Pusan Kyöngnam Mathematical Journal Vol 6, No.1, pp.111~121 1990

Nonlinear semigroups on locally convex spaces

Son Kuk Hyeon

Abstract

Let E be a locally convex Hausdorff space and let Γ be a calibration for E. In this note we proved that if E is sequentially complete and a multi-valued operator A in E is Γ -accretive such that $D(A) \subset R$ $(I + \lambda A)$ for all sufficiently small positive λ , then A generates a nonlinear Γ -contraction semiproup $\{T(t) : t > 0\}$. We also proved that if E is complete, Γ is a dually uniformly convex calibration, and an operator A is m- Γ -accretive, then the initial value problem

$$\begin{cases} \frac{d}{dt}u(t) + Au(t) \quad \ni \quad 0, \quad t > 0, \\ u(0) = x \end{cases}$$

has a solution $u: [0,\infty) \to E$ given by $u(t) = T(t)x = \lim_{n \to \infty} (I + \frac{t}{n}A)^n x$ for each $x \in D(A)$.

1. Γ-completions

Let E be a locally convex space and let Γ be a calibration for E, *i.e.*, Γ is a direct set of semi-norms on E which induces the topology of E. For $p \in \Gamma$, a sequence $\{x_i\}$ in E is called a p-Cauchy

sequence if $p(x_1 - x_1) \rightarrow 0$ as $i,j \rightarrow \infty$. Two p-Cauchy sequences $\{x_1\}$ and $\{y_1\}$ are said to be equivalent if $p(x_1 - y_1) \rightarrow 0$ as $i \rightarrow \infty$. Let $\{x_1\}$ be a p-Cauchy sequence and \underline{x} be the set of all p-Cauchy sequences in E which are equivalent to $\{x_1\}$. Such a set \underline{x} is called a p-class on E. The set of all p-classes on E will be denoted by E[p] and it will be called the p-completion of E. For \underline{x} , $\underline{y} \in E[p]$ and real numbers α,β , $\alpha \underline{x} + \beta \underline{y}$ is defined to be the p-class which contains a p-Cauchy sequence $\{\alpha x_1 + \beta y_1\}$ for some $\{x_1\} \in \underline{x}$ and $\{y_1\} \in \underline{y}$. Then E[p] is a real vector space.

For $\underline{x} \in E[p]$, we define $p(\underline{x}) = \lim_{x \to \infty} p(x)$ for $[x] \in \underline{x}$.

Then the value $p(\underline{x})$ does not depend on the choice of $\{x_i\}$ from \underline{x}

In is obvious that p is a norm on E[p] and, with this norm, E[p] is a Banach space. The family of Banach spaces $\{E[p]; p\in\Gamma\}$ defined in this way will be called the Γ -completion of E. We denote by $S_p(x)$ the p-class which contains the p-Cauchy sequence whose terms are all identical to x. Then the zero element of the Banach space E[p] is $S_p(0)$ and we have

$$p(S_p(x)) = p(x)$$
 for every $x \in E$.

Let $\{E[p]; p\in \Gamma\}$ be the Γ -completion of E. First we have a linear and continuous map

$$S_{p}: E \to E[p]: x \to S_{p}(x),$$

which satisfies the equality $p(S_p(x)) = p(x)$ for every $x \in E$. Next, when $p \ge q$ in Γ , that is, $q(x) \ge p(x)$ for every $x \in E$, we have the natural embedding

$$T_{q,p}: E[q] \to E[p],$$

which maps every $\underline{x} \in E[q]$ to be the p-class which contains elements of \underline{x} . Obviously, this map is linear,

$$p(T_{qn}(\underline{x})) \leq q(\underline{x})$$
 for every $\underline{x} \in E[q]$

and

 $T_{q,p} \cdot S_q = S_p.$

2. Γ-contractions and Γ-accretive operators

Let E and F be locally convex spaces and let Γ be a calibration for (E,F). In other words, each $p \in \Gamma$ has the E-component p_E and the F-component p_F and $\Gamma_E = \{p_E : p \in \Gamma\}$ and $\Gamma_F = \{p_F : p \in \Gamma\}$ are calibrations for E and F, respectively. We shall denote the embeddings S_{p_E} and S_{p_F} by the same S_p .

We shall deal with multi-valued operators. By a multi-valued operator A in E we mean that A assigns to each $x \in D(A)$ a subset $Ax \neq \phi$ of E, where $D(A) = \{x \in E : Ax \neq \phi\}$. And D(A) is called the domain of A, and the range of A is defined by $R(A) = \bigcup_{x \in D(A)} Ax$.

