MAJORIZATION PROBLEMS FOR UNIFORMLY STARLIKE FUNCTIONS BASED ON RUSCHEWEYH q–DIFFERENTIAL OPERATOR RELATED WITH EXPONENTIAL FUNCTION

K. Vijaya1, G. Murugusundaramoorthy2 and N. E. Cho3

1School of Advanced Sciences
Vellore Institute of Technology, Vellore - 632014, India
e-mail: kvijaya@vit.ac.in

2School of Advanced Sciences
Vellore Institute of Technology, Vellore - 632014, India
e-mail: gmsmoorthy@yahoo.com

3Department of Applied Mathematics
Pukyong National University, Busan 48513, Korea
e-mail: necho@pknu.ac.kr

Abstract. The main object of this present paper is to study some majorization problems for certain classes of analytic functions defined by means of q–calculus operator associated with exponential function.

1. INTRODUCTION

Let A be the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

(1.1)
which are analytic in the open unit disk $\mathbb{U} = \{ z \in \mathbb{C} : |z| < 1 \}$. For given $g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in \mathcal{A}$, the Hadamard product of f and g is defined by

$$(f \ast g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n = (g \ast f)(z).$$

For two analytic functions $f, g \in \mathcal{A}$, we say that f is subordinate to g, denoted by $f \prec g$, if there exists a Schwarz function $\omega(z)$ which is analytic in \mathbb{U} with $\omega(0) = 0$ and $|\omega(z)| < 1$ for all $z \in \mathbb{U}$, such that $f(z) = g(\omega(z))$ for $z \in \mathbb{U}$. Note that, if the function g is univalent in \mathbb{U}, due to Miller and Mocanu [6], we have

$$f(z) \prec g(z) \iff f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$$

If f and g are analytic functions in \mathbb{U}, following MacGregor [5], we say that f is majorized by g in \mathbb{U}, that is $f(z) \ll g(z)$ ($z \in \mathbb{U}$) if there exists a function $\phi(z)$, analytic in \mathbb{U}, such that

$$|\phi(z)| < 1 \text{ and } f(z) = \phi(z)g(z) \quad (z \in \mathbb{U}).$$

It is of interest to note that the notion of majorization is closely related to the concept of quasi-subordination between analytic functions.

Now we recall here the notion of q-operator that is, q-difference operator that play vital role in the theory of hypergeometric series, quantum physics and in the operator theory. The application of q-calculus was initiated by Jackson [3], recently Kanas and Răducanu [4] have used the fractional q-calculus operators in investigations of certain classes of functions which are analytic in \mathbb{U}.

Let $0 < q < 1$. For any non-negative integer n, the q-integer number n is defined by

$$[n]_q = \frac{1 - q^n}{1 - q} = 1 + q + \cdots + q^{n-1}, \quad [0]_q = 0. \quad (1.2)$$

In general, we will denote

$$[x]_q = \frac{1 - q^x}{1 - q}$$

for a non-integer number x. Also the q-number shifted factorial is defined by

$$[n]_q! = [n]_q[n-1]_q[\ldots][2]_q[1]_q, \quad [0]_q! = 1. \quad (1.3)$$

Clearly,

$$\lim_{q \to 1^-} [n]_q = n \quad \text{and} \quad \lim_{q \to 1^-} [n]_q! = n!.$$
For $0 < q < 1$, the Jackson’s q-derivative operator (or q-difference operator) of a function $f \in A$ given by (1.1) defined as follows [3]:

$$
\mathcal{D}_q f(z) = \begin{cases}
\frac{f(z) - f(qz)}{(1-q)z} & \text{for } z \neq 0 \\
 f'(0) & \text{for } z = 0
\end{cases},
$$

(1.4)

$\mathcal{D}_q^0 f(z) = f(z)$, and $\mathcal{D}_q^m f(z) = \mathcal{D}_q(\mathcal{D}_q^{m-1} f(z))$, $m \in \mathbb{N} = \{1, 2, \ldots\}$. From (1.4), we have

$$
\mathcal{D}_q f(z) = 1 + \sum_{n=2}^{\infty} [n]_q a_n z^{n-1} \quad (z \in U),
$$

(1.5)

where $[n]_q$ is given by (1.2).

For a function $\psi(z) = z^n$, we obtain

$$
\mathcal{D}_q \psi(z) = \mathcal{D}_q z^n = \frac{1 - q^n}{1 - q} z^{n-1} = [n]_q z^{n-1}
$$

and

$$
\lim_{q \to 1^-} \mathcal{D}_q \psi(z) = \lim_{q \to 1^-} ([n]_q z^{n-1}) = n z^{n-1} = \psi'(z),
$$

where ψ' is the ordinary derivative.

