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ABSTRACT. In this paper, we consider the problem of convergence of an iterative algorithm
for a general system of variational inequalities, a nonexpansive mapping and an 7n-strictly
pseudo-contractive mapping. Strong convergence theorems are established in the frame-
work of real Banach spaces.

1. Introduction

In this paper, we are concerned with a general system of variational inequalities
in Banach spaces, which involves finding (z*,y*) € C' x C such that

(L1) A Ny + a7 =y (e —27)) 20, VreC,
(WX, B +y* —a*,jw—y*) >0, Vaed,

where F is a real Banach space, C' C FE is a nonempty closed convex set, A, B : C' —
F are two nonlinear mappings, j € J, J : E — 2 is the dualij:cfy mappin%vand A, 1,
Ais i are positive real numbers for all ¢ = 1,2,--- N with > .7 A\ = >0 g = 1.

Special cases

(I) If E = H is a real Hilbert space, then (1.1) reduces to
N * * * *
(1 2) {(A Zi:l AZAZy +z -y, x—x >

>0,
N * * * *
<#Zz:1/u’lle +y -z, x—y >ZO7
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In particular, if A; = B; for all i = 1,2,--- N, then (1.2) reduces to finding
(z*,y*) € C x C such that

(13) {()\Zl TNAY et -yt e —a*) >0, Vzel,
' 0,

>
> Vo e C.

<MZi:1MzAzx +y -z y T —Y >

Further, if A; = Aforalli=1,2,--- N, A= pu = 1and z* = y*, then (1.3) reduces
to the following classical variational inequality of finding 2* € C' such that

(1.4) (Az*,x —2*) >0, VreCl,

This problem (1.4) is a fundamental problem in Variational Analysis. Many algo-
rithms for solving this problem are projection algorithms. One can see that the
variational inequality (1.4) is equivalent to a fixed point problem. An element
xz* € C is a solution of the variational inequality (1.4) if and only if 2* € C is a
fixed point of the mapping Po(I — AA), where Py is the metric projection of H
onto C, I is the identity mapping and A > 0 is a constant.

(II) If E is still a real Banach space, A; = B; for alli=1,2,--- N, A = p and
x* = y*, then (1.1) reduces to

N
(1.5) (Z NAiz" jlx —z")) >0, Vel

which was considered by Kangtunyakarn [6]. In particular, if A; = A for all ¢ =
1,2,--- )N, then (1.5) reduces to

(1.6) (Az*,j(x —2™)) >0, Vzel,

which was considered by Aoyama et al. [1]. Note that this problem is connected
with the fixed point problem for nonlinear mapping, the problem of finding a zero
point of a nonlinear operator and so on. It is clear that problem (1.6) extends
problem (1.4) from Hilbert spaces to Banach spaces.

Aoyama et al [1] introduced an iterative method for finding an element of the
solution set of variational inequalities for an a-inverse strongly accretive mapping.
To be more precise, they proved the following theorem.

Theorem 1.1. Let E be a uniformly conver and 2-uniformly smooth Banach space
and let C be a nonempty closed conver subset of E. Let Q¢ be a sunny nonerpansive
retraction from E onto C, let a > 0 and let A be an a-inverse strongly accretive
mapping of C into E with S(C,A) = {u € C: (Au,j(u —v)) >0, Yve O} # ¢.
Suppose x1 = x € C and {x,} is given by

(1.7) Tpt1 = Ty + (1 — ) Qc(zn — AnAzy)

for everyn =1,2,---, where {\,} is a sequence of positive real numbers and {ay,}
is a sequence in [0,1]. If {\n} and {a,} are chosen so that \, € [a, %] for some
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a >0 and o, € [b,c] for some b,c with 0 < b < ¢ < 1, then {x,} converges weakly
to some element z of S(C, A), where K is the 2-uniformly smoothness constant of
E.

Recently, Kangtunyakarn [6] further studied the problem of finding a common el-
ement in a finite family of the set of solutions of variational inequalities and the
sets of fixed points of nonexpansive and strictly pseudo-contractive mappings. More
precisely, he proved the following theorem.

