Our results extend those announced by many authors.

1. Introduction

Let C be a nonempty, closed and convex subset of a real Banach space E. Let
T : C → C be a nonlinear mapping. The fixed points set of T is denoted by F (T ),
that is, F (T ) = {x ∈ C : x = Tx}. A mapping T is said to be nonexpansive if
∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ C.

In recent years, several types of iterative schemes have been constructed and
proposed in order to get strong convergence results for nonexpansive mappings in
various setting. One classical and effective iteration process is defined as follows:
x1, u ∈ C and

xn+1 = αnu+ (1− αn)Txn, ∀n ≥ 1,(1.1)

where {αn} ⊂ (0, 1). Such a method is introduced, in 1967, by Halpern [8] and later
is often called Halpern’s iteration. In fact, he proved, in a real Hilbert space, the
strong convergence of {xn} to a fixed point of a nonexpansive mapping T , where
αn = n−a, a ∈ (0, 1).
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Now, because of a simple construction, Halpern’s iteration is widely used to
approximate a solution of fixed points for nonexpansive mappings and other classes
of nonlinear mappings by mathematicians in different styles.

In 1977, Lions [11] obtained a strong convergence provide the real sequence
{αn} satisfies the following conditions:

C1: limn→∞ αn = 0; C2:
∑∞

n=1 αn = ∞; C3: limn→∞
αn+1−αn

α2
n+1

= 0.

Reich [17] also extended the result of Halpern from Hilbert spaces to uniformly
smooth Banach spaces. However, both Halpern’s and Lions’ conditions imposed on
the real sequence {αn} exclude the canonical choice αn = 1/n for all n ∈ N.

Subsequently, Wittmann [23] overcome the problem mentioned above by proving
the strong convergence of {xn} if {αn} satisfies the conditions C1, C2 and C4:

∞∑
n=1

|αn+1 − αn| < ∞.

In 1997, Shioji-Takahshi [20] extended Wittmann’s result from Hilbert spaces
to real Banach spaces with uniformly Gâteaux differentiable norms and in which
each nonempty closed convex and bounded subset has the fixed point property for
nonexpansive mappings.

In 2002, Xu [24] introduced another control condition C5: αn+1−αn

αn+1
→ 0 instead

of the conditions C3 or C4 and proved the strong convergence of the sequence {xn}.
In 2005, Cho et al. [7] pointed out that the control conditions C4 and C5 are

not comparable, in general. They gave some examples which satisfy the conditions
C1, C2, C3, C4 and C5, and also presented the control condition C6:

|αn+1 − αn| ≤ ◦(αn+1) + σn,

where
∑∞

n=1 σn < ∞. This includes the conditions C3, C4 and C5 as special cases.
A countable version of Halpern’s iteration for nonexpansive mappings has been
studied in [3].

One question arises in literature naturally: Is it possible to get strong conver-
gence of (1.1) when the sequence {αn} satisfies only the conditions C1 and C2?

Recently, Chidume-Chidume [6] and Suzuki [21] independently gave an affirma-
tive answer to the above question. To be more precise, they introduced the following
Halpern-type iteration: x1, u ∈ C and

xn+1 = αnu+ (1− αn)(λxn + (1− λ)Txn), ∀n ≥ 1,(1.2)

and obtained strong convergence results for the sequence {xn} generated by (1.2)
when only the conditions C1 and C2 are imposed on the sequence {αn}.

Very recently, Saejung [19] focused in studying Halpern’s iteration for an impor-
tant subclass of nonexpansive mappings which is the so-called strongly nonexpansive
[4], i.e., a mapping T : C → C satisfying T is nonexpansive and

xn − yn − (Txn − Tyn) → 0
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whenever {xn} and {yn} are sequences in C such that {xn − yn} is bounded and

∥xn − yn∥ − ∥Txn − Tyn∥ → 0.

He proved that the sequence generated by Halpern’s iteration converges strongly to
a fixed point of T if the sequence {αn} ⊂ (0, 1) just satisfies the conditions C1 and
C2. This shows that a class of strongly nonexpansive mappings works for Halpern’s
iteration with the conditions C1 and C2.

The purpose of this work is to investigate strong convergence for a strongly rel-
atively nonexpansive mapping in a uniformly convex and uniformly smooth Banach
space. We obtain a strong convergence theorem when {αn} satisfies only C1 and
C2.

2. Preliminaries and Lemmas

In this section, we begin by recalling some preliminaries and lemmas which will
be used in the proof.