Let $t \in \mathbb{R}$ and $n \in \mathbb{N}$. The q-generalized Pochhammer symbol is defined by

$$
[t; n]_q = [t]_q [t+1]_q [t+2]_q \ldots [t+n-1]_q
$$

(1.6)

and for $t > 0$ the q-gamma function is defined by

$$
\Gamma_q(t+1) = [t]_q \Gamma_q(t) \quad \text{and} \quad \Gamma_q(1) = 1.
$$

(1.7)

Using the q-difference operator, Kannas and Raducanu [4] defined the Ruscheweyh q-differential operator as below: For $f \in A$,

$$
\mathcal{R}^\delta_q f(z) = f(z) * F_{q, \delta+1}(z) \quad (\delta > -1, z \in U),
$$

(1.8)

where

$$
F_{q, \delta+1}(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma_q(n + \delta)}{(n - 1)! \Gamma_q(1 + \delta)} z^n = z + \sum_{n=2}^{\infty} \frac{[\delta + 1; n-1]_q}{[n-1]_q!} a_n z^n.
$$

(1.9)

Making use of (1.8) and (1.9), we have

$$
\mathcal{R}^\delta_q f(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma_q(n + \delta)}{(n - 1)! \Gamma_q(1 + \delta)} a_n z^n \quad (z \in U).
$$

(1.10)
\[R_q^0 f(z) = f(z), \]
\[R_q^1 f(z) = z D_q f(z), \]
\[R_q^m f(z) = \frac{z D_q^m (z^{m-1} f(z))}{[m]_q} \quad (m \in \mathbb{N}). \]

Also we have
\[D_q (R_q^\delta f(z)) = 1 + \sum_{n=2}^\infty \Theta_n(q, \delta) a_n z^{n-1}, \quad (1.11) \]
where
\[\Theta_n := \Theta_n(q, \delta) = \frac{[n]_q \Gamma_q(n + \delta)}{[n-1]_q \Gamma_q(1 + \delta)}. \quad (1.12) \]

It is easy to check that
\[z D_q (F_{q, \delta+1}(z)) = \left(1 + \frac{[\delta]_q}{q^\delta}\right) F_{q, \delta+2}(z) - \frac{[\delta]_q}{q^\delta} F_{q, \delta+1}(z) \quad (z \in \mathbb{U}). \quad (1.13) \]

Making use of (1.8)-(1.13) and the properties of Hadamard product, we obtain the following equality
\[z D_q (R_q^\delta f(z)) = \left(1 + \frac{[\delta]_q}{q^\delta}\right) R_q^{1+\delta} f(z) - \frac{[\delta]_q}{q^\delta} R_q^\delta f(z) \quad (z \in \mathbb{U}). \quad (1.14) \]

From (1.10), we note that
\[\lim_{q \to 1^-} F_{q, \delta+1}(z) = \frac{z}{(1 - z)^{\delta+1}}, \quad \lim_{q \to 1^-} R_q^\delta f(z) = f(z) * \frac{z}{(1 - z)^{\delta+1}}. \]

Thus, when \(q \to 1^- \) we can say that Ruscheweyh \(q \)-differential operator reduces to the differential operator defined by Ruscheweyh [9] and (1.14) gives the well-known recurrent formula for Ruscheweyh differential operator.

Majorization problems for the class \(S^* = S^*(0) \) had been investigated by MacGregor [5], further Altintas et al. [1] investigated a majorization problem for \(S(\gamma) \) the class of starlike functions of complex order \(\gamma \ (\gamma \in \mathbb{C} \setminus \{0\}) \), and Goyal and Goswami [2] generalized these results for the class of analytic functions involving fractional operator. Very lately, Tang and Deng [12] considered majorization properties for multivalent analytic functions related to the Srivastava-Khairnar-More operator and exponential function.

In this paper, using Ruscheweyh \(q \)-differential operator defined by (1.10) and motivated by recent works of [8], we define a new subclass of uniformly starlike functions associated with \(q \)-calculus operator, which are subordinate to exponential function, and investigate a majorization problem. Further we point out some special cases of our result.
Definition 1.1. A function \(f \in \mathcal{A} \) is said to be in the class \(\mathcal{RS}_q^\delta(\beta, e^z) \), if and only if

\[
\left[\frac{z \mathcal{D}_q(\mathcal{R}_q^\delta f(z))}{\mathcal{R}_q^\delta f(z)} - \beta \left| \frac{z \mathcal{D}_q(\mathcal{R}_q^\delta f(z))}{\mathcal{R}_q^\delta f(z)} - 1 \right| \right] < e^z, \tag{1.15}
\]

where \(\delta > -1, \beta > 0 \) and \(z \in \mathbb{U} \).

