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Abstract. The purpose of the present paper is to investigate Confluent hypergeometric

distribution. We obtain some basic properties of this distribution. It is worthy to note

that the Poisson distribution is a particular case of this distribution. Finally, we give a

nice application of this distribution on certain classes of univalent functions of the conic

regions.

1. Introduction

The confluent hypergeometric function is given by the power series

(1.1) F (a; c; z) =
∞∑
n=0

(a)n
(c)n(1)n

zn,

where a, c are complex numbers such that c ̸= 0,−1,−2, . . . and (a)n is the
Pochhammer symbol defined in terms of the Gamma function, by

(a)n =
Γ(a+ n)

Γ(a)
=

{
1, if n = 0

a(a+ 1) . . . (a+ n− 1), if n ∈ N = {1, 2, 3, . . .}

is convergent for all finite values of z, see [12].
This suggests that the series

F (a; c;m) =
∞∑
n=0

(a)n
(c)n(1)n

mn
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is convergent for a, c,m > 0.

Very recently, Porwal and Kumar [11] introduced the confluent hypergeometric
distribution (CHD) whose probability mass function is

(1.2) P (n) =
(a)nm

n

(c)nn!F (a; c;m)
, a, c,m > 0, n = 0, 1, 2, . . . .

It is easy to see that for a = c it reduces to the Poisson distribution.

2. Properties of CHD

Definition 2.1. If X is a discrete random variable which can take the values x1, x2,
x3, . . . with respective probabilities p1, p2, p3, . . . then expectation of X, denoted
by E(X), is defined as

(2.1) E(X) =

∞∑
k=1

pkxk.

Definition 2.2. The rth moment of a discrete probability distribution aboutX = 0
is defined by

µ
′

r = E(Xr).

Here µ
′

1 and µ
′

2 −
(
µ

′

1

)2

are known as the mean and variance of the distribution.

Moments about the origin

(1)

µ
′

1 =

∞∑
n=0

nP (n) =

∞∑
n=0

n
(a)nm

n

(c)nn!F (a; c;m)
=
ma

c

F (a+ 1; c+ 1;m)

F (a; c;m)
.

Similarly

(2)

µ
′

2 =
1

F (a; c;m)

[
(a)2
(c)2

m2F (a+ 2; c+ 2;m) +
a

c
mF (a+ 1; c+ 1;m)

]
.

(3)

µ
′

3 =
1

F (a; c;m)

[
(a)3
(c)3

m3F (a+ 3; c+ 3;m) + 3
(a)2
(c)2

m2F (a+ 2; c+ 2;m)

+
a

c
mF (a+ 1; c+ 1;m)

]
.
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(4)

µ
′

4 =
1

F (a; c;m)

[
(a)4
(c)4

m4F (a+ 4; c+ 4;m) + 6
(a)3
(c)3

m3F (a+ 3; c+ 3;m)

+7
(a)2
(c)2

m2F (a+ 2; c+ 2;m) +
a

c
mF (a+ 1; c+ 1;m)

]
.

Definition 2.3. The moment generating function (m.g.f.) of a random variable X
is denoted by MX(t) and defined by

(2.2) MX(t) = E(etX).

The proof of the following theorem is straight forward so we only state the
result.

Theorem 2.1. The moment generating function of the confluent hypergeometric
Distribution is given by

MX(t) =
F (a; c;met)

F (a; c;m)
.

Remark 2.1. If we put a = c in the expressions µ
′

1, µ
′

2, µ
′

3, µ
′

4 and in Theorem
2.1, then we obtain the corresponding results of Poisson distribution.

3. Application of Confluent Hypergeometric Distribution on Certain
Classes of Univalent Functions of Conic Regions

Let A denote the class of functions f(z) of the form

(3.1) f(z) = z +
∞∑
n=2

anz
n

which are analytic in the open unit disc U = {z : z ∈ C and |z| < 1} and satisfy the
normalization condition f(0) = f ′(0)− 1 = 0. Further, we denote by S the subclass
of A consisting of functions of the form (3.1) which are also univalent in U .