Let E be a real Banach space and let U = {x ∈ E : ∥x∥ = 1} be the unit sphere
of E. A Banach space E is said to be strictly convex if for any x, y ∈ U ,

x ̸= y implies
∥∥∥x+ y

2

∥∥∥ < 1.

It is also said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such
that for any x, y ∈ U ,

∥x− y∥ ≥ ε implies
∥∥∥x+ y

2

∥∥∥ < 1− δ.

It is known that a uniformly convex Banach space is reflexive and strictly convex.
Define a function δ : [0, 2] → [0, 1] called the modulus of convexity of E as follows:

δ(ε) = inf
{
1−

∥∥∥x+ y

2

∥∥∥ : x, y ∈ E, ∥x∥ = ∥y∥ = 1, ∥x− y∥ ≥ ε
}
.

Then E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. A Banach space
E is said to be smooth if the limit

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for all x, y ∈ U . It is also said to be uniformly smooth if the limit (2.1) is
attained uniformly for x, y ∈ U . The normalized duality mapping J : E → 2E

∗
is

defined by

J(x) = { x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}

for all x ∈ E. It is also known that if E is uniformly smooth, then J is uniformly
norm-to-norm continuous on each bounded subset of E; see [22] for more details.
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Let E be a smooth Banach space. The function ϕ : E × E → R is defined by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2

for all x, y ∈ E.

Remark 2.1. We know the following: for each x, y, z ∈ E,

(i) (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2;
(ii) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩;
(iii) ϕ(x, y) = ∥x− y∥2 in a real Hilbert space.

Let C be a closed and convex subset of E and let T be a mapping from C into
itself. A point p in C is said to be an asymptotic fixed point of T [5, 18] if C contains
a sequence {xn} which converges weakly to p such that limn→∞ ∥xn − Txn∥ = 0.
The set of asymptotic fixed point of T will be denoted by F̂ (T ). A mapping T is
said to be relatively nonexpansive [13, 14] if F̂ (T ) = F (T ) and ϕ(p, Tx) ≤ ϕ(p, x) for
all p ∈ F (T ) and x ∈ C. A mapping T is said to be strongly relatively nonexpansive
[2] if T is relatively nonexpansive and

lim
n→∞

ϕ
(
Txn, xn

)
= 0

whenever {xn} is a bounded sequence in C such that

lim
n→∞

(
ϕ(p, xn)− ϕ(p, Txn)

)
= 0

for p ∈ F (T ). A sequence of mappings {Tn}∞n=1 is said to be strongly relatively
nonexpansive if Tn is relatively nonexpansive for all n ≥ 1 and

lim
n→∞

ϕ
(
Tnxn, xn

)
= 0

whenever {xn} is a bounded sequence in C such that

lim
n→∞

(
ϕ(p, xn)− ϕ(p, Tnxn)

)
= 0

for p ∈ ∩∞
n=1F (Tn).

Lemma 2.2.([14]) Let E be a smooth and strictly convex Banach space and let C
be a nonempty, closed and convex subset of E. Let T be a mapping from C into
itself such that F (T ) is nonempty and ϕ(u, Tx) ≤ ϕ(u, x) for all (u, x) ∈ F (T )×C.
Then F (T ) is closed and convex.

Lemma 2.3.([9]) Let E be a uniformly convex and smooth Banach space and
let {xn} and {yn} be sequences of E such that {xn} or {yn} is bounded and
limn→∞ ϕ(xn, yn) = 0. Then limn→∞ ∥xn − yn∥ = 0.

Let E be a reflexive, strictly convex and smooth Banach space and let C be
a nonempty, closed and convex subset of E. The generalized projection mapping,
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introduced by Alber [1], is a mapping ΠC : E → C, that assigns to an arbitrary
point x ∈ E the minimum point of the functional ϕ(y, x), that is, ΠCx = x̄, where
x̄ is the solution to the minimization problem

ϕ(x̄, x) = min{ϕ(y, x) : y ∈ C}.

In fact, we have the following result.

Lemma 2.4.([1]) Let C be a nonempty, closed and convex subset of a reflexive,
strictly convex, and smooth Banach space E and let x ∈ E. Then, there exists a
unique element x0 ∈ C such that ϕ(x0, x) = min{ϕ(z, x) : z ∈ C}.

Lemma 2.5.([1],[9]) Let C be a nonempty, closed and convex subset of a reflexive,
strictly convex and smooth Banach space E, x ∈ E, and z ∈ C. Then z = ΠC x if
and only if ⟨

Jx− Jz, y − z
⟩
≤ 0, ∀y ∈ C.