For \(\beta = 0 \) we have \(\mathcal{RS}_q^\delta(\beta, e^z) \equiv \mathcal{RS}_q^\delta(e^z) \):

\[
\frac{z \mathcal{D}_q(\mathcal{R}_q^\delta f(z))}{\mathcal{R}_q^\delta f(z)} < e^z
\]

where \(\delta > -1, \beta > 0 \) and \(z \in \mathbb{U} \).

Further by taking \(q \to 1^- \) and \(\delta = 0 \) we have \(\mathcal{RS}_q^\delta(e^z) \equiv \mathcal{S}^*(e^z) \):

\[
\frac{zf'(z)}{f(z)} < e^z \quad (z \in \mathbb{U}).
\]

2. A majorization problem for the class \(\mathcal{RS}_q^\delta(\beta, e^z) \)

We state the following \(q \)-analogue of the result given by Nehari (cf. [7]) and Selvakumaran et al. [10].

Lemma 2.1. If the function \(\phi(z) \) is analytic and \(|\phi(z)| < 1 \) in \(\mathbb{U} \), then

\[
|\mathcal{D}_q\phi(z)| \leq \frac{1 - |\phi(z)|^2}{1 - |z|^2}. \tag{2.1}
\]

Theorem 2.2. Let the function \(f \in \mathcal{A} \) and suppose that \(g \in \mathcal{RS}_q^\delta(\beta, e^z) \). If \(\mathcal{R}_q^\delta f(z) \) is majorized by \(\mathcal{R}_q^\delta g \) in \(\mathbb{U} \), then

\[
|\mathcal{R}_q^{\delta+1}f(z)| \leq |\mathcal{R}_q^{\delta+1}g(z)| \quad (|z| \leq r_1), \tag{2.2}
\]

where \(r_1 = r_1(\delta, \beta) \), is the smallest positive root of the equation

\[
r^2 q^\delta e^r - r^2 ([\delta]_q - ([\delta]_q + q^\delta)\beta) - q^\delta e^r - 2r q^\delta (1 + \beta) + ([\delta]_q - ([\delta]_q + q^\delta)\beta) = 0, \tag{2.3}
\]

where \([\delta]_q > ([\delta]_q + q^\delta)\beta + q^\delta e \) and \(\beta \geq 0 \).

Proof. Since \(g \in \mathcal{RS}_q^\delta(\beta, e^z) \), we find from (1.15) that