Theorem 1.2. Let C be a nonempty closed convex subset of a uniformly convexr and
2-uniformly smooth Banach space E. Let Q¢ be a sunny nonexpansive retraction
from E onto C. For everyi=1,2,--- /N, let A; : C — E be «;-strongly accretive
and L;-Lipschitz continuous with @ = minj<;<n o; and L = maxi<i<n L;. Let
T :C — C be a nonexpansive mapping and S : C — C be an n-strictly pseudo-
contractive mapping with K? < n, where K is the 2-uniformly smooth constant of
E. Assume that F = F(T) N F(S)NNY.,S(C, A;) # ¢, where S(C,A;) = {ueC:
(Aju, j(v —u)) > 0,Yv € C}. Let {z,} be a sequence generated by u,x1 € C' and

Zn = ety + (1 — ¢p) Sy,
Tptl = QuUu + ﬁnxn + ’YnQC(I - )‘le\il aiAi)yna Vn > 1,

where a; € [0,1] for alli = 1,2,--- ,N and {an}, {Bn}, {7} C [0,1] with o, +
Bn +n =1 for alln € N satisfy the following conditions:
(1) imy oo vy =0 and Y2 | @y, = 00;
(il) 0 < a < By Yn, Cny b <b < 1 for some a,b >0, Yn € N and Zfil a; =1;
(iii) 0 < AK? < %
(iv) fozl |41 _an‘rZil |Bn+1 —&LZZL b1 —bnl, 220:1 |en+1 — cpl<00.
Then {x,} converges strongly to zg = Qgu, where Qg is the sunny nonerpansive
retraction of C onto JF.

It is main purpose in this paper to develop algorithms for a general sys-
tem of variational inequalities, a nonexpansive mapping and an n-strictly pseudo-
contractive mapping. Strong convergence theorem is given in a uniformly convex
and 2-uniformly smooth Banach space. Our results improve and develop previously
discussed variational inequalities and related algorithms (see [1,6] and the references
therein).

2. Preliminaries

Let C be a nonempty closed convex subset of a Banach space E and E* the
dual space of E. Let (-,-) denote the pairing between F and E*. The normalized
duality mapping J : E — 28" is defined by

J()={a" € B : (w,a") = |lal*, |l = [lo"[}, VzeE.
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If E = H is a Hilbert space, then J = I, the identity mapping.
Let U = {z € E : ||z|| = 1}. E is said to be uniformly convex if for each
e € (0, 2], there exists 6 > 0 such that for any z,y € U,

le—yll > e implies | “2Y) <10

It is known that a uniformly convex Banach space is reflexive and strictly convex.
E is said to be Gateaux differentiable if the limit

t —
eyl —

t—o00 t

(2.1)

exists for each z,y € U. In this case, E is said to be smooth. It is also said
to be uniformly smooth if the limit (2.1) is attained uniformly for z,y € U. It
is well known that every uniformly smooth Banach space is smooth and if E is
smooth, then J is single-valued which is denoted by j. Also, we define a function
p:]0,00) = [0,00) called the modulus of smoothness of E as follows:

1
p(r) =suwiz(lz +yl —llo—yl) = 1: 2,y € E, 2] = L, [ly|| = 7}

It is well known that E is uniformly smooth if and only if lim,_,¢ @ =0. Let g
be a fixed real number with with 1 < ¢ < 2. Then a Banach space E is said to
be g-uniformly smooth if there exists a constant ¢ > 0 such that p(7) < ¢7? for all

7> 0.

Remark 2.1. Takahashi et al. [11] remind us of the fact that no Banach space is
g-uniformly smooth for ¢ > 2. So, in this paper, we focus on a 2-uniformly smooth
Banach space.

Recall that a mapping S : C' — C' is said to be nonexpansive if

Sz = Syl| < |z —yll, Va,yeC.

In this paper, we use F'(S) to denote the fixed point set of the mapping S.
S is called n-strictly pseudo-contractive if there exists a constant 1 € (0,1) such
that

(2.2) (Tz =Ty, j(z —y)) <z —y|* =0l - T)z — (I - T)y|?

for every z,y € C and for some j(x—y) € J(z—y). It is clear that (2.2) is equivalent
to the following:

(2.3) (I =Tz = (I =Ty, j(x—y) = nl|(I = T)z — (I = T)yl*

for every z,y € C and for some j(z —y) € J(x — y).
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A mapping A : C' — FE is said to be accretive if there exists j(z —y) € J(z —y)
such that

<A13—Ay,](1’—y)> 207 Vl’yyec-

A mapping A : C — FE is said to be a-strongly accretive if there exist j(z —y) €
J(x —y) and a constant o > 0 such that

(Az — Ay, j(z —y)) > allz —y|I*, Va,yeC.

