WEAK CONVERGENCE TO COMMON FIXED POINTS OF COUNTABLE NONEXPANSIVE MAPPINGS AND ITS APPLICATIONS

YASUNORI KIMURA AND WATARU TAKAHASHI

ABSTRACT. In this paper, we introduce an iteration generated by countable nonexpansive mappings and prove a weak convergence theorem which is connected with the feasibility problem. This result is used to solve the problem of finding a solution of the countable convex inequality system and the problem of finding a common fixed point for a commuting countable family of nonexpansive mappings.

1. Introduction

Let C_1, C_2, \dots, C_k be nonempty closed convex subsets of a Hilbert space H whose intersection C_0 is nonempty. Given metric projections P_i onto C_i for $i=1,2,\cdots,k$, find a point of C_0 by an iterative scheme. Such a problem is connected with the feasibility problem. In fact, let $\{g_1,g_2,\cdots,g_k\}$ be a finite family of real valued continuous convex functions on H. Then the feasibility problem is to find a solution of the finite convex inequality system, i.e., to find such a point $x \in C_0$ that

$$C_0 = \{x \in H : g_i(x) \le 0, \quad i = 1, 2, \dots, k\}.$$

In 1991, Crombez [4] obtained the following result: Put $T = \alpha_0 I + \sum_{i=1}^k \alpha_k (I + \lambda_i (P_i - I))$, where I is an identity operator, $0 < \lambda_i < 2$ for $i = 1, 2, \dots, k$, $\alpha_i > 0$ for $i = 0, 1, \dots, k$, and $\sum_{i=0}^k \alpha_i = 1$. Then, starting from an arbitrary element x of H, a sequence $\{T^n x\}$ converges weakly to $z \in C_0$. Later, Kitahara and Takahashi [8] dealt with the

Received September 22, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 47H09, 49M05.

Key words and phrases: nonexpansive mapping, fixed point, iteration, uniformly convex, feasibility problem.

feasibility problem by convex combinations of sunny nonexpansive retractions in uniformly convex Banach spaces.

Recently, motivated by Ishikawa [7] and Das and Debeta [5], Takahashi and Shimoji [15] introduced a new iteration generated by finite nonexpansive mappings and proved weak convergence theorems which are connected with the feasibility problem.

On the other hand, Dye and Reich [6] proved the following result for an unrestricted product of nonexpansive mappings: Let $\{T_n\}$ be nonexpansive mappings on a Hilbert space H with a common fixed point $z \in H$. Suppose that the algebraic semigroup S generated by $\{T_n\}$ satisfies the condition (W) with respect to $p \in H$. Let r be a mapping from the set of natural numbers into itself and let $S_n = T_{r(n)}T_{r(n-1)}\cdots T_{r(2)}T_{r(1)}$. Then S_nx converges weakly for each $x \in H$. An algebraic semigroup S generated by $\{T_n\}$ is said to satisfy the condition (W) with respect to p if for any bounded sequence $\{v_n\}$ of H and a sequence $\{W_n\}$ of words from S with $\|v_n - p\| - \|W_nv_n - p\| \to 0$, it follows that $v_n - W_nv_n$ converges weakly to 0; see [6] for more details. Though they obtained a sufficient condition for which S satisfies the condition (W) with respect to p in the paper, it still seems to be a strong condition.

In this paper, we introduce an iteration generated by countable non-expansive mappings and prove a weak convergence theorem which is connected with the feasibility problem. This iteration is different from that of Dye and Reich's, and our theorem generalizes Takahashi and Shimoji's result [15] for finite nonexpansive mappings. Using our theorem, we also consider the feasibility problem of finding a solution of the countable convex inequality system and the problem of finding a common fixed point for a commuting countable family of nonexpansive mappings.