In 1997, Bharti et al. [1] introduced the subclasses k-uniformly convex functions
of order α and corresponding class of k-starlike functions of order α as follows

A function f of the form (3.1) is in k − UCV (α), if and only if, it satisfy the
following condition

(3.2) ℜ
{
1 +

zf ′′(z)

f ′(z)

}
≥ k

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣+ α, 0 ≤ k <∞, 0 ≤ α < 1.

For α = 0 the class k − UCV (α) reduce to the class k − UCV introduced and
studied by Kanas and Wisniowska [6] and for k = 1, α = 0 it reduce to the class
of uniformly convex functions UCV studied by Goodman [3]. Using the Alexander
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transform we can obtain the class k−Sp(α) in the following way f ∈ k−UCV (α) ⇔
zf ′ ∈ k − Sp(α). For more results on these directions we refer the reader to [4, 5,
7, 8, 14, 15] and references therein.

A function f ∈ A is said to be in the class P τγ (β) if it satisfies the following
inequality ∣∣∣∣∣ (1− γ) f(z)z + γf ′(z)− 1

2τ(1− β) + (1− γ) f(z)z + γf ′(z)− 1

∣∣∣∣∣ < 1,

where 0 ≤ γ < 1, β < 1, τ ∈ C/{0} and z ∈ U . The class P τγ (β) was introduced by
Swaminathan [17].

Next, we introduce the classes S∗
λ and Cλ as follows

(3.3) S∗
λ =

{
f ∈ A :

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < λ, (z ∈ U, λ > 0)

}
and

(3.4) Cλ =

{
f ∈ A :

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ < λ, (z ∈ U, λ > 0)

}
.

From (3.3) and (3.4) it is easy to see that

f(z) ∈ Cλ ⇔ zf ′(z) ∈ S∗
λ, (λ > 0).

The classes S∗
λ and Cλ were introduced by Ponnusamy and Rønning [9].

Recently, Porwal [10] introduce a power series whose coefficients are probabilities
of Poisson distribution

K (m, z) = z +

∞∑
n=2

mn−1

(n− 1)!
e−mzn, (z ∈ U),

and we note that, by ratio test the radius of convergence of above series is infinity.
The convolution (or Hadamard product) of two series f(z) =

∑∞
n=0 anz

n and
g(z) =

∑∞
n=0 bnz

n is defined as the power series

(f ∗ g)(z) =
∞∑
n=0

anbnz
n.

Now, we introduce a new series I(a; c;m; z) whose coefficients are probabilities
of confluent hypergeometric distribution

I(a; c;m; z) = z +
∞∑
n=2

(a)n−1m
n−1

(c)n−1(n− 1)!F (a; c;m)
zn,

where a, c,m > 0.



Confluent Hypergeometric Distribution and Its Applications 499

Now, we consider a linear operator Ω(a; c;m) : A → A defined by

Ω(a; c;m)f = I(a; c;m; z) ∗ f(z)

= z +
∞∑
n=2

(a)n−1m
n−1

(c)n−1(n− 1)!F (a; c;m)
anz

n.

The Poisson distribution series is a recent topic of study in Geometric Function
Theory. It established a connection between probability distribution and Geometric
Function Theory. Motivated by results of [10] and on connections between the
various subclasses of analytic univalent functions by using hypergeometric functions
(see [2], [9]), we establish a number of connections between the classes P τγ (β),
k−UCV (α), k−Sp(α), Cλ and S∗

λ by applying the convolution operator Ω(a; c;m).

4. Coefficient Conditions

To establish our main results, we shall require the following lemmas.

Lemma 4.1.([1]) A function f ∈ A is in k − UCV (α), if it satisfies the following
condition

(4.1)
∞∑
n=2

n[n(1 + k)− (k + α)]|an| ≤ 1− α.