Let D be a subset of C' and @ be a mapping of C' into D. Then @ is said to be
sunny if Q(Qz + t(x — Qx)) = Qz, whenever Qz + t(z — Qz) € C for z € C and
t > 0. A mapping @ of C into itself is called a retraction if Q? = Q. If a mapping
Q of C into itself is a retraction, then Qz = z for all z € R(Q), where R(Q) is the
range of Q. Furthermore, () is a sunny nonexpansive retraction from C onto D if @
is a retraction from C onto D which is also sunny and nonexpansive. A subset D of
C is called a sunny nonexpansive retract of C' if there exists a sunny nonexpansive
retraction from C onto D.

In what follows we shall make use of the following lemmas.

Lemma 2.1.([13]) Let E be a real 2-uniformly smooth Banach space with the best
smooth constant K. Then the following inequality holds:

lz +ylI* < llal® + 20y, Jz) + 2| Ky?, Va,y € E.

Lemma 2.2.([4]) Let C' be a nonempty closed convex subset of a smooth Banach
space and let T : C' — C be a strictly pseudo-contractive mapping. Then the fixed
point set F(T) is a closed and convex subset of E.

Lemma 2.3.([9]) Let {z,} and {y,} be bounded sequences in a Banach space E
and let {B,} be a sequence in [0,1] with 0 < liminf, o £, < limsup,,_, . Bn < 1.
Suppose that xn11 = (1 — Bp)yn + By for all integers n > 0 and

lim sup([|yn+1 = ynll = [T — 2nl)) < 0.
n—oo

Then limy, o0 |yn — x| = 0.

Lemma 2.4.([5]) Let E be a uniformly convex Banach space and B, = {z € E :
llz|| < 7}, r > 0. Then there exists a continuous, strictly increasing and convex
function g : [0,00) — [0,00), g(0) = 0 such that

laz + By +vz|| < allz]* + Bllyl* + yll21* — aBg(llz — yl)

for all z,y,z € B, and all a, 8,7 € [0,1] with a+ 5+~ = 1.

Lemma 2.5.([2]) Let C be a closed convex subset of a strictly convex Banach space
E. Let {T; : i € N} be a sequence of nonexpansive mappings on C. Suppose
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N2, F(T;) # ¢. Let {&,} be a sequence of positive numbers with y o=, & = 1.
Then a mapping T on C defined by Tx = Y oo, &Tiw for v € C is well-defined,
nonexpansive and F(T) = N2, F(T;) holds.

Lemma 2.6.([14]) Assume that {a,} is a sequence of nonexpansive real numbers
such that

an+l S (]- - ’Yn)an + 5na

where {y,} is a sequence in (0,1) and {0,} is a sequence such that

(a) Yopsi Y = 00;

(b) limsup,,_, o % <0 or > 07 |0, < oo.

Then lim,, o oy, = 0.
Lemma 2.7.([16]) Let C be a closed convexr subset of a real uniformly smooth
Banach space E and let T : C — C' be a nonexpansive mapping with a nonempty
fized point F(T). If {x,} C C is a bounded sequence such thatlim,, o ||z, —T 2y, || =
0, then there exists a unique sunny nonerpansive retraction Qp(ry : C — F(T) such
that for any given u € C, Qpryu = limy_o x; and

limsup(u — Qp(ryu, j(n — Qrryu)) <0,

n—oo
where xy = tu+ (1 — t)Txy for every t € (0,1).

Lemma 2.8.([7]) Let C be a closed convex subset of a smooth Banach space E, let
D be a nonempty subset of C and Q be a retraction from C onto D. Then Q is
sunny and nonexpansive if and only if

(u—Qu,j(y — Qu)) <0
forallue C andy € D.

Lemma 2.9. For given (z*,y*) € C x C, where y* = Q¢ (x* — quil wiBix™),
(x*,y*) is a solution of problem (1.1) if and only if x* is a fived point of the mapping
D :C — C defined by

N N N
D(x) = QclQo(x — 1Y pmiBiz) =AY NAiQo(x —pu»_ piBiz)], VzeC,

i=1 i=1 =1

where A, p; > 0 (i =1,2,--- | N) are constants and Q¢ is a sunny nonexrpansive
retraction from E onto C.