2. Preliminaries and lemmas

Throughout this paper, we denote by \mathbb{N} and \mathbb{R} the sets of natural numbers and real numbers, respectively. Let E be a Banach space and let C be a nonempty closed convex subset of E. A mapping T of C into itself is called nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. The set of fixed points of T is denoted by F(T), that is, $z \in F(T)$ if and only if z = Tz. Let D be a nonempty subset of C. A mapping P of C onto D is said to be a retraction if Px = x for each $x \in D$. If there exists a nonexpansive retraction of C onto D, then D is said to be a

nonexpansive retract of C.

For a Banach space E, we define the modulus δ_E of convexity of E as follows: δ_E is a function of [0,2] into [0,1] such that

$$\delta_E(\epsilon) = \inf\{1 - \|x + y\|/2 : \|x\| \le 1, \|y\| \le 1, \|x - y\| \ge \epsilon\}$$

for each $\epsilon \in [0,2]$. E is called uniformly convex if $\delta_E(\epsilon) > 0$ for each $\epsilon > 0$. E is called strictly convex if ||x+y||/2 < 1 for every $x,y \in E$ with ||x|| = ||y|| = 1 and $x \neq y$. It is known that a uniformly convex Banach space is strictly convex and reflexive.

A Banach space E satisfies Opial's condition [10] if, for each sequence $\{x_n\}$ of E converging weakly to $x, x \neq y$ implies

$$\liminf_{n\to\infty} ||x_n - x|| < \liminf_{n\to\infty} ||x_n - y||.$$

The norm of E is said to be Fréchet differentiable if, for each $x \in E$

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

converges uniformly for y with ||y|| = 1.

The following lemma was proved by Schu [12].

LEMMA 2.1 [Schu [12]]. Let $\{x_n\}$ and $\{y_n\}$ be sequences of a uniformly convex Banach space E and let $\{\alpha_n\}$ be a sequence of real numbers such that $0 < a \le \alpha_n \le b < 1$ for all $n \in \mathbb{N}$. Suppose that $\lim_{n \to \infty} \|\alpha_n x_n + (1 - \alpha_n) y_n\| = c$ exists. If $\limsup_{n \to \infty} \|x_n\| \le c$ and $\limsup_{n \to \infty} \|y_n\| \le c$, then $\lim_{n \to \infty} \|x_n - y_n\| = 0$.

Let C be a nonempty closed convex subset of a Banach space E. Let $\{T_n: n=1,2,\cdots,k\}$ be mappings of C into itself and let $\{\alpha_n\in\mathbb{R}: n=1,2,\cdots,k\}$ be real numbers satisfying $0\leq\alpha_n\leq1$ for each $n=1,2,\cdots,k$. Then, we define a mapping W of C into itself as follows (Takahashi [13]):

$$\begin{cases} U_k = \alpha_k T_k + (1 - \alpha_k)I, \\ U_{k-1} = \alpha_{k-1} T_{k-1} U_k + (1 - \alpha_{k-1})I, \\ \vdots \\ U_2 = \alpha_2 T_2 U_3 + (1 - \alpha_2)I, \\ W = U_1 = \alpha_1 T_1 U_2 + (1 - \alpha_1)I. \end{cases}$$

Such a mapping W is called the W-mapping generated by T_k , T_{k-1} , \cdots , T_2 , T_1 and α_k , α_{k-1} , \cdots , α_2 , α_1 .

The following lemma was proved by Takahashi and Shimoji [15].

LEMMA 2.2 (Takahashi and Shimoji [15]). Let C be a nonempty closed convex subset of a strictly convex Banach space E. Let T_1, T_2, \dots, T_k be nonexpansive mappings of C into itself and suppose that $\bigcap_{i=1}^k F(T_i)$ is nonempty. Let $\alpha_1, \alpha_2, \dots, \alpha_k$ be real numbers such that $0 < \alpha_i < 1$ for all $i = 1, 2, \dots, k$. Let W be the W-mapping generated by T_1, T_2, \dots, T_k and $\alpha_1, \alpha_2, \dots, \alpha_k$. Then

$$F(W) = \bigcap_{i=1}^{k} F(T_i).$$

The following lemma was proved by Reich [11]; see also [14].