Lemma 2.6.([1],[9]) Let C be a nonempty, closed and convex subset of a reflexive,
strictly convex and smooth Banach space E and let x ∈ E. Then

ϕ(y,ΠC x ) + ϕ(ΠC x , x ) ≤ ϕ(y , x ) ∀y ∈ C .

Lemma 2.7.([2]) Let E be a uniformly convex and uniformly smooth Banach space
and C a nonempty, closed and convex subset of E. Then ΠC is uniformly norm-to-
norm continuous on every bounded set.

We make use of the following mapping V studied in Alber [1]:

V (x, x∗) = ∥x∥2 − 2⟨x, x∗⟩+ ∥x∗∥2

for all x ∈ E and x∗ ∈ E∗, that is, V (x, x∗) = ϕ
(
x, J−1(x∗)

)
.

Lemma 2.8.([10]) Let E be a reflexive, strictly convex and smooth Banach space.
Then

V (x, x∗) + 2⟨J−1x∗ − x, y∗⟩ ≤ V (x, x∗ + y∗)

for all x ∈ E and x∗, y∗ ∈ E∗.
The following lemmas give us some nice properties of real sequences.

Lemma 2.9.([25]) Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− αn)an + bn, ∀n ≥ 1,

where {αn} is a sequence in (0, 1) and {bn} is a sequence such that
(a)

∑∞
n=1 αn = +∞;

(b) lim supn→∞
bn
αn

≤ 0 or
∑∞

n=1 |bn| < +∞.
Then limn→∞ an = 0.

Lemma 2.10.([12]) Let {γn} be a sequence of real numbers such that there exists
a subsequence {γnj} of {γn} such that γnj < γnj+1 for all j ∈ N. Then there exists
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a nondecreasing sequence {mk} of N such that limk→∞ mk = ∞ and the following
properties are satisfied by all (sufficiently large) numbers k ∈ N:

γmk
≤ γmk+1 and γk ≤ γmk+1.

In fact, mk is the largest number n in the set {1, 2, ..., k} such that the condition
γn < γn+1 holds.

Recall that a sequence of mappings {Tn}∞n=1 of C with ∩∞
n=1F (Tn) ̸= ∅ is said

to satisfy the AKTT-condition [3],[15] if, for any bounded subset B of C,

(2.2)
∞∑

n=1

sup
z∈B

{∥JTn+1z − JTnz∥} < ∞.

Lemma 2.11.([15]) Let E be a reflexive and strictly convex Banach space whose
norm is Fréchet differentiable, let C be a nonempty subset of E, and let {Tn} be a
sequence of mappings from C into E satisfying the AKTT-condition with respect
to B ⊂ C. Then there exists a mapping T : B → E such that

(2.3) Tx = lim
n→∞

Tnx ∀x ∈ B

and limn→∞ supz∈B{∥JTz − JTnz∥} = 0.
In the sequel, we say that ({Tn}, T ) satisfies the AKTT-condition if {Tn}∞n=1

satisfies the AKTT-condition and T is defined by (2.3) with ∩∞
n=1F (Tn) = F (T ).

3. Strong Convergence Theorem for a Countable Family of Strongly
Relatively Nonexpansive Mappings

In this section, we prove a strong convergence theorem for strongly relatively
nonexpansive mappings in uniformly convex and uniformly smooth Banach spaces.
To this end, we need the following proposition.

Proposition 3.1.([16]) Let C be a nonempty, closed and convex subset of a smooth,
strictly convex and reflexive Banach space E and T be a relatively nonexpansive
mapping from C into E. If {xn} is a bounded sequence such that limn→∞ ∥xn −
Txn∥ = 0 and x̂ = ΠF(T)(x), then

lim sup
n→∞

⟨
Jx− Jx̂, xn − x̂

⟩
≤ 0.

Theorem 3.2. Let C be a nonempty, closed and convex subset of a uniformly convex
and uniformly smooth Banach space E. Let {Tn}∞n=1 : C → C be a sequence of
strongly relatively nonexpansive mappings such that F = ∩∞

n=1F (Tn) ̸= ∅. Suppose
that u ∈ C and define the sequence {xn} as follows: x1 ∈ C and

xn+1 = ΠCJ−1
(
αnJu+ (1− αn)JTnxn

)
, ∀n ≥ 1,

where {αn} ⊂ (0, 1) satisfying limn→∞ αn = 0 and
∑∞

n=1 αn = ∞. If ({Tn}, T )
satisfies the AKTT-condition, then {xn} converges strongly to ΠF (u), where ΠF is
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the generalized projection of E onto F .

