• Title/Summary/Keyword: Tensor Space

Search Result 178, Processing Time 0.026 seconds

The 𝒲-curvature Tensor on Relativistic Space-times

  • Abu-Donia, Hassan;Shenawy, Sameh;Syied, Abdallah Abdelhameed
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.185-195
    • /
    • 2020
  • This paper aims to study the 𝒲-curvature tensor on relativistic space-times. The energy-momentum tensor T of a space-time having a semi-symmetric 𝒲-curvature tensor is semi-symmetric, whereas the whereas the energy-momentum tensor T of a space-time having a divergence free 𝒲-curvature tensor is of Codazzi type. A space-time having a traceless 𝒲-curvature tensor is Einstein. A 𝒲-curvature flat space-time is Einstein. Perfect fluid space-times which admits 𝒲-curvature tensor are considered.

STUDY OF P-CURVATURE TENSOR IN THE SPACE-TIME OF GENERAL RELATIVITY

  • Ganesh Prasad Pokhariyal;Sudhakar Kumar Chaubey
    • Honam Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.316-324
    • /
    • 2023
  • The P-curvature tensor has been studied in the space-time of general relativity and it is found that the contracted part of this tensor vanishes in the Einstein space. It is shown that Rainich conditions for the existence of non-null electro variance can be obtained by P𝛼𝛽. It is established that the divergence of tensor G𝛼𝛽 defined with the help of P𝛼𝛽 and scalar P is zero, so that it can be used to represent Einstein field equations. It is shown that for V4 satisfying Einstein like field equations, the tensor P𝛼𝛽 is conserved, if the energy momentum tensor is Codazzi type. The space-time satisfying Einstein's field equations with vanishing of P-curvature tensor have been considered and existence of Killing, conformal Killing vector fields and perfect fluid space-time has been established.

Creating and Transforming a Second-Rank Antisymmetric Field-Strength Tensor Fαβ in Minkowski Space using MATHEMATICA

  • Kim, Bogyeong;Yun, Hee-Joong
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.131-142
    • /
    • 2020
  • As the laws of physics are expressed in a manner that makes their invariance under coordinate transformations manifest, they should be written in terms of tensors. Furthermore, tensors make manifest the characteristics and behaviors of electromagnetic fields through inhomogeneous, anisotropic, and compressible media. Electromagnetic fields are expressed completely in tensor form, Fαβ, which implies both electric field ${\overrightarrow{E}}$ and magnetic field ${\overrightarrow{B}}$ rather than separately in the vector fields. This study presents the Mathematica platform that generates and transforms a second-rank antisymmetric field-strength tensor Fαβ and whiskbroom pattern in Minkowski space. The platforms enhance the capabilities of students and researchers in tensor analysis and improves comprehension of the elegant features of complete structure in physics.

STUDY ON THE JOINT SPECTRUM

  • Lee, Dong Hark
    • Korean Journal of Mathematics
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 2005
  • We introduce the Joint spectrum on the complex Banach space and on the complex Hilbert space and the tensor product spectrums on the tensor product spaces. And we will show ${\sigma}[P(T_1,T_2,{\ldots},T_n)]={\sigma}(T_1{\otimes}T_2{\otimes}{\cdots}{\otimes}T_n)$ on $X_1{\overline{\otimes}}X_2{\overline{\otimes}}{\cdots}{\overline{\otimes}}X_n$ for a polynomial P.

  • PDF

DECOMPOSITION OF SPECIAL PSEUDO PROJECTIVE CURVATURE TENSOR FIELD

  • MOHIT SAXENA;PRAVEEN KUMAR MATHUR
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.5
    • /
    • pp.989-999
    • /
    • 2023
  • The aim of this paper is to study the projective curvature tensor field of the Curvature tensor Rijkh on a recurrent non Riemannian space admitting recurrent affine motion, which is also decomposable in the form Rijkh=Xi Yjkh, where Xi and Yjkh are non-null vector and tensor respectively. In this paper we decompose Special Pseudo Projective Curvature Tensor Field. In the sequal of decomposition we established several properties of such decomposed tensor fields. We have considered the curvature tensor field Rijkh in a Finsler space equipped with non symmetric connection and we study the decomposition of such field. In a special Pseudo recurrent Finsler Space, if the arbitrary tensor field 𝜓ij is assumed to be a covariant constant then, in view of the decomposition rule, 𝜙kh behaves as a recurrent tensor field. In the last, we have considered the decomposition of curvature tensor fields in Kaehlerian recurrent spaces and have obtained several related theorems.

Structure Eigenvectors of the Ricci Tensor in a Real Hypersurface of a Complex Projective Space

  • Li, Chunji;Ki, U-Hang
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.463-476
    • /
    • 2006
  • It is known that there are no real hypersurfaces with parallel Ricci tensor in a nonflat complex space form ([6], [9]). In this paper we investigate real hypersurfaces in a complex projective space $P_n\mathbb{C}$ using some conditions of the Ricci tensor S which are weaker than ${\nabla}S=0$. We characterize Hopf hypersurfaces of $P_n\mathbb{C}$.

  • PDF

Real Hypersurfaces in Complex Hyperbolic Space with Commuting Ricci Tensor

  • Ki, U-Hang;Suh, Young-Jin
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.433-442
    • /
    • 2008
  • In this paper we consider a real hypersurface M in complex hyperbolic space $H_n\mathbb{C}$ satisfying $S{\phi}A\;=\;{\phi}AS$, where $\phi$, A and S denote the structure tensor, the shape operator and the Ricci tensor of M respectively. Moreover, we give a characterization of real hypersurfaces of type A in $H_n\mathbb{C}$ by such a commuting Ricci tensor.

GENERALIZED SASAKIAN SPACE FORMS ON W0-CURVATURE TENSOR

  • Tugba Mert ;Mehmet Atceken
    • Honam Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.215-230
    • /
    • 2023
  • In this article, generalized Sasakian space forms are investigated on W0 -curvature tensor. Characterizations of generalized Sasakian space forms are obtained on W0-curvature tensor. Special curvature conditions established with the help of Riemann, Ricci, concircular, projective curvature tensors are discussed on W0-curvature tensor. With the help of these curvature conditions, important characterizations of generalized Sasakian space forms are obtained. In addition, the concepts of W0-pseudosymmetry and W0 -Ricci pseudosymmetry are defined and the behavior according to these concepts for the generalized Sasakian space form is examined.

A NOTE ON CONTACT CONFORMAL CURVATURE TENSOR

  • Pak, Jin-Suk;Shin, Yang-Jae
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.2
    • /
    • pp.337-343
    • /
    • 1998
  • In this paper we show that every contact metric manifold with vanishing contact conformal curvature tensor is a Sasakian space form.

  • PDF

CURVATURE TENSOR FIELDS ON HOMOGENEOUS SPACES

  • Park, Joon-Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.825-832
    • /
    • 2011
  • In this paper, we make a minute and detailed proof of a part which is omitted in the process of obtaining the value of the curvature tensor for an invariant affine connection at the point {H} of a reductive homogeneous space G/H in the paper 'Invariant affine connections on homogeneous spaces' by K. Nomizu.