Proof. We can rewrite (1.1) as

(y* — (z* — pzilil wiBixz*), j(x —y*) >0, VxeCl.
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By Lemma 2.8, we can check (2.4) is equivalent to

¥ = Qc(y* — /\Zfil NiAiy*),
* * N *
y = QC(x —H Ei:l wiBix )

This completes the proof. O

3. Main Results

Theorem 3.1. Let E be a uniformly convex and 2-uniformly smooth Banach space
with the best smooth constant K, C be a nonempty closed convex subset of E and Q¢

be a sunny nonexpansive retraction from E onto C. For everyi=1,2,--- N, let
A;,B; : C — FE be a;-strongly accretive, L;-Lipschitz continuous and [;-strongly
accretive, M;-Lipschitz continuous with a = mini<;<y a;, L = maxi<i<n L,

B = mini<;<n B; and M = maxi<;<n M;, respectively. Let T : C — C be a
nonexpansive mapping and S : C — C be an n-strictly pseudo-contractive mapping
with K? < 7. Assume that F = F(T)N F(S) N F(D) # ¢, where D is defined as
Lemma 2.9. Let {x,} be a sequence generated by u,z1 € C' and

Zn = Ty + (1 — ¢p) Sy,
Up = QC(I - ﬂzz‘lil ,UiBi)yn’
Tn+1 = Opl + ﬂnl'n + ’YnQC(I - A Zzl\il )\1A1)Un, Vn Z 1,

(3.1)

where, A, p; € [0,1] for all i = 1,2,--- N with Ef\il i = vazl No=1, X\ €

(07 ﬁL e (07 %] and {O‘n}: {ﬁn}f {’Yn}’ {bn}7 {cn} - (0»1) with o, +5n +
Yo =1 for all n € N satisfy the following conditions:

(C1) limp oo, =0 and 307 ay, = 0;
(C2) 0 < liminf, o Bn < limsup,, . Bn < 1;
(C3) >0 [bpg1 — bu| <00 and D07 et — ¢n] < .

Then {x,} converges strongly to T = Qu and (T,Y) is a solution of the problem

(1.1), wherey = Q¢ (T — MZZ-VZI Wi BiT) and Qg is a sunny nonerpansive retraction
of C onto .

Proof. First, we show that F = F(T)NF(S)NF(D) is closed and convex. We know
from Lemma 2.2 and Theorem 4.5.3 of [10] that F(T"), F'(S) are closed and convex.

Next, we show that F(D) is closed and convex. Indeed, from the a;-strongly
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accretivity and the L;-Lipschitz continuity of A; (1 =1,2,--- , N), we have
N N N
<Z NiAir — Z ANiAiy,j(x —y)) = Z AilAiz — Aiy, j(z —y))
i=1 i=1 i=1

N
>3 Nagllz — g2
=1

N
> ;Ai‘ggmmm?
a N
>3 D AillAie — Agyl?
N v
(3.2) > 5l ; Nidix — ; XAy

It follows from (3.2) and Lemma 2.1 that for all z,y € C, we have
N N
1= 2D XAz — (T =2 NAyl”
i=1 i=1

N N
=z —y=AO_ Nidir =Y NiAw)|?
=1 =1

N N
< o=yl =20 Ndiz — 3 Aday, (o — )

i=1 =1

N n
F 2K Ndir — = NAy|?
=1

i=1

N N
(0%
<z —yl* - 2273 D XA =Y MiAyl?
=1 =1
N N
F2K2N > NAir = > Ay
=1 =1
a N N
= llz = yl* = 2M(55 = K*NII D Midiz = > XAyl
=1 i=1
(3.3) <z -yl

This shows that [ — A Zf\il A;A; is a nonexpansive mapping. So is [ —p Zf\il i B;.
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From Lemma 2.9, we can see that

N N N
D=QclQc(I —pY wiBi) =AY NAQc(I — 1) piBi)]
=1 =1

N - N
= QoI =AY NA)Qe(I — 1y iBy).
=1 =1

So, D is nonexpansive. This shows that F = F(T) N F(S) N F(D) is closed and
convex.

Letting z* € F, we obtain from Lemma 2.9 that

N N N
v =QclQe(r” — Y piBia") =AY NAQe(e® —p > piBia®).
i=1 =1 i=1

Putting y* = Q¢(z* — uzi]\il wiBix*), we see that z* = Q¢ (y* — )\Zf\il A Aiy*).
Since S is an n-strictly pseudo-contractive mapping, we have
ll2n — x*HQ = llzn — 2" + (1 — ) (S — xn)HQ
<l — 212+ 2(1 — ) {(Szn — 0, (T — 27))
+2K2(1 — ¢,)?||Szp — z0|)?
= ||@, — x*HQ =2(1 = ep)(( = S)xy — (I = S)2", j(zn — 27))
+2K%(1 = ¢u)?(|(1 = S)znl®
< lwn =2 =21 = ea)nl| (1 = S)zn — (I = S)a™|?
+2K%(1 = ¢)?(|(I = S)znl®
= |lzn —2*[* = 2(1 = u)*(n — K?)||(I = S)a?
(3.4) < ln — =%
From (3.3) and (3.4), we obtain