Proof. We first see that F is closed and convex by Lemma 2.2. Let u ∈ C and put
p = ΠF (u) and zn = J−1

(
αnJu + (1 − αn)JTnxn

)
for all n ∈ N. So, by Lemma

2.6, we have

ϕ(p, xn+1) ≤ ϕ(p, zn)

≤ αnϕ(p, u) + (1− αn)ϕ(p, Tnxn)

≤ αnϕ(p, u) + (1− αn)ϕ(p, xn).

By induction, we can show that {ϕ(p, xn)} is bounded and thus {xn} is also
bounded.

We next show that if there exists a subsequence {xnk
} of {xn} such that

lim
k→∞

(
ϕ(p, xnk+1)− ϕ(p, xnk

)
)
= 0,

then
lim
k→∞

(
ϕ(p, Tnk

xnk
)− ϕ(p, xnk

)
)
= 0.

Since αnk
→ 0,

lim
k→∞

∥Jznk
− JTnk

xnk
∥ = lim

k→∞
αnk

∥Ju− JTnk
xnk

∥ = 0.

Since J is uniformly norm-to-norm continuous on bounded subsets of E, so is J−1.
It follows that

lim
k→∞

∥znk
− Tnk

xnk
∥ = 0.

Since E is uniformly smooth and uniformly convex, by Lemma 2.7 , ΠC is uniformly
norm-to-norm continuous on bounded sets. So we obtain

(3.1) lim
k→∞

∥xnk+1 − Tnk
xnk

∥ = lim
k→∞

∥ΠC znk
−ΠCTnk

xnk
∥ = 0

and hence

(3.2) lim
k→∞

∥Jxnk+1 − JTnk
xnk

∥ = 0.

Furthermore, limk→∞ ϕ(xnk+1, Tnk
xnk

) = 0. Indeed, by definition of ϕ, we observe
that

ϕ(xnk+1, Tnk
xnk

) = ∥xnk+1∥2 − 2
⟨
xnk+1, JTnk

xnk

⟩
+ ∥Tnk

xnk
∥2

=
⟨
xnk+1, Jxnk+1 − JTnk

xnk

⟩
+
⟨
Tnk

xnk
− xnk+1, JTnk

xnk

⟩
.

It follows from (3.1) and (3.2) that limk→∞ ϕ(xnk+1, Tnk
xnk

) = 0. On the other
hand, by Remark 2.1 (ii), we have

ϕ(p, Tnk
xnk

)− ϕ(p, xnk
)(3.3)

=
(
ϕ(p, xnk+1)− ϕ(p, xnk

)
)
+

(
ϕ(p, Tnk

xnk
)− ϕ(p, xnk+1)

)
=

(
ϕ(p, xnk+1)− ϕ(p, xnk

)
)
+ ϕ(xnk+1, Tnk

xnk
)

+ 2
⟨
p− xnk+1, Jxnk+1 − JTnk

xnk

⟩
.



382 Suthep Suantai and Prasit Cholamjiak

It follows that
lim
k→∞

(
ϕ(p, Tnk

xnk
)− ϕ(p, xnk

)
)
= 0.

We next consider the following two cases.
Case 1. ϕ(p, xn+1) ≤ ϕ(p, xn) for all sufficiently large n. Hence the sequence

{ϕ(p, xn)} is bounded and nonincreasing. So we have limn→∞ ϕ(p, xn) exists. This
shows that limn→∞

(
ϕ(p, xn+1)− ϕ(p, xn)

)
= 0 and hence

lim
n→∞

(
ϕ(p, Tnxn)− ϕ(p, xn)

)
= 0.

Since T is strongly relatively nonexpansive,

lim
n→∞

ϕ(Tnxn, xn) = 0.

By Lemma 2.3, we have
lim

n→∞
∥xn − Tnxn∥ = 0.

Moreover, we also have

∥xn − Txn∥ ≤ ∥xn − Tnxn∥+ ∥Tnxn − Txn∥
≤ ∥xn − Tnxn∥+ sup

z∈{xn}
∥Tnz − Tz∥.

Since ({Tn}, T ) satisfies the AKTT-condition, by Lemma 2.11 , it follows that

lim
n→∞

∥xn − Txn∥ = 0.

Proposition 3.1 yields that

lim sup
n→∞

⟨
Ju− Jp, xn − p

⟩
≤ 0.