Let A be a multi-valued operator from E info F, that is, A is a subset of $E \times F$. For $p \in \Gamma$ and $[x,y] \in A$, we set

$$S_{p}([x,y]) = [S_{p}(x), S_{p}(y)].$$

Then $S_p(A) \subset E[p] \times F[p]$ and we set

$$A_{p} = \overline{S_{p}(A)}$$

where the closure is taken in the product $E[p] \times F[p]$ of Banach spaces E[p] and F[p]. Hence A_p is always closed and $A_p = (A)_p$.

Lemma 2.1[6]. (i) $\overline{A} = \bigcap_{p \in \Gamma} S_p^{-1} (A_p)$, (ii) $\overline{D(A)} = \bigcap_{p \in \Gamma} S_p^{-1} (\overline{D(A)}_p)$, (iii) $\overline{D(A_p)} = \overline{S_p(D(A))}$.

Lemma 2.2.16]. Assume that $q \ge 1$ in Γ . Then for every $x = {}_q \in D(A_q)$,

(i) $T_{q,p} x_q \in D(A_p)$, (ii) $T_{q,p} A_q x_q = A_q T_q x_q$.

Recall that a multi-valued operator A in a Banach space X with its norm $\|\cdot\|$ is said to be accretive if for each x_{y} $x_{2} \in D(A)$, $y_{1} \in Ax_{1}$, $y_{2} \in Ax_{2}$, and for every $\lambda > 0$, the following inequality holds

$$||(x_1 + y_1) - (x_2 + y_2)|| \ge ||x_1 - x_2||.$$

Moreover, if $R(I+\lambda A)=X$ then A is said to be m-accretive.

Let Γ be a calibration for a locally convex space E.

Definition 2.3. An operator f from a subset D(f) of E into E is said to be a Γ -contraction if

$$p(f(x)) - f(y)) \leq p(x - y)$$

for all $p \in \Gamma$ and $x, y \in D(f)$.

When f is a Γ -contraction and $p \in \Gamma$, $\{f(x_i)\}$ is p-Cauchy sequence whenever $\{x_i\}$ is a p-Cauchy sequence, hence for every $\underline{x} \in \overline{S_p(D(f))}$ we can set

$$f_{p}(\underline{x}) = \lim_{1 \to \infty} S_{p}(f(x_{1})).$$

Then f_p is a contraction of $\overline{S_p(D(f))}$ into E[p] and

$$f_{\rm p} \cdot S_{\rm p} = S_{\rm p} \cdot f_{\rm s}$$

Definition 2.4. An operator $A \subset E \times E$ is said to be Γ -accretive if, for every $\lambda > 0$, $(I + \lambda A)^{-1}$ is a single-valued Γ -contraction. If, furthermore, $R(I + \lambda A) = E$, then A is said to be m- Γ -accretive. Where I is an identity oprator on E.

Lemma 2.5[6]. For any operator $A \subseteq E \times E$ and $\lambda > 0$, (i) $(I + \lambda A)_p = I + \lambda A_p$ for all $p \in \Gamma$, (ii) $((I + \lambda A)^{-1})_p = (I + \lambda A_p)^{-1}$.

Lemma 2.6[6]. (i) If A is m- Γ -accretive, every A_{μ} is m-accretive,

- (ii) If E is complete, A is closed and every A_p is m-accretive, then A is m- Γ -accretive,
- (iii) A is Γ -accretive if and only if every A_p is accretive,
- (iv) A m- Γ -accretive operator $A \subset E \times E$ is closed in $E \times E$,
- (v) If A is m-T-accretive and xeD(A), then Ax is closed.

3. Theorems

Definition 3.1. Let E be a locally convex space with a calibration Γ and let $\{T(t) : t \ge 0\}$ be a family of nonlinear operators from a closed subset C of E into itself satisfying the following conditions

(i) T(0) = I(identity), T(t+s) = T(t)T(s) for t,s≥0,
(ii) Forevery xεC, T(t)x is continuous in t≥0,
(iii) For all pεΓ, t≥0, and, x,yεC, p(T(t)x-T(t)y)≤p(x-y).

Then we shall call this family $\{T(t) : t \ge 0\}$ a nonlinear Γ -contraction semigroup.