N N N
1Qc(un =AD" NiAiug) — ™| = Qo (un — XY NiAjun) — Qoly” = AD_ Nidiy™)|
=1

i=1 i=1
< lun — 97|

N N

= Qc(yn — 1Y miBiyn) — Qe (a* — Y piBiz®)||
i=1 i=1

< lyn — 27|

= [|bn(zn — %) + (1 = bp)(T2n — z7)||

< bpllzn — 2| + (1 = bp)l|2n — 27|

S bnllzn — || + (1 = bn)llzn — 27|

(3.5) = ||xn — =¥
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It follows from (3.5) that
N
|znt1 — 2| = llanu + Brnzn + Qe (I — )\Z NiA)u, — x|
i=1
N
< apllu =2 + Bullzn — 2™ + Wl Qc (un — /\Z Aidiun) — 2|
i=1
< apllu — 2" + Bullzn — 2"l + vnllzn — 27
= anflu =z + (1 = an)|zn — 27

< max{[ju — 2], 1 — 2"[|},

which implies that the sequence {x,} is bounded. So are {u,},{yn}, {zn}, {S2n}
and {Tz,}. From (3.1), we have

2041 = znll = llen+1Zn+1 + (1 = cp41)SZTpt1 — cnn — (1 = ¢) Sz |
= |lent1(Tnr1 — 2n) + (Cng1 — ) Tn
+ (1= cn+1)(STny1 — Sn) + (e — Cng1) Szy|
< lent1(@ng1 — 2n) + (1 = cny1) (STpt1 — Sy ||

(3.6) +[en+1 = enlll@nll + [en — cnga || ST .
Since S is an n-strictly pseudo-contractive mapping, we have

len+1(Tnt1 — n) + (1 = cny1) (STpgr — Sﬂvn)”2

= [|Znt1 = 2n = (1= cnp) (I = S)apy1 — (I = S)a,)|?

< Nlwntr = 2all* = 2(1 = o1 (I = S)anr — (L = S)an, j(@nt1 = Tn))
+2K%(1 = 1) |( = S)znir — (I = S)a?

< rnsr — 2l =200 cus )l (T — S)nss — (I — )
+2K%(1 = cpa1)*I(1 = S)zpr — (I = S)an|?

< Nmsr — 2ol — 21— ensn)? (0 — K2 = S)zusr — (I - S)za?

(37 < llwns — @l
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From (3.6) and (3.7), we obtain

N N
HQC(I - )‘Z )\iAi)un+1 - QO(I - )\Z )\ZAz)unH

=1 i=1

< ungr — ual|

N N
=Qc(I = Y piBi)yns1 — QeI — Y piBi)yal

i=1 i=1
< [Yyn+1 = yull
= [[bpt1Zn+1 + (1 = bpg1)Tzng1 — b — (1= by) Tz |
S bntal|Tnrr — zull + [bng1 = bulllzall + (1 = bpy) [T 2011 — T24|
+ ‘bn—O—l - bn|||Tan
< bnsillzngr = zoll + [bnt1 = balllznll + (1 = bpsy1) |2n+1 — 2al|
+ ‘anrl - anHT'an
< bntal|Tnrr — zull + [bny1 — bulllzall + (1 = bny)[llen1(Tng1 — )
+ (1= 1) (Sns1 = San) || + [ent1 — eall|@nll + |en — cnga| | Sznl]
+ b1 — b ||| T2
S bptillznsr — zol + [bpg1 = balllznll + (1 = bpg1)[[2n41 — 2o |
+ lent1 — enlllzall + len — cppa| |5zl 4 [bngr — [T 20 |

= |Tnt1 — @l + [bns1 = bnll|znll + lent1 — calllznll

(3.8) + len = cng1l[1STall + b1 — bul I 720 |-
Next, we claim that lim,, o0 ||Tn41 —2,| = 0. Putting ¢,, = % for each
n > 1, we see that
(3.9) Tpt1 = (L= Bp)tn + Bnxn, Vn>1.
From
tn+1 - tn
_ Qnpit + Yn1Qc(I — A Zivzl AiAi)un 1 _ anlU +9mQc( — A Ef\il XiAi)un,
1- 6n+1 1- ﬁn
« N « N
n+1 n
= ﬁ(u — QC(I - )\Z )\iAi)UnJrl) + 1-3 (Qc(I — )\Z)\iAi)un — u)
- Pn+1 i=1 TFn i=1

N N
+ QoI =AY NAunpr — QoI =AY \Ay)un,

=1 i=1
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we have
o N
— < _Sntl gy 7_ A
[tn+1 —tall < 1— Bt [u—Qc( )‘;)‘l i)Unt |
o N
+ ﬁ”@c(l =AY Ay — ull
" i=1
N N
(3.10) QeI = XD NAunsr — QoI = XY Nidi)uy|.