LEMMA 2.3 (Reich [11]). Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is Fréchet differentiable. Let $\{W_n\}$ be a sequence of nonexpansive mappings of C into itself such that the set of their common fixed points is nonempty. Choose $x \in C$ arbitrarily and make an iteration $\{x_n\}$ by

$$x_n = W_n W_{n-1} \cdots W_2 W_1 x$$

for each $n \in \mathbb{N}$. Then the set $\bigcap_{k=1}^{\infty} \overline{co}\{x_m : m \geq k\} \cap \bigcap_{n=1}^{\infty} F(W_n)$ consists of at most one point.

3. The main result

Now we prove a weak convergence theorem for countable nonexpansive mappings in Banach spaces which is connected with the feasibility problem.

THEOREM 3.1. Let C be a nonempty closed convex subset of a uniformly convex Banach space E. Let $\{T_n\}$ be a sequence of nonexpansive mappings of C into itself and suppose

$$\bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset.$$

Let $a, b \in \mathbb{R}$ with $0 < a \le b < 1$ and let $\{\alpha_{n,k} : n, k \in \mathbb{N}, 1 \le k \le n\} \subset [a, b]$. For $n \in \mathbb{N}$, let W_n be the W-mapping generated

by $T_n, T_{n-1}, \dots, T_2, T_1$ and $\alpha_{n,n}, \alpha_{n,n-1}, \dots, \alpha_{n,2}, \alpha_{n,1}$, that is,

(1)
$$\begin{cases} U_{n,n} = \alpha_{n,n} T_n + (1 - \alpha_{n,n}) I, \\ U_{n,n-1} = \alpha_{n,n-1} T_{n-1} U_{n,n} + (1 - \alpha_{n,n-1}) I, \\ \vdots \\ U_{n,2} = \alpha_{n,2} T_2 U_{n,3} + (1 - \alpha_{n,2}) I, \\ W_n = U_{n,1} = \alpha_{n,1} T_1 U_{n,2} + (1 - \alpha_{n,1}) I. \end{cases}$$

Let $x_1 \in C$ and put $x_{n+1} = W_n x_n$ for each $n \in \mathbb{N}$. Then $||T_k x_n - x_n|| \to 0$ as $n \to \infty$ for each $k \in \mathbb{N}$. Moreover, if either E satisfies Opial's condition or E has a Fréchet differentiable norm, then $\{x_n\}$ converges weakly to $z \in \bigcap_{n=1}^{\infty} F(T_n)$.

Proof. Let $w \in \bigcap_{n=1}^{\infty} F(T_n)$ and $x_1 \in C$. Then, by the definition of $\{x_n\}$, we obtain

$$||x_{n+1} - w|| = ||W_n x_n - w|| = ||U_{n,1} x_n - w||$$

$$\leq \alpha_{n,1} ||T_1 U_{n,2} x_n - w|| + (1 - \alpha_{n,1}) ||x_n - w||$$

$$\leq \alpha_{n,1} ||U_{n,2} x_n - w|| + (1 - \alpha_{n,1}) ||x_n - w||$$

$$\leq \alpha_{n,1} \alpha_{n,2} ||U_{n,3} x_n - w|| + (1 - \alpha_{n,1} \alpha_{n,2}) ||x_n - w||$$

$$\vdots$$

$$\leq \alpha_{n,1} \alpha_{n,2} \cdots \alpha_{n,k-1} ||U_{n,k} x_n - w||$$

$$+ (1 - \alpha_{n,1} \alpha_{n,2} \cdots \alpha_{n,k-1}) ||x_n - w||$$

$$\vdots$$

$$\leq \alpha_{n,1} \alpha_{n,2} \cdots \alpha_{n,n} ||T_n x_n - w||$$

$$+ (1 - \alpha_{n,1} \alpha_{n,2} \cdots \alpha_{n,n}) ||x_n - w||$$

$$\leq \alpha_{n,1} \alpha_{n,2} \cdots \alpha_{n,n} ||x_n - w||$$

$$+ (1 - \alpha_{n,1} \alpha_{n,2} \cdots \alpha_{n,n}) ||x_n - w||$$

$$= ||x_n - w||,$$

and hence $\lim_{n\to\infty} ||x_n - w||$ exists. Put $c = \lim_{n\to\infty} ||x_n - w||$. Fix $k \in \mathbb{N}$. Then for any $n \in \mathbb{N}$ with $n \geq k$, we have

