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Abstract. It is known that there are no real hypersurfaces with parallel Ricci tensor in

a nonflat complex space form ([6], [9]). In this paper we investigate real hypersurfaces

in a complex projective space PnC using some conditions of the Ricci tensor S which are

weaker than ∇S = 0. We characterize Hopf hypersurfaces of PnC.

0. Introduction

An n-dimensional complex space form Mn (c) is a Kaehlerian manifold of con-
stant holomorphic sectional curvature c.

As is well known, complete and simply connected complex space forms are
isometric to a complex projective space PnC, a complex Euclidean space Cn or a
complex hyperbolic space HnC according as c > 0, c = 0 or c < 0.

Let M be a real hypersurface of Mn (c) . Then M has an almost contact met-
ric structure (φ, ξ, η, g) induced from the complex structure J and the Kaehlerian
metric of Mn (c) (for details see section 1). The structure vector field ξ is said
to be principal if Aξ = αξ is satisfied, where A is the shape operator of M and
α = η (Aξ) . A real hypersurface is said to be a Hopf hypersurface if the structure
vector field ξ of M is principal.

Tagaki ([16], [17]) classified all homogeneous real hypersurfaces of PnC as six
model spaces which are said to be A1, A2, B, C, D and E, and Cecil-Ryan ([2]) and
Kimura ([11]) proved that they are realized as the tubes of constant radius over the
Kaehlerian submanifolds. Namely, he proved the following:

Theorem T ([16]). Let M be a homogeneous real hypersurface of PnC. Then M
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is a tube of radius r over one of the following Kaehlerian submanifolds:

(A1) a hyperplane Pn−1C, where 0 < r < π
2 ,

(A2) a totally geodesic PkC (1 ≤ k ≤ n− 2), where 0 < r < π
2 ,

(B) a complex quadric Qn−1, where 0 < r < π
4 ,

(C) P1C× P(n−1)/2C, where 0 < r < π
4 and n(≥ 5) is odd,

(D) a complex Grassmann G2,5C, where 0 < r < π
4 and n = 9,

(E) a Hermitian symmetric space SO(10)/U(5), where 0 < r < π
4 and n = 15.

Also Berndt([1]) classified all Hopf real hypersurfaces of HnC with constant
principal curvatures as follows:

Theorem B ([1]). Let M be a real hypersurface of HnC. Then M has constant
principal curvatures and ξ is principal if and only if M is locally congruent to one
of the following:

(A0) a self-tube, that is, a horosphere,

(A1) a geodesic hypersphere or a tube over a hyperplane Hn−1C,

(A2) a tube over a totally geodesic HkC(1 ≤ k ≤ k − 2),

(B) a tube over a totally real hyperbolic space HnR.

We denote by ∇ and S be the Levi-Civita connection and the Ricci tensor
of M . There are many studies about Ricci tensors of real hypersurfaces ([3], [4],
[5], [6], [7], [8], [9], [12], [15], etc.). Very important fact is that there are no real
hypersurfaces with parallel Ricci tensor in Mn (c) , n ≥ 2, c 6= 0 ([6], [9], [10]). So
it is natural to investigate real hypersurfaces M by using some conditions about
derivative of S which are weaker than ∇S = 0. For each Hopf hypersurface M in
a nonflat complex space form, the structure vector field ξ is an eigenvector of the
Ricci tensor S of M, and the scalar g (∇ξξ,∇ξξ) vanishes identically on M. So it is
natural to consider a problem that if Sξ = g(Sξ, ξ)ξ holds or g (∇ξξ,∇ξξ) = const.,
is M a Hopf hypersurface? Nagai and one of the present authors ([8]) proved the
following which gives a partial answer to this problem:

Theorem KN ([8]). Let M be a real hypersurface in a complex projective space
PnC. Then the following are equivalent:

(1) M is a Hopf hypersurface in the ambient space PnC.

(2) The structure vector ξ is an eigenvector with constant eigenvalue of the Ricci
tensor S of M and ∇φ∇ξξS = 0 holds.

The purpose of this paper is to establish the following:

Theorem. Let M be a real hypersurface of PnC. The the following are equivalent:
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(1) M is a Hopf hypersurface in PnC.

(2) Sξ = g (Sξ, ξ) ξ and ∇φ∇ξξS = 0 hold, and g (∇ξξ,∇ξξ) is constant on M .

1. Preliminaries

Let M be a real hypersurface immersed in a complex space form (Mn (c) , G)
with almost complex structure J and the Kaehler metric G of constant holomorphic
sectional curvature c, and let N be a unit normal vector field on M . The Rieman-
nian connection ∇̃ in Mn (c) and ∇ in M are related by the following formulas for
any vector fields X and Y on M :

∇̃Y X = ∇Y X + g (AY,X) N, ∇̃XN = −AX,

where g denotes the Riemannian metric on M induced from that G of Mn (c) and
A is the shape operator in the direction of N in Mn (c). For any vector field X
tangent to M , we put

JX = φX + η (X)N, JN = −ξ.