=1 i=1

Substituting (3.8) into (3.10), we obtain

N
«
tnat — toll = |1 Zne1 — znl| < —2—JJu — I—-X N A g,
[tnt1 = tall = [[Tnt | 17Bn+1|| Qc( ; Jtn 1]
o N
+ 175 10 - A NiAi)u, —
n i=1

+ [bnt1 = ball[zall + |entr — cnl|2a]|
+ len = enga[[[Sznll 4 [bnt1 = bul[[T2n]-

It follows from the condition (C1)-(C3) that

lim Sup((ftn 1 = tnll = [|#n1 = 2n][) < 0.
From Lemma 2.3, we have
(3.11) nh_)rr;o It — 2n] = 0.

Thanks to (3.9), we see that
Tn+l — Tn = (1 - ﬁn)(tn - $n),
which combines with (3.11) yields that

(3.12) nh_)n;o |Xnt1 — znl = 0.
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From (3.4), (3.5) and Lemma 2.4, we have

1 — "2

N
= ant + Bty + mQc(I = X NAi)uy — 27|?

i=1

N
< anllu =& |* + Bullen — 27 +9llQc (I =AY Nidiuy — "I

i=1
N
— Barmgr(1Qc (I =AY~ NiAi)uy — )

i=1
< apllu =z + Bullzn — x*||2 + Ynllon(zn — %) + (1 = bp) (T2n — x*)HQ

N
— Barmgr(1Qc (I =AY~ NiAi)uy — )

i=1
< apllu — ™| + Bullwn — 27|

+ 7 bnllzn — 2|7 + (1= ba)llzn — 2||* = ba(1 = ba)g2(llon — Tzal))]

N
= Bong1(1Qc (I = XD~ NiAi)uy — 2n]|)

i=1
< ol — 2|7 + Bullwn — 2"

+ YnlbnllTn — x*HQ + (1 = bp){l|zn — x*”Q —2(1 - Cn)2(77 - K2)||S$n - CCn”Z}

N
—bn(1=ba)ga([@n = Tzal)] = Burngr (1Qc (T =AY XiAi)un — za))

=1
< apllu - x*HQ + |77 — x*”Q — 279, (1 = by ) (1 — Cn)Q(ﬂ - K2)”S$n - anQ
- ann(l - bn)g2(”xn - TZn”) - Bn7n91(||Dyn - fn”)

It implies that

29 (1 = b,) (1 — Cn)2(77 - KQ)”an - xn”Q + Ynbn (1 = bn)g2([|2n — Tzn))
+ Bu g1 (|1 Dyn — zn )
< ollu =2 + (ln — 2] + ns1 — 2 nss — 7l

From (3.12), restrictions (C1) and (C2), we have

lim ||Sz, — z,|| = lim g1(]|Dyn — zx|)
n— oo n— o0
= lim go(||xn — Tznll)
n—oo

(3.13) =0.
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From the properties of g; and g2, we have
(3.14) lim ||Dy, — x,|| = lim |z, — Tz,| = 0.
n— oo n— oo
From (3.13) and the definition of z,, we have
lm |z, — 2n| = Im |lepzn + (1 — cp)Szp — zy|
n— oo n—oo
= nh_{go(l —cn)|STn — zn |
(3.15) =0.
From (3.14) and the definition of y,,, we have
lim ||y, — x| = Um ||bpx, + (1 —0,)T 2, — 20|
n—oo n—oo
= nll)ngo(l = by)l|an — Tz
(3.16) =0.
Since
1T%n — @nll < [Ton = Tanl| + | T2n — 0|
< lzn — 2ol + |1 T2n — 24l
(3.14) and (3.15), we have
(3.17) nlgrgo T2, — z,] = 0.