It also follows that
lim sup
n→∞

⟨
Ju− Jp, Txn − p

⟩
≤ 0.

Finally, we show that xn → p. Using Lemma 2.8, we see that

ϕ
(
p, xn+1

)
≤ ϕ

(
p, zn

)
= V

(
p, αnJu+ (1− αn)JTnxn

)
≤ V

(
p, αnJu+ (1− αn)JTnxn − αn(Ju− Jp)

)
+
⟨
αn(Ju− Jp), zn − p

⟩
= V

(
p, αnJp+ (1− αn)JTnxn

)
+ αn

⟨
Ju− Jp, zn − p

⟩
≤ αnV

(
p, Jp

)
+ (1− αn)V

(
p, JTnxn

)
+ αn

⟨
Ju− Jp, zn − p

⟩
= (1− αn)ϕ

(
p, Tnxn

)
+ αn

⟨
Ju− Jp, zn − p

⟩
≤ (1− αn)ϕ

(
p, xn

)
+ αn

⟨
Ju− Jp, zn − p

⟩
= (1− αn)ϕ

(
p, xn

)
+ αn

(⟨
Ju− Jp, zn − Txn

⟩
+
⟨
Ju− Jp, Txn − p

⟩)
.
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Set an = ϕ(p, xn) and bn = αn

(⟨
Ju−Jp, zn−Txn

⟩
+
⟨
Ju−Jp, Txn−p

⟩)
. We see

that lim supn→∞
bn
αn

≤ 0. By Lemma 2.9, since
∑∞

n=1 αn = ∞, we conclude that
limn→∞ ϕ(p, xn) = 0. Hence xn → p as n → ∞.

Case 2. there exists a subsequence {ϕ(p, xnj )} of {ϕ(p, xn)} such that
ϕ(p, xnj

) < ϕ(p, xnj+1) for all j ∈ N. By Lemma 2.10, there exists a strictly
increasing sequence {mk} of positive integers such that the following properties are
satisfies by all numbers k ∈ N:

ϕ(p, xmk
) ≤ ϕ(p, xmk+1) and ϕ(p, xk) ≤ ϕ(p, xmk+1).

So we have

0 ≤ lim
k→∞

(
ϕ(p, xmk+1)− ϕ(p, xmk

)
)

≤ lim sup
n→∞

(
ϕ(p, xn+1)− ϕ(p, xn)

)
≤ lim sup

n→∞

(
ϕ(p, zn)− ϕ(p, xn)

)
≤ lim sup

n→∞

(
αnϕ(p, u) + (1− αn)ϕ(p, Tnxn)− ϕ(p, xn)

)
= lim sup

n→∞

(
αn

(
ϕ(p, u)− ϕ(p, Tnxn)

)
+

(
ϕ(p, Tnxn)− ϕ(p, xn)

))
≤ lim sup

n→∞
αn

(
ϕ(p, u)− ϕ(p, Tnxn)

)
= 0.

This shows that

(3.4) lim
k→∞

(
ϕ(p, xmk+1)− ϕ(p, xmk

)
)
= 0.

Following the proof line in Case 1, we can show that

lim sup
k→∞

⟨
Ju− Jp, Txmk

− p
⟩
≤ 0

and

ϕ(p, xmk+1) ≤ (1−αmk
)ϕ(p, xmk

)+αmk
(⟨Ju−Jp, zmk

−Txmk
⟩+⟨Ju−Jp, Txmk

−p⟩).

This implies

αmk
ϕ
(
p, xmk

)
≤ ϕ(p, xmk

)− ϕ(p, xmk+1)

+ αmk

(⟨
Ju− Jp, zmk

− Txmk

⟩
+
⟨
Ju− Jp, Txmk

− p
⟩)

.

≤ αmk

(⟨
Ju− Jp, zmk

− Txmk

⟩
+
⟨
Ju− Jp, Txmk

− p
⟩)

.

Hence limk→∞ ϕ
(
p, xmk

)
= 0. Using this and (3.4) together, we conclude that

lim sup
k→∞

ϕ(p, xk) ≤ lim
k→∞

ϕ(p, xmk+1) = 0.
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This completes the proof. 2

Remark 3.3. In 2011, Nilsrakoo-Saejung [16] investigated a Halpern-Mann it-
erations for relatively nonexpansive mappings in uniformly convex and uniformly
smooth Banach spaces. So it is interesting whether a Halpern’s iteration works for
a class of relatively nonexpansive mappings.
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