Theorem 3.2. Let *E* be a sequentially complete, locally convex Hausdorff space with a calibration Γ and *A* be a Γ -accretive operator in *E* such that $\overline{D(A)} \subset R(I+\lambda A)$ for all sufficiently small positive λ . Then

(3.1)
$$T(t)x = \lim_{n \to \infty} (I + \frac{t}{n}A)^{-n} x$$

exists for $x \in \overline{D(A)}$, uniformly in t on every compact interval of [0, ∞). Moreover, T(t) defined by the formula (3.1) is a Γ-contraction semigroup on D(A).

Proof. If A is Γ -accretive and $\overline{D(A)} \subset R(I + \lambda A)$, then, for every $p \in \Gamma$, A_p is accretive and $\overline{D(A_p)} \subset R(I + \lambda A_p)$. Thus, for $p \in \Gamma$ and $x \in D(A_p)$, $T^p(t) \underline{x} = \lim_{n \to \infty} (I + \frac{t}{n} A_p)^n \underline{x}$ exists and $\{T^p(t) : t \ge 0\}$ is a contraction se-migroup on $\overline{D(A_p)}$ ([2]). Let $x \in \overline{D(A)}$ and let n and m be positive integers such that $n \ge m$. Then, for any $p \in \Gamma$,

$$p((I + \frac{t}{n}A)^{n}x - (I + \frac{t}{m}A)^{m}x) = p(S_{p}(I + \frac{t}{n}A)^{n}x) - S_{p}((I + \frac{t}{m}A)^{m}x))$$
$$= p((I + \frac{t}{n}A_{p})^{n}S_{p}(x) - (I + \frac{t}{m}A_{p})^{m}S_{p}(x))$$
$$\leq 2t(\frac{1}{n} - \frac{1}{m})^{\frac{1}{2}} \cdot inf\{p(x) : x \in A_{p}S_{p}(x)\} \quad ([2])$$

and hence $p((I + \frac{t}{n}A)^n x - (I + \frac{t}{m}A^{-n}x)) \to 0$ as $n, m \to \infty$. Therefore $\lim_{n \to \infty} (I + \frac{t}{n}A)^n x = T(t)x$ exists uniformly in t on every com-

pact subset of $[0,\infty)$. Then, for every $p \in \Gamma$ and $x \in \overline{D(A)}$,

$$S_{p}(T(t)\mathbf{x}) = S_{p}(\lim_{n \to \infty} (I + \frac{t}{n}A)^{-n}\mathbf{x})$$
$$= \lim_{n \to \infty} S_{p}(I + \frac{t}{n}A)^{-n}\mathbf{x})$$
$$= \lim_{n \to \infty} (I + \frac{t}{n}A_{p})^{-n}S_{p}(\mathbf{x})$$

$$=T^{\mathbf{p}}(t)S_{\mathbf{p}}(\mathbf{x})$$

and hence $T(t)x \in \overline{D(A)}$. Since $(I + \frac{t}{n}A)^{-n}$ is Γ -contraction, we find that $p(T(t)x - T(t)y) \le p(x-y)$ for every $t \ge 0$, $x, y \in \overline{D(A)}$, and for all $p \in \Gamma$. Therefore T(t) is Γ -contraction on $\overline{D(A)}$. Moreover, for all $p \in \Gamma$ and $x \in \overline{D(A)}$, we obtain

$$p(T(t)x - T(s)x) = p(S_p T(t)x) - S_p(T(s)x))$$

$$= p(T^p(t)S_p(x) - T^p(s)S_p(x))$$

$$\leq 2 \mid t-s \mid \cdot \inf\{p(\underline{x}) : \underline{x} \in A_p S_p(x)\} \quad ([2]).$$

In particular, this shows that T(t)x is continuous in for every $x \in \overline{D(A)}$. In order to complete the proof, we shall verify the semigroup property T(t+s) = T(t)T(s). For all $p \in \Gamma$ and $t, s \ge 0$, we have

$$S_{p}(T(t+s)x) = T^{p}(t+s)S_{p}(x)$$
$$= T^{p}(t)T^{p}(s)S_{p}(x)$$
$$= T^{p}(t)(S_{p}(T(s)x))$$
$$= S_{p}(T(t) T(s)x), \quad \text{for } x \in \overline{D(A)}.$$

Since E is Hausdorff, T(t+s)=T(t)T(s) for $t,s\geq 0$. This completes the proof.

We shall call a calibration Γ dually uniformly convex if, for every $p \in \Gamma$, E[p] and its dual are uniformly convex.

Lemma 3.3.[6]. Assume that B is a closed subset of E and

$$S_p(x) \in S_p(B)$$
 for all $p \in \Gamma$.

Then $x \in B$.