Define the mapping G : C' — C by

N N
Gr=aQc(I -\ NA)Qc(I —p Y piBi)w + BTz + Wz, Ve C,
=1 i=1

where Wz = cx + (1 —¢)Sz for all z € C and o, 8,7,c € [0,1] with o+ 8+~ = 1.
We show that W is a nonexpansive mapping. Let z,y € C'. Then we have
[Wa = Wyl|* = ||(cz + (1 = ¢)Sz) — (cy + (1 = ¢)Sy)||?
=z —y—(1—e)((I =Sz~ (I-S)y)|?
<z =yl =21 = e)((I = )z — (I = S)y, j(x —y))
+2K%(1 = ¢)?|(I = S)z — (I - S)y|®
<z =yl =201 = emll(I = S)z — (I = S)y|?
+2K%(1 = )?|(I = S)z — (I = S)y|I®
<z =1 =2(1 = ¢)*(n = K*)||(I = S)z — (I = S)y]|?
<lz =yl
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Therefore, W is a nonexpansive mapping. It is easy to see that the mapping G is
nonexpansive. From Lemma 2.5 and the definition of G, we have

N N
F(G)=F(Qc( - A Z ANidi)Qc (I — p Z 1 A:)) O F(T) N F(S)

= F(D) N F(T) N F(S)

=J.

On the other hand, we have

lxn — Gaynl| = ||2n — (eDzp + BT + YWay)||
< allzy — D || + Bllan — Tapl| + ][z — Way ||
< allzn — Dap|| + Bllzn — Tyl + (1 — )|z, — S|
< a([lzn — Dynll + [ Dyn — Dxnll) + Bllzn — Tanll + (1 = ¢)|lzn — Saa|

< a([|zn = Dynll + lyn — zull) + Bllzn — Tznll + (1 = c)||lzn — Szp.
From (3.13), (3.14), (3.16) and (3.17), we have

(3.18) lim ||z, — Gz,| = 0.

n—oo

Let z; be the fixed point of the contraction z — tu+(1—¢)Gz, where t € (0,1). That
is, z; = tu+ (1 — t)Gz;. By Lemma 2.7, there exists a unique sunny nonexpansive
retraction Qp(g) : C — F(G) such that lim; 0 2; = Qpyu = Qyu =T and

(3.19) lim sup(u — Z, j(z, — Z)) < 0.

n—oo

Finally, we show that lim, ., =, = Z.
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Observe that

N

|2ns1 = Z* = lant + Bz + 1 Qc (I = XD Aidi)uy — T|?
=1
N

= <anu + ﬁnmn + 'YnQC(I - )‘Z )‘zAz)un - fa.j(anrl - E»
=1

= ap(u _Evj(xn—&-l _f» + ﬁn<$n _fvj(xn—&-l _E»

N
+ 9 (Qc(I = A NAuy — T, j(2n1 — T))
i=1
< an(u =7, j(@nt1 — T)) + Bullon — Z|2n1 — 7
N

+ 1l Qe =AY NiAi)un — Tll[[@ns1 — |
i=1

< on(u =7, j(Tnt1 — ) + Bullon — Tl 2ns1 — 7|

+ Ynllzn — Zll[|2nt1 — 7
= an(u—7,j(zn41 — T)) + (1 — an)llzn — Z([|zne — 7
1—a,

< an(u—7,j(tni1 — 7)) + (ln = Z1* + l2nsr —7),

which implies that
Jnst =72 < (1= an) e — 7|2 + 200 (u = 7, (20t — 7).

From the restriction (C1), (3.19) and Lemma 2.6, we obtain that lim,,_, ||z, —T| =
0. This completes the proof. o

It is well known that the smooth constant K = % in Hilbert spaces. From Theorem
3.1, we can the following result immediately.

Corollary 3.1. Let H be a real Hilbert space, C' be a nonempty closed convex
subset of H. For everyi = 1,2,--- N, A;, B; : C — H be «;-strongly monotone
mapping and L;-Lipschitz continuous and B;-strongly monotone mapping and M;-
Lipschitz continuous with o = min<;<ny o, L = maxj<;<n L;, f = minj<;<n B;
and M = maxi<;<n M;, respectively. Let T : C = C be a nonerpansive mapping
and S : C' = C be an n-strictly pseudo-contractive mapping with % < mn. Assume
that F = F(T)NF(S)NF(D) # ¢, where D is a mapping from C into itself defined
by D(x) = Po[Po(z—p Y i, miBiw) =AY L NiAiPo(w—p>2 L, piBix)] for every
x € C and Pc is a metric projection of H onto C. Let {x,} be a sequence generated
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by u,x1 € C and

Zn = Ty + (1 — cp) Sy,
Un = PC(I - ,U'Z,fil ,uiBi)Zna
Tnt1 = Qptt + By + Y Po(l — A Zil MNiA)yn, Yn>1,

where i, p; € [0,1] for alli =1,2,--- , N with Zf;l i = Zivzl Xi=1,xe (0, i—%‘],
w € (0, ]\2/[—%] and {an}, {Bn}s {1 }.{bn}, {cn} C (0,1) with a + Bn +yn = 1 for all
n € N satisfy the following conditions:

(C1) im0ty = 0 and D07 | = 005

(C2) 0 < liminf, o Bn < limsup,, , Bn < 1;

(C3) S0 |bnt1 — bp| < o0 and Y07 |ent1 — cn| < 0.