$$||U_{n,k}x_n - w|| \le ||x_n - w||$$

and hence

$$\limsup_{n} \|U_{n,k}x_n - w\| \le c.$$

On the other hand, since

$$||x_{n+1} - w|| \le \alpha_{n,1}\alpha_{n,2}\cdots\alpha_{n,k-1}||U_{n,k}x_n - w|| + (1 - \alpha_{n,1}\alpha_{n,2}\cdots\alpha_{n,k-1})||x_n - w||,$$

we obtain

$$||x_n - w|| \le ||U_{n,k}x_n - w|| + \frac{||x_n - w|| - ||x_{n+1} - w||}{\alpha_{n,1}\alpha_{n,2}\cdots\alpha_{n,k-1}}$$

$$\le ||U_{n,k}x_n - w|| + \frac{||x_n - w|| - ||x_{n+1} - w||}{a^{k-1}}$$

and hence

(3)
$$c \leq \liminf_{n} \|U_{n,k}x_n - w\|.$$

From (2) and (3), we have $c = \lim_{n\to\infty} \|U_{n,k}x_n - w\|$. So, we have

$$c = \lim_{n \to \infty} \|\alpha_{n,k} T_k U_{n,k+1} x_n + (1 - \alpha_{n,k}) x_n - w\|.$$

Since

$$\lim \sup_{n \to \infty} \|T_k U_{n,k+1} x_n - w\| \le \lim \sup_{n \to \infty} \|U_{n,k+1} x_n - w\| = c$$

and $\limsup_{n\to\infty} ||x_n - w|| = c$, from Lemma 2.1, we get

$$\lim_{n \to \infty} ||T_k U_{n,k+1} x_n - x_n|| = 0.$$

For each $n \geq k + 2$, we have

$$||T_k x_n - x_n|| \le ||T_k x_n - T_k U_{n,k+1} x_n|| + ||T_k U_{n,k+1} x_n - x_n||$$

$$\le ||x_n - U_{n,k+1} x_n|| + ||T_k U_{n,k+1} x_n - x_n||$$

$$= ||x_n - (\alpha_{n,k+1} T_{k+1} U_{n,k+2} x_n + (1 - \alpha_{n,k+1}) x_n)||$$

$$+ ||T_k U_{n,k+1} x_n - x_n||$$

$$= \alpha_{n,k+1} ||T_{k+1} U_{n,k+2} x_n - x_n|| + ||T_k U_{n,k+1} x_n - x_n||.$$

Consequently, we obtain $\limsup_{n\to\infty} ||T_k x_n - x_n|| \le 0$ and hence

$$\lim_{n\to\infty} \|T_k x_n - x_n\| = 0.$$

Suppose that E satisfies Opial's condition. Since $\{x_n\}$ is bounded and E is reflexive, we can choose a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ converging weakly to z. We shall show that z is a common fixed point of $\{T_k\}$. Suppose $z \notin \bigcap_{k=1}^{\infty} F(T_k)$. Then $z \neq T_k z$ for some $k \in \mathbb{N}$. Using Opial's condition, we have

$$\lim_{i} \inf \|x_{n_{i}} - z\| < \liminf_{i} \|x_{n_{i}} - T_{k}z\|
\leq \lim_{n} \inf(\|x_{n_{i}} - T_{k}x_{n_{i}}\| + \|T_{k}x_{n_{i}} - T_{k}z\|)
\leq \lim_{n} \inf(\|x_{n_{i}} - T_{k}x_{n_{i}}\| + \|x_{n_{i}} - z\|)
= \lim_{n} \inf \|x_{n_{i}} - z\|.$$

This is a contradiction and hence we have $z \in \bigcap_{k=1}^{\infty} F(T_k)$.