Then we may see that the structure (φ, ξ, η, g) is an almost contact metric structure
on M , namely, we have

φ2X = −X + η (X) ξ, g (φX, φY ) = g(X,Y )− η (X) η (Y ) ,

η (ξ) = 1, φξ = 0, η (X) = g (X, ξ) ,

for any vector fields X and Y on M .
From the fact ∇̃J = 0 and above equations we verify that

(1.1) (∇Xφ)Y = η(Y )AX − g(AX, Y )ξ, ∇Xξ = φAX.

Since the ambient manifold is of constant holomorphic sectional curvature c, we
have the following Gauss and Codazzi equations respectively:

R (X,Y ) Z =
c

4
{g(Y,Z)X − g(X, Z)Y + g(φY, Z)φX − g(φX,Z)φY(1.2)

−2g(φX, Y )φZ}+ g (AY, Z) AX − g(AX, Z)AY,

(1.3) (∇XA)Y − (∇Y A)X =
c

4
{η (X)φY − η (Y ) φX − 2g (φX, Y ) ξ}

for any vector fields X, Y and Z on M , where R denotes Riemann-Christoffel
curvature tensor of M . We shall denote the Ricci tensor of type (1.1) by S. Then
it follows from (1.2) that

(1.4) SX =
c

4
{(2n + 1)X − 3η (X) ξ}+ hAX −A2X,
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where h = trace A. Further, using (1.1), we obtain

(∇XS)Y = −3
4
c{g(φAX, Y )ξ + η (Y )φAX}+ (Xh)AY(1.5)

+(hI −A) (∇XA) Y − (∇XA)AY,

where I is the identity map.
In what follows, to write our formulas in convention forms, we denote by α =

η (Aξ) , β = η
(
A2ξ

)
, and for a function f we denote by ∇f the gradient vector

field of f .
We put U = ∇ξξ, then U is orthogonal to the structure vector field ξ. Thus it

is, using (1.1), seen that

(1.6) φU = −Aξ + αξ,

which enables us to obtain g (U,U) = β−α2. Thus we easily see that ξ is a principal
curvature vector, that is, Aξ = αξ if and only if β − α2 = 0.

Now differentiating (1.6) covariantly along M and using (1.1), we find

η (X) g(AU +∇α, Y ) + g(φX,∇Y U)(1.7)
= g((∇Y A) X, ξ)− g (AφAX, Y ) + αg (AφX, Y ) ,

which shows that

(1.8) (∇ξA) ξ = 2AU +∇α,

because of (1.3). From (1.7) we also have

(1.9) ∇ξU = 3φAU + αAξ − βξ + φ∇α,

where we have used (1.1).
If β − α2 6= 0, then we can put

(1.10) Aξ = αξ + µW,

where W is a unit vector field orthogonal to ξ. Then by (1.1) we see that U = µφW
and hence g (U,U) = µ2, and W is also orthogonal to U . Thus, we see, making use
of (1.1) and (1.10), that

µg (∇XW, ξ) = g (AU,X) ,(1.11)
g (∇Xξ, U) = µg (AW,X) .(1.12)
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2. Structure eigenvectors of the Ricci tensor

Let M be a real hypersurface of a complex space form Mn (c) , c 6= 0. Now,
suppose that the structure vector ξ is an eigenvector of the Ricci tensor, that is,

(2.1) Sξ = g (Sξ, ξ) ξ.

We then have by (1.4)

(2.2) A2ξ = hAξ + (β − hα) ξ.

In the following we assume that µ 6= 0 on M , that is, ξ is not a principal curvature
vector field and we put Ω = {p ∈ M | µ (p) 6= 0}. Then Ω is an open subset of M ,
and from now on we discuss our arguments on Ω unless otherwise stated.

From (1.10) and (2.2) we verify that

(2.3) AW = µξ + (h− α) W

and hence

(2.4) A2W = hAW + (β − hα)W

because µ 6= 0.
Differentiating (2.3) covariantly along Ω, we find

(2.5) (∇XA)W + A∇XW = (Xµ) ξ + µ∇Xξ + X (h− α) W + (h− α)∇XW.

If we take an inner product with W in this, then we obtain

(2.6) g ((∇XA)W,W ) = −2g (AU,X) + Xh−Xα

because W is a unit vector field orthogonal to ξ. We also have by applying ξ to
(2.5)

(2.7) µg ((∇XA)W, ξ) = (h− 2α) g (AU,X) + µ (Xµ) ,

where we have used (1.11).
Putting X = ξ in (2.5) and making use of (1.3) and (2.7), we find

(h− 2α) AU − c

4
U + µ∇µ + µ{A∇ξW − (h− α)∇ξW}(2.8)

= µ (ξµ) ξ + µ2U + µ (ξh− ξα)W.

On the other hand, it is, using φU = −µW, seen that

g (AU,X) ξ − φ∇XU = (Xµ)W + µ∇XW.

Replacing X by ξ in this and taking account of (1.6) and (1.9), we have

(2.9) µ∇ξW = 3AU − αU − (ξα) ξ − (ξµ)W,
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