Remark 4.1. It was also found that the condition (4.1) is necessary if f ∈ A is of
the form

(4.2) f(z) = z −
∞∑
n=2

anz
n, an ≥ 0.

Lemma 4.2.([1]) A function f ∈ A is in k − Sp(α) if it satisfies the following
inequality

(4.3)
∞∑
n=2

[n(1 + k)− (k + α)]|an| ≤ 1− α.

The condition (4.3) is also necessary for functions of the form (4.2).

Lemma 4.3.([6]) Let f ∈ S and have the form (3.1). If for some k, 0 ≤ k < ∞,
the inequality

∞∑
n=2

n(n− 1)|an| ≤
1

(k + 2)
,

holds, then f ∈ k − UCV . The number 1/k + 2 can not be increased.
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Lemma 4.4.([9]) Let f ∈ A be of the form (3.1). If

(4.4)
∞∑
n=2

(λ+ n− 1)|an| ≤ λ, (λ > 0),

then f ∈ S∗
λ.

Lemma 4.5.([9]) Let f ∈ A be of the form (3.1). If

(4.5)
∞∑
n=2

n(λ+ n− 1)|an| ≤ λ, (λ > 0),

then f ∈ Cλ.

We further note that when f(z) is of the form (4.2), the conditions (4.4) and
(4.5) are both necessary and sufficient for belonging to the classes S∗

λ and Cλ,
respectively.

Lemma 4.6.([17]) If f ∈ P τγ (β) is of the form (3.1) then

|an| ≤
2|τ |(1− β)

1 + γ(n− 1)
.

Theorem 4.1. If a, c,m > 0, k ≥ 0, 0 ≤ α < 1, f ∈ P τγ (β), 0 < γ ≤ 1, 0 ≤ β < 1
and the inequality

(4.6) (k+ 1)
a

c
mF (a+ 1; c+ 1;m) + (1− α) (F (a; c;m)− 1) ≤ γF (a; c;m)(1− α)

2|τ |(1− β)

is satisfied then Ω(a; c;m)f(z) ∈ k − UCV (α).

Proof. Since

Ω(a; c;m)f(z) = z +
∞∑
n=2

(a)n−1

(c)n−1

mn−1

(n− 1)!

1

F (a; c;m)
anz

n.

To prove that Ω(a; c;m)f(z) ∈ k − UCV (α), from Lemma 4.1, it is sufficient to
show that

(4.7)
∞∑
n=2

n[n(1 + k)− (k + α)]|An| ≤ 1− α,

where

An =
(a)n−1

(c)n−1

mn−1

(n− 1)!

1

F (a; c;m)
an, n ≥ 2.
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Now, by using Lemma 4.6 and 1 + γ (n− 1) ≥ γn, we have

∞∑
n=2

n[n(1 + k)− (k + α)]
(a)n−1

(c)n−1

mn−1

(n− 1)!

1

F (a; c;m)
|an|

≤ 2|τ |(1− β)

∞∑
n=2

n[n(1 + k)− (k + α)]
(a)n−1

(c)n−1

mn−1

(n− 1)!

1

F (a; c;m)

1

1 + γ (n− 1)
,

≤ 2|τ |(1− β)

γF (a; c;m)

∞∑
n=2

[n(1 + k)− (k + α)]
(a)n−1

(c)n−1

mn−1

(n− 1)!
,

=
2|τ |(1− β)

γF (a; c;m)

[
(k + 1)

∞∑
n=2

(a)n−1

(c)n−1

mn−1

(n− 2)!
+ (1− α)

∞∑
n=2

(a)n−1

(c)n−1

mn−1

(n− 1)!

]

=
2|τ |(1− β)

γF (a; c;m)

[
(k + 1)

a

c
mF (a+ 1; c+ 1;m) + (1− α)(F (a; c;m)− 1)

]
.