Next, we shall show that the set of weakly cluster points of $\{x_n\}$ consists of one point. Let $\{x_{n_i}\}$ and $\{x_{n_j}\}$ be subsequences of $\{x_n\}$ converging weakly z_1 and z_2 , respectively. Then both z_1 and z_2 are common fixed points of $\{T_k\}$ and thus $\lim_{n\to\infty} \|x_n-z_1\|$ and $\lim_{n\to\infty} \|x_n-z_2\|$ exist. We claim $z_1=z_2$. If not, we have

$$\lim_{n \to \infty} \|x_n - z_1\| = \lim_{i \to \infty} \|x_{n_i} - z_1\|$$

$$< \lim_{i \to \infty} \|x_{n_i} - z_2\|$$

$$= \lim_{n \to \infty} \|x_n - z_2\|$$

$$= \lim_{j \to \infty} \|x_{n_j} - z_2\|$$

$$< \lim_{j \to \infty} \|x_{n_j} - z_1\|$$

$$= \lim_{n \to \infty} \|x_n - z_1\|.$$

This is a contradiction and we get $z_1 = z_2$. Therefore $\{x_n\}$ converges weakly to $z \in \bigcap_{k=1}^{\infty} F(T_k)$.

On the other hand, suppose that E has a Fréchet differentiable norm. Without loss of generality, we may assume that C is bounded because a common fixed point of $\{T_k\}$ exists. Let $\{x_{n_i}\}$ be a subsequence of $\{x_n\}$ converging weakly to z. Then, since $\lim_{n\to\infty} ||T_k x_{n_i} - x_{n_i}|| = 0$

for each $k \in \mathbb{N}$ and $I - T_k$ is demiclosed, it follows from Browder [1] that z is a common fixed point of $\{T_k\}$. Since $F(W_n) = \bigcap_{k=1}^n F(T_k)$ from Lemma 2.2, we have $z \in \bigcap_{k=1}^{\infty} F(T_k) = \bigcap_{n=1}^{\infty} F(W_n)$ and $x_n = W_n W_{n-1} \cdots W_1 x_1$ for each $n \in \mathbb{N}$. Using Lemma 2.3, we obtain

$$\bigcap_{n=1}^{\infty} \overline{co}\{x_m : m \ge n\} \cap \bigcap_{k=1}^{\infty} F(T_k) = \{z\}.$$

Consequently, $\{x_n\}$ converges weakly to $z \in \bigcap_{k=1}^{\infty} F(T_k)$.

4. Applications

In this section, using Theorem 1, we consider the feasibility problem of finding a solution of the countable convex inequality system. Further, we consider the problem of finding a common fixed point for a commuting countable family of nonexpansive mappings.

Theorem 4.1. Let C be a nonempty closed convex subset of a uniformly convex Banach space whose norm is Fréchet differentiable and let $a,b\in\mathbb{R}$ with $0< a\leq b\leq 1$. Let $\{C_n\}$ be a sequence of nonexpansive retracts of C such that $\bigcap_{n=1}^{\infty}C_n$ is nonempty. For $n\in\mathbb{N}$, let W_n be the W-mapping generated by $P_n,P_{n-1},\cdots,P_2,P_1$ and $\alpha_{n,n},\cdots,\alpha_{n,2},\alpha_{n,1}$, where P_k is a nonexpansive retraction of C onto C_k for each $k\in\mathbb{N}$ and $0< a\leq \alpha_{n,k}\leq b< 1$ for $n,k\in\mathbb{N}$ with $0\leq k\leq n$. Consider an iteration $\{x_n\}$ defined by (1). Then $\{x_n\}$ converges weakly to $z\in\bigcap_{n=1}^{\infty}C_n$.