\[
\left[\left(\frac{z \mathcal{D}_q(\mathcal{R}_q^\delta g(z))}{\mathcal{R}_q^\delta g(z)} \right) - \beta \left| \frac{z \mathcal{D}_q(\mathcal{R}_q^\delta g(z))}{\mathcal{R}_q^\delta g(z)} - 1 \right| \right] = e^{w(z)}, \tag{2.4}
\]
where \(w(z) = c_1z + c_2z^2 + c_3z^3 + \cdots \) is analytic in \(U \), with \(w(0) = 0 \) and \(|w(z)| \leq |z| \) for all \(z \in U \). Letting
\[
\varpi = \frac{zD_q(R^\delta_q g(z))}{R^\delta_q g(z)}
\]
in (2.4), we have
\[
\varpi - \beta |\varpi - 1| = e^{u(z)}
\]
which implies
\[
\varpi = \frac{e^{u(z)} - \beta e^{-i\varphi}}{1 - \beta e^{-i\varphi}}.
\]
This is, from (2.4), we get
\[
\frac{zD_q(R^\delta_q g(z))}{R^\delta_q g(z)} = \frac{e^{u(z)} - \beta e^{-i\varphi}}{1 - \beta e^{-i\varphi}}. \tag{2.5}
\]
Now, by applying the relation (1.14) in (2.5), we get
\[
\frac{R^\delta_{q+1} g(z)}{R^\delta_q g(z)} = \frac{[\delta_q - ([\delta_q + q^\delta] \beta - q^\delta e^{-i\varphi})]}{([\delta_q + q^\delta] (1 - \beta e^{-i\varphi})}
\]
which yields that
\[
\left| R^\delta_q g(z) \right| \leq \frac{([\delta_q + q^\delta] (1 + \beta)}{[\delta_q - ([\delta_q + q^\delta] \beta - q^\delta e^{-i\varphi})} \left| R^\delta_{q+1} g(z) \right|. \tag{2.7}
\]
Since \(R^\delta_q f \) is majorized by \(R^\delta_q g(z) \) in \(U \), we have
\[
R^\delta_q f(z) = \phi(z)R^\delta_q g(z).
\]
By applying \(q \)-differentiation with respect to \(z \), we get
\[
zD_q(R^\delta_q f(z)) = zD_q(\phi(z))R^\delta_q g(z) + z\phi(z)D_q(R^\delta_q g(z)). \tag{2.8}
\]
Noting the fact that Schwarz function \(\phi(z) \) satisfies the \(q \)-analogue of the result given by Nehari (cf. [7]) proved in Lemma 2.1,
\[
\left| D_q \phi(z) \right| \leq \frac{1 - |\phi(z)|^2}{1 - |z|^2} \tag{2.9}
\]
and using (1.14), (2.7) and (2.9) in (2.8), we have
\[
\left| R^\delta_{q+1} f(z) \right| \leq \left| \phi(z) \right| + \frac{\left| 1 - |\phi(z)|^2 \right|}{1 - |z|^2} \left| \phi(z) \right| \frac{[zq^\delta(1 + \beta)}{[\delta_q - ([\delta_q + q^\delta] \beta - q^\delta e^{-i\varphi})} \left| R^\delta_{q+1} g(z) \right|.
\]
Setting \(|z| = r \) and \(|\phi(z)| = \rho \) (\(0 \leq \rho \leq 1 \)), the above inequality leads us to the inequality
\[
\left| R^\delta_{q+1} f(z) \right| \leq \left(\rho + \frac{1 - \rho^2}{1 - r^2} \right) \frac{r q^\delta(1 + \beta)}{[\delta_q - ([\delta_q + q^\delta] \beta - q^\delta e^{-i\varphi})} \left| R^\delta_{q+1} g(z) \right|. \tag{2.10}
\]
That is,

$$|\mathcal{R}_q^{δ+1}f(z)| \leq Θ_1(r, ρ)|\mathcal{R}_q^{δ+1}g(z)|,$$

where the function $Θ_1(r, ρ)$ is given by

$$Θ_1(r, ρ) = ρ + \frac{r(1 - ρ^2)q^δ(1 + β)}{(1 - r^2)\{[δ]_q - ([δ]_q + q^{δ}β - q^{δ}e^r)\}}.$$

In order to determine the bound of $Θ_1(r, ρ)$, we have to choose

$$r_1 = \max\{r ∈ [0, 1) : Θ_1(r, ρ) ≤ 1, ρ ∈ [0, 1]\} = \max\{r ∈ [0, 1) : Θ_2(r, ρ) ≥ 0, ρ ∈ [0, 1]\},$$

where

$$Θ_2(r, ρ) = (1 - r^2)\{[δ]_q - ([δ]_q + q^{δ}β - q^{δ}e^r)\} - r(1 + ρ)q^{δ}(1 + β).$$

Obviously, for $ρ = 1$, the function $Θ_2(r, ρ)$ takes its minimum value, namely

$$\min\{Θ_2(r, ρ) : ρ ∈ [0, 1]\} = Θ_2(r, 1) = Θ_2(r),$$

where

$$Θ_2(r) = (1 - r^2)\{[δ]_q - ([δ]_q + q^{δ}β - q^{δ}e^r)\} - 2rq^{δ}(1 + β).$$

Furthermore, if $Θ_2(0) = [δ]_q > ([δ]_q + q^{δ}β + q^{δ}e) ρ$ and $Θ_2(1) = -2q^{δ}(1 + β) < 0$, then there exists r_1 such that $Θ_2(r) ≥ 0$ for all $r ∈ [0, r_1]$, where $r_1 = r_1(δ, β)$, the smallest positive root of the equation (2.3). This completes the proof. □

Putting $β = 0$ and $ρ = 1$ in Theorem 2.2, we have the following corollary:

Corollary 2.3. Let the function $f ∈ A$ and suppose that $g ∈ \mathcal{RS}_q^{δ}(e^z)$. If $\mathcal{R}_q^{δ}f$ is majorized by $\mathcal{R}_q^{δ}g$ in U, then

$$|\mathcal{R}_q^{δ+1}f(z)| ≤ |\mathcal{R}_q^{δ+1}g(z)|, \quad |z| ≤ r_2,$$

(2.11)

where $r_2 = r_2(δ)$, is the smallest positive root of the equation

$$r^2q^{δ}e^r - r^{δ}q^{δ} - q^{δ}e^r - 2rq^{δ} + [δ]_q = 0.$$

(2.12)

For $β = 0, q → 1^−$ and $δ = 0$, Corollary 2.3 reduces to the following result:

Corollary 2.4. Let the function $f ∈ A$ be analytic and univalent in the open unit disk U and suppose that $g ∈ \mathcal{S}_0^{δ}(e^z)$. If f is majorized by g in U, then

$$|f′(z)| ≤ |g′(z)|, \quad |z| ≤ r_3,$$

where r_3 is the smallest positive root of $r^2e^r - 2r - e^r = 0.$
3. A majorization problem for the class $\mathcal{R}(\mu, \tau)$

Due to Alitintas et al. [1], we recall the definition of the function class $\mathcal{R}(\mu, \tau)$, the class of functions h of the form

$$h(z) = 1 - \sum_{n=1}^{\infty} c_n z^n \quad (c_n \geq 0 ; z \in \mathbb{U}),$$

(3.1)

which are analytic in \mathbb{U} and satisfy the inequality

$$|h(z) + \mu z h'(z) - 1| < |\tau| \quad (\tau \in \mathbb{C} \setminus \{0\}; \Re(\mu) \geq 0).$$

Further we recall the following lemmas, which will be required in our investigation of the majorization problem for the class $\mathcal{R}(\mu, \tau)$.

Lemma 3.1. ([1]) If the function h defined by (3.1) is in the class $\mathcal{R}(\mu, \tau)$, then

$$\sum_{n=1}^{\infty} c_n \leq \frac{|\tau|}{1 + \Re(\mu)}.$$ (3.2)

Lemma 3.2. ([1]) If the function h defined by is in the class $\mathcal{R}(\mu, \tau)$, then

$$1 - \frac{|\tau|}{1 + \Re(\mu)}|z| \leq |h(z)| \leq 1 + \frac{|\tau|}{1 + \Re(\mu)}|z| \quad (z \in \mathbb{U}).$$ (3.3)

Theorem 3.3. Let the function f and g be analytic in \mathbb{U} and suppose that the function g is normalized and also satisfies the following inclusion property:

$$\left(\frac{z \mathcal{D}_q(\mathcal{R}^q g(z))}{\mathcal{R}^q g(z)}\right) \in \mathcal{R}(\mu, \tau).$$

If $\mathcal{R}^q f$ is majorized by $\mathcal{R}^q g$ in \mathbb{U}, then

$$|\mathcal{R}^q+1 f(z)| \leq |\mathcal{R}^q+1 g(z)| \quad (|z| \leq r_4),$$

(3.4)

where $r_4 = r_4(\mu, \tau, \delta)$ is the root of the cubic equation

$$q^{\delta}|\tau|r^3 - \{(q^{\delta} - [\delta]_q)(1 + \Re(\mu)) - 2|\tau|\}r^2$$

$$- [2(1 + \Re(\mu)) + q^{\delta}|\tau||r + (q^{\delta} - [\delta]_q)[1 + \Re(\mu)] = 0$$

(3.5)

which lies in the interval $(0, 1)$ and $(q^{\delta} - [\delta]_q)(1 + \Re(\mu)) > 0$.

Proof. For an appropriately normalized analytic function g satisfying the inclusion property, we find from the assertion of Lemma 3.2 that

$$\left|\frac{z \mathcal{D}_q(\mathcal{R}^q g(z))}{\mathcal{R}^q g(z)}\right| \geq 1 - \frac{|\tau|}{1 + \Re(\mu)}r \quad (|z| = r, \ 0 < r < 1)$$

(3.6)
or, equivalently, that
\[
|R_q^\delta g(z)| \leq \frac{(q^\delta + |\delta|)(1 + \Re(\mu) - |\tau|r)}{(q^\delta - |\delta|)(1 + \Re(\mu)) - q^\delta |\tau|r} |(R_q^{\delta+1} g(z))| \quad (|z| = r, \ 0 < r < 1).
\] (3.7)

Since
\[
R_q^\delta f(z) \ll R_q^\delta g(z) \quad (z \in \mathbb{U}),
\]
there exists an analytic function \(\phi \) such that
\[
R_q^\delta f(z) = \phi(z) R_q^\delta g(z) \quad \text{and} \quad |\phi(z)| < 1.
\]