The last expression is bounded above by 1− α, if (4.6) holds.
This completes the proof of Theorem 4.1. 2

Theorem 4.2. If a, c > 1, m > 0, k ≥ 0, 0 ≤ α < 1, f ∈ P τγ (β), 0 < γ ≤ 1,
0 ≤ β < 1 and the inequality

(k + 1) (F (a; c;m)− 1)− (k + α)

m

(c− 1)

(a− 1)

(
F (a− 1; c− 1;m)− 1− (a− 1)

(c− 1)
m

)(4.8)

≤ γ(1− α)F (a; c;m)

2|τ |(1− β)

is satisfied then Ω(a; c;m)f(z) ∈ k − Sp(α).

Proof. The proof of this theorem is much akin to that of Theorem 4.1 so we omit
the details involved. 2

Theorem 4.3. Let a, c > 1, m > 0, f ∈ P τγ (β); 0 < γ ≤ 1, β < 1, λ > 0 and the
inequality

2|τ |(1− β)

γF (a; c;m)

[
(F (a; c;m)− 1) +

(λ− 1)

m

(c− 1)

(a− 1)

(
F (a− 1; c− 1;m)− 1− (a− 1)

(c− 1)
m

)]
≤ λ

is satisfied then Ω(a; c;m)f(z) ∈ S∗
λ.

Proof. To prove that Ω(a; c;m)f(z) ∈ S∗
λ, from Lemma 4.4 it is sufficient to prove

that
∞∑
n=2

(n+ λ− 1)|An| ≤ λ

where

An =
(a)n−1

(c)n−1

mn−1

(n− 1)!

1

F (a; c;m)
an, n ≥ 2.
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Since f ∈ P τγ (β) using Lemma 4.6 and 1+ γ(n− 1) ≥ γn we need only to show
that

∞∑
n=2

(n+ λ− 1)
(a)n−1

(c)n−1

mn−1

(n− 1)!

1

F (a; c;m)

2|τ |(1− β)

1 + γ(n− 1)
≤ λ.

Now adopting the same technique of Theorem 4.1 and performing simple cal-
culations we obtain the required result. 2

Theorem 4.4. Let a, c,m > 0, f ∈ P τγ (β); 0 < γ ≤ 1, β < 1 and λ > 0 and the
inequality

2|τ |(1− β)

F (a; c;m)γ

[a
c
mF (a+ 1; c+ 1;m) + λ (F (a; c;m)− 1)

]
≤ λ

is satisfied then Ω(a; c;m)f(z) ∈ Cλ.

Proof. The proof is similar to that of Theorem 4.3 therefore we omit the details. 2

Theorem 4.5. Let a, c,m > 0, k ≥ 0, 0 ≤ α < 1 and the inequality

(1 + k)
(a)3
(c)3

m3F (a+ 3; c+ 3;m) + (6 + 5k − α)
(a)2
(c)2

m2F (a+ 2; c+ 2;m)

(4.9)

+ (7 + 4k − 3α)
a

c
mF (a+ 1; c+ 1;m) ≤ 1− α

is satisfied then Ω(a; c;m)f(z) maps f(z) ∈ S of the form (3.1) into k−UCV (α).

Proof. Let f(z) ∈ S be of the form (3.1). In view of Lemma 4.1 it is enough to
show that

T =
∞∑
n=2

n[n(k + 1)− (k + α)]
(a)n−1

(c)n−1

mn−1

(n− 1)!

1

F (a; c;m)
|an| ≤ 1− α.

Now

T =
∞∑
n=2

n[n(k + 1)− (k + α)]
(a)n−1

(c)n−1

mn−1

(n− 1)!

1

F (a; c;m)
|an|

≤
∞∑
n=2

n2[n(k + 1)− (k + α)]
(a)n−1

(c)n−1

mn−1

(n− 1)!

1

F (a; c;m)

=
1

F (a; c;m)

[
(1 + k)

(a)3
(c)3

m3F (a+ 3; c+ 3;m)

+ (6 + 5k − α)
(a)2
(c)2

m2F (a+ 2; c+ 2;m)

+(7 + 4k − 3α)
a

c
mF (a+ 1; c+ 1;m) + (1− α)(F (a; c;m)− 1)

]
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The last expression is bounded above by 1 − α, if (4.9) holds. Thus the proof of
Theorem 4.5 is established. 2

Theorem 4.6. Let a, c,m > 0, k ≥ 0, 0 ≤ α < 1 and the inequality

(4.10) (1+k)
(a)2
(c)2

m2F (a+2; c+2;m)+(3+2k−α)a
c
mF (a+1; c+1;m) ≤ 1−α,

is satisfied, then Ω(a; c;m)f(z) maps f(z) ∈ S of the form (3.1) into k − Sp(α).

Proof. The proof of this theorem is much akin to that of Theorem 4.5. Therefore
we omit the details involved. 2

Theorem 4.7. Let a, c,m > 0, λ > 0 and the inequality

(a)3
(c)3

m3F (a+3; c+3;m)+(λ+5)
(a)2
(c)2

m2F (a+2; c+2;m)+(3λ+4)
a

c
mF (a; c;m) ≤ λ

is satisfied then Ω(a; c;m)f(z) maps f(z) ∈ S of the form (3.1) into Cλ.

Proof. The proof of this theorem is similar to that of Theorem 4.3. Therefore we
omit the details involved. 2

Theorem 4.8. Let a, c,m > 0, λ > 0 and the inequality

(4.11)
(a)2
(c)2

m2F (a+ 2; c+ 2;m) + (λ+ 2)
a

c
mF (a+ 1; c+ 1;m) ≤ λF (a; c;m)

is satisfied then Ω(a; c;m)f(z) maps f(z) ∈ S of the form (3.1) into S∗
λ.

Proof. The proof of this theorem is similar to that of Theorem 4.3. Therefore we
omit the details involved. 2

5. An Integral Operator

In the following theorem, we obtain analogues results in connection with a
particular integral operator G(a, c,m, z) which is defined as follows

(5.1) G(a, c,m, z) =

∫ z

0

Ω(a; c;m)f(t)

t
dt.

Theorem 5.1. Let f be of the form (3.1) is in the class P τγ (β) with a, c,m > 0
and the inequality (4.8) is satisfied then G(a, c,m, z) defined by (5.1) is in the class
k − UCV (α).

Proof. Since

(5.2) G(a, c,m, z) = z +
∞∑
n=2

(a)n−1

(c)n−1

mn−1

n!

1

F (a; c;m)
anz

n.

To prove G(a, c,m, z) ∈ k − UCV (α), adopting the technique of Theorem 4.1 and
performing simple calculatios we obtain the required result. 2



504 Saurabh Porwal

The proof of following Theorems 5.2–5.5 are similar to Theorem 5.1 therefore
we only state the results of these theorems.

Theorem 5.2. Let f be defined by (3.1) in the class S with a, c,m > 0 and the
inequality (4.10) is satisfied then G(a, c,m, z) defined by (5.1) is in k − UCV (α).

Theorem 5.3. Let f be defined by (3.1) in the class S with a, c,m > 0 and the
inequality

(k + 1)
a

c
mF (a+ 1; c+ 1;m) ≤ 1− α

is satisfied then G(a, c,m, z) is in the class k − Sp(α).

Theorem 5.4. Let f be defined by (3.1) in the class S with a, c,m > 0 and the
inequality

a

c
mF (a+ 1; c+ 1;m) ≤ λ

is satisfied then G(a, c,m, z) is in the class S∗(λ).

Theorem 5.5. Let f be defined by (3.1) in the class S with a, c,m > 0 and the
inequality (4.11) is satisfied then G(a, c,m, z) is in the class C(λ).

Remark 5.1. If we put a = c in Theorems 4.1–5.5, then we obtain the correspond-
ing results of Srivastava and Porwal [16].
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