Proof. From Lemma 2, we have

$$F(W_n) = \bigcap_{k=1}^{n} F(P_k) = \bigcap_{k=1}^{n} C_k.$$

This implies

$$\bigcap_{n=1}^{\infty} F(W_n) = \bigcap_{n=1}^{\infty} F(P_n) = \bigcap_{n=1}^{\infty} C_n.$$

Using Theorem 1, $\{x_n\}$ converges weakly to $z \in \bigcap_{n=1}^{\infty} C_n$.

REMARK 4.1. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let T be a nonexpansive mapping of C into itself with $F(T) \neq \emptyset$. Then, it follows from Bruck [2, 3] that F(T) is a nonexpansive retract of C. We also know that every nonempty closed convex subset of a Hilbert space H is a nonexpansive retract of H and the norm of H is Fréchet differentiable.

THEOREM 4.2. Let C be a nonempty bounded closed convex subset of a uniformly convex Banach space E whose norm is Fréchet differentiable. Let $\{T_n\}$ be a sequence of nonexpansive mappings of C into itself such that $T_iT_j=T_jT_i$ for all $i,j\in\mathbb{N}$. Let a and b be real numbers with $0 < a \le b < 1$ and let $\{\alpha_{n,k}: n,k\in\mathbb{N}, 1\le k\le n\}\subset [a,b]$. Then the set of common fixed points of $\{T_n\}$ is nonempty, and an iteration $\{x_n\}$ defined by (1) converges weakly to an element of $\bigcap_{n=1}^{\infty} F(T_n)$.

Proof. Since E is uniformly convex, from [1] or Kirk's fixed point theorem [9], we obtain that each T_i has a fixed point. We also know from commutativity of $\{T_n\}$ that $\{F(T_n)\}$ is a sequence of nonempty closed convex subsets which has the finite intersection property; for more details, see [8]. Since C is bounded and E is uniformly convex, C is weakly compact. Hence we have

$$\bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset.$$

Therefore, by Theorem 3.1, $\{x_n\}$ converges weakly to an element of $\bigcap_{n=1}^{\infty} F(T_n)$.

References

- [1] F. E. Browder, Nonlinear operators and nonlinear equations of evolutions in Banach spaces, Proc. Sympos. Pure Math. 18 (1976), no. 2, AMS, Providence, Rhode Island.
- [2] R. E. Bruck, Properties of fixed-point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 251–262.
- [3] _____, A common fixed-point theorem for a commuting family of nonexpansive mappings, Pacific J. Math. **53** (1974), 59–71.
- [4] G. Crombez, Image recovery by convex combinations of projections, J. Math. Anal. Appl. 155 (1991), 413-419.
- [5] G. Das and J. P. Debeta, Fixed points of quasi-nonexpansive mappings, Indian J. Pure Appl. Math. 17 (1986), 1263-1269.
- [6] J. M. Dye and S. Reich, Unrestricted iterations of nonexpansive mappings in Hilbert space, Nonlinear Anal. 18 (1992), 199-207.

- [7] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150.
- [8] S. Kitahara and W. Takahashi, Image recovery by convex combinations for sunny nonexpansive retractions, Topol. Methods Nonlinear Anal. 2 (1993), 333– 342.
- [9] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006.
- [10] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
- [11] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274-276.
- [12] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153-159.
- [13] W. Takahashi, Weak and strong convergence theorems for families of nonexpansive mappings and their applications, Ann. Univ. Mariae Curie-Sklodowska 51 (1997), 277-292.
- [14] W. Takahashi and G. E. Kim, Approximating fixed points of nonexpansive mappings in Banach spaces, Math. Japon. 48 (1998), 1-9.
- [15] W. Takahashi and K. Shimoji, Convergence theorems for nonexpansive mappings and feasibility problems, Math. Comput. Modelling 32 (2000), 1463-1471.

Yasunori Kimura Institute of Economic Research Hitotsubashi University Tokyo 186-8603, Japan E-mail: yasunori@ier.hit-u.ac.jp

Wataru Takahashi

Department of Mathematical and Computing Sciences Tokyo Institute of Technology Tokyo 152–8552, Japan *E-mail*: wataru@is.titech.ac.jp