Theorem 3.4. If E is complete, locally convex Hausdorff space with a dually uniformly convex calibration Γ and A is a m- Γ -accretive operator in E. Then for each $x \in D(A)$ the initial value problem

$$(E) \left\{ \begin{array}{c} \frac{\mathrm{d}u}{\mathrm{d}t}(t) + Au(t) \quad \ni \quad 0, \quad t \ge 0, \\ u(0) = x \end{array} \right.$$

has a solution $u : [0,\infty) \to E$ given by $u(t) = T(t)x = \lim_{n \to \infty} (I + \frac{t}{n}A)^{n}x$, $t \ge 0$.

Proof. By theorem 3.2, for each $x \in D(A)$, $T(t)x = \lim_{n \to \infty} (I + \frac{t}{n} A)^{-n} x$ exists. Since A is m- Γ -acretive and Γ is a dually uniformly convex calibration, A_p is m-accretive and E[p] is uniformly convex space for every $p \in \Gamma$. Hence the initial value problem

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t}u(t) + A_{\mathrm{p}}u(t) \quad \ni S_{\mathrm{p}}(0), \\ u(0) = S_{\mathrm{p}}(x) \end{cases}$$

has a unique solution $\underline{u} : [0,\infty) \rightarrow E[p]$ given by

$$\underline{\underline{\mu}}_{p}(t) = T^{p}(t)S_{p}(x) = \lim_{n \to \infty} (I + \frac{t}{n}A_{p})^{n}S_{p}(x) \quad ([1]).$$

Then, if $q \ge p$ in Γ , $T_{q,p} = m(0) = T_{q,p} S_q(x) = S_p(x)$ and

$$T_{q,p}\left(\frac{d}{dt}\underline{u}_{q}(t)\right)+T_{q,p}\left(A_{q-q}(t) \quad \ni \quad T_{q,p}S_{q}(0)\right)$$

which implies

$$\frac{d}{dt}T_{q,p}\underline{u}_{q}(t)+A_{p}T_{q,p}\underline{u}_{q}(t) \quad \ni S_{p}(0), t\geq 0.$$

Hence, by the uniqueness of solution, $T_{q,p}\underline{\mu}_{q}(t) = \underline{\mu}_{p}(t)$ for $t \ge 0$. Since E is complete, there exists $u(t) \in E$ such that $\underline{\mu}_{p}(t) = S_{p}(u(t))$ for all $p \in \Gamma$ and $t \ge 0$ [4]). Then, for all $p \in \Gamma$ and $t \ge 0$,

$$S_{p}(u(t)) = \underline{u}_{p}(t) = \lim_{n \to \infty} (I + \frac{t}{n} A_{p})^{-n} S_{p}(x)$$
$$= \lim_{n \to \infty} (I + \frac{t}{n} A)^{-n})_{p} S_{p}(x)$$
$$= S_{p}(\lim_{n \to \infty} (I + \frac{t}{n} A)^{-n} x)$$
$$= S_{p}(T(t)x).$$

Hence $u(t) = T(t)x = = \lim_{n \to \infty} (I + \frac{t}{n}A)^n x$ for $x \in D(A)$ and $t \ge 0$. Furthermore, for all $p \in \Gamma$ and $t \ge 0$,

$$S_{p}\left(\frac{\mathrm{d}}{\mathrm{d}t}u(t)+Au(t)\right) \ni S_{p}(0).$$

Then, by lemma 3.3, we have

$$\frac{\mathrm{d}}{\mathrm{d}t}u(t)+Au(t)) \ni 0.$$

Therefore $u(t) = T(t)x = \lim_{n \to \infty} (I + \frac{t}{n}A)^n x$ is a solution of the initial value problem (E).

References

- V. Barbu, Nonlinear semi-groups and Differential equations in Banach spaces. Noordhoff International Publishing, 1976.
- M.G Crandall and T.M. Liggett, Generation of semigroups of nonlinear transformations on general Banach spaces. Amer. J. Math 93(1971), 265-298.
- J. Horvath, Topological vector spaces and Distributions. Addision-Wesley publishing, 1966
- G. Kothe, Topological vector space I. Die Grundlehrem der mathemaschen Wissenchaften, 159. springer-Verlag, Berlin, Heidelberg, New York, 1967.
- S. Yamamuro, Notes on the inverse mapping theorem in locally convex space. Bull. Austral. Math. Soc. Vol 21(1980), 419-461.
- On a functional differential equation in locally convex spaces. Bull. Austral. Math. Soc Vol. 27(1983), 269-283.

Pusan National University Pusan 609-735, Korea