Then {x,} converges strongly to T = Psu and (T,g) is a solution of the problem
(1.2), where § = Po(T — MZ?LI i BiT).

Remark 3.1. (1) Since LP for all p > 2 is uniformly convex and 2-uniformly
smooth, we see that Theorem 3.1 is applicable to LP for all p > 2.

(2) Aoyama’s algorithm (1.7) has weak convergence for solving the variational
inequality (1.6) and Kangtunyakarn’s algorithm (1.8) has strong convergence for
solving the variational inequality (1.5). However, our explicit method (3.1) have
strong convergence for solving the general system of variational inequalities (1.1).

4. Applications

The computation of common fixed points is important in the study of many
real world problems including the inverse problems, the split feasibility problems
and the convex feasibility problems in signal processing and image reconstruction
(see [3, 12] and the references therein).

Lemma 4.1.([15]) Let E be a smooth Banach space and let C' be a nonempty convex
subset of E. Given an integer N > 1, assume that S; : C — C is an n;-strict
pseudo-contractive mapping for each 1 < i < N such that N, F(S;) # ¢. Assume
that {n;}Y., is a positive sequence such that Zivzl m = 1. Then F(Zfil Si) =
ﬁij\;1F(Si)'

Theorem 4.1. Let E be a uniformly convex and 2-uniformly smooth Banach space
with the best smooth constant K, C' be a nonempty closed convez subset of E and Q¢

be a sunny nonexrpansive retraction from E onto C. For everyi = 1,2,--- N, let
A;,B; : C — E be ay-strongly accretive, L;-Lipschitz continuous and B;-strongly
accretive, M;-Lipschitz continuous with @ = minj<;<y oy, L = maxij<i<ny Li,

B = minj<;<n fi and M = maxi<;<ny M;, respectively. Let T; : C — C be a
nonexpansive mapping and S; : C — C be an n;-strictly pseudo-contractive map-
ping with K2 < n for each 1 <i < N, where n = min{n; : 1 <i < N}. Assume
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that F = ML F(T;) NN;_1 F(S;) N F(D) # ¢, where D is defined as Lemma 2.9.
Let {x,} be a sequence generated by u,x; € C and

Zn =y + (1 —¢p) Zi\il (i Sitn,

Yn = bty + (1= by) | €T3z,

tn = QoI = w321y 1iBi)yn,

Tnt1 = Qptt + Bp®n + Qo (I — A Zf\il MNiA)up, Yn>1,

where A;, i, &,¢ € [0,1] for all i = 1,2,--- | N with Zfil A = Zilui =

YL & =0 G =1, A€ (0, g85z], 1 € (0, i) and {an}, {Bn}, {1}, {en},

{bn} C (0,1) with ap, + B + v = 1 for all n € N satisfy the following conditions:
(C1) limy—y o0 @y, = 0 and > 52y = 00;

(C2) 0 < liminf, o By < limsup,,_, fn < 1;

(C3) S0 ) [bps1 — by| <00 and Y07 [cny1 — ¢ < 0.

n=1
Then {x,} converges strongly to T = Qsu and (T,7) is a solution of the problem

(1.1), wherey = Qo (T — p Ef\il wiB;iT) and Q¥ is a sunny nonerpansive retraction
of C onto F.

Proof. Putting S = Zivzl (;S;, we see that S is a n-strictly pseudo-contractive
mapping, where n = min{n; : 1 < < N}. Indeed, we have the following:
(Sz = Sy, j(z —y)) = Q(S1z — S1y,j(x — y)) + (S22 — Sa2y, j(z — y))
+ -+ (N (Snve — Sny, (T —y))

<Gz =yl* = mlI = Sz — (I - S)yl?)
+ Gl = yl? = nall(I = Sa)a — (I = Sa)yl?) + -
+nv(llz = yll* = anl[(I = Sv)z = (I = Sn)yll*)
<z —yl* = (Gl = Sz — (I - Syl
+ Gll(T = Sa)z — (I — Sa)ylI> + - -
+ NI = Sn)z = (I = Sn)yl?)
<|lz = ylI> =l = S)z — (I = S)y|*.

This proves that S = Ziil (;S; is a n-strictly pseudo-contractive mapping. From
Lemma 2.5, 4.1 and Theorem 3.1, we can conclude the desired results. O
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