By applying \(q \)-differentiation with respect to \(z \), we get
\[
z \mathcal{D}_q (R_q^\delta f(z)) = z \mathcal{D}_q (\phi(z)) R_q^\delta g(z) + \phi(z) z \mathcal{D}_q (R_q^\delta g(z)). \] (3.8)

Thus in view of (3.7) and using (1.14), just as in the proof of Theorem 2.2, we have
\[
|\mathcal{D}_q (\phi(z))| \leq \frac{1 - |\phi(z)|^2}{1 - |z|^2} \quad (z \in \mathbb{U})
\]
and
\[
|\mathcal{D}_q (R_q^{\delta+1} f(z))| \leq \left(|\phi(z)| + \frac{1 - |\phi(z)|^2}{1 - |z|^2} \cdot \frac{(1 + \Re(\mu) - |\tau|r)|z|}{(q^\delta - |\delta|)(1 + \Re(\mu)) - q^\delta |\tau|r} \right) |\mathcal{D}_q (R_q^\delta g(z))|,
\]
\(|z| = r, \ 0 < r < 1\). That is,
\[
|R_q^{\delta+1} f(z)| \leq \left(|\phi(z)| + \frac{1 - |\phi(z)|^2}{1 - |z|^2} \cdot \frac{(1 + \Re(\mu) - |\tau|r)r}{(q^\delta - |\delta|)(1 + \Re(\mu)) - q^\delta |\tau|r} \right)
\times R_q^{\delta+1} g(z),
\] (3.9)
where \(|z| = r, \ 0 < r < 1\). We set \(|\phi(z)| = \rho\) and the function \(\Lambda_1(\rho, r) \) defined by
\[
\Lambda_1(\rho, r) = \rho + \frac{1 - \rho^2}{1 - r^2} \cdot \frac{(1 + \Re(\mu) - |\tau|r)r}{(q^\delta - |\delta|)(1 + \Re(\mu)) - q^\delta |\tau|r}. \] (3.10)

In order to determine the bound of \(\Lambda(\rho, r) \), we have to choose
\[
r_1 = \max\{r \in [0, 1] : \Lambda_1(\rho, r) \leq 1, \ \rho \in [0, 1]\}
= \max\{r \in [0, 1] : \Lambda_2(\rho, r) \geq 0, \ \rho \in [0, 1]\},
\]
where, for \(0 \leq \rho \leq 1\).
\[
\Lambda_2(r, \rho) = (1 - r^2)\{(q^\delta - |\delta|)(1 + \Re(\mu)) - q^\delta |\tau|r\} - r(1 + \rho)(1 + \Re(\mu) - |\tau|r).
\]

Obviously, for \(\rho = 1\), the function \(\Lambda_2(r, \rho) \) takes its minimum value, namely
\[
\min\{\Lambda_2(r, \rho) : \rho \in [0, 1]\} = \Lambda_2(r, 1) = \Lambda_2(r),
\]
where
\[\Lambda_2(r) = (1 - r^2)\{(q^\delta - [\delta]_q)(1 + \Re(\mu)) - q^\delta|\tau|r\} - 2r(1 + \Re(\mu) - |\tau|r). \]
Furthermore, if \(\Lambda_2(0) = (q^\delta - [\delta]_q)(1 + \Re(\mu)) > 0 \) and \(\Lambda_2(1) = -2(1 + \Re(\mu) - |\tau|) < 0 \), then there exists \(r_4 \) such that \(\Lambda_2(r) \geq 0 \) for all \(r \in [0, r_4] \), where \(r_4 = r_4(\tau, \mu, \delta) \), the smallest positive root of the equation (3.5) which completes the proof of Theorem 3.3. \(\square \)

Remark 3.4. Specializing the parameters \(\delta, \beta \) in (1.15) one can define the various other interesting subclasses of \(\mathcal{RS}_q^{\delta}(\beta, e^z) \), involving \(q \)-calculus operator and one can easily derive the result as in Theorem 2.2. Further as mentioned in [11] we can define new subclasses \(\mathcal{RS}_q^{\delta}(\beta, 1 + \sin z) \), \(\mathcal{RS}_q^{\delta}(\beta, \cos z) \), and \(\mathcal{RS}_q^{\delta}(\beta, z + \sqrt{1 + z^2}) \), and investigate a majorization problem for these classes.

Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2019R1I1A3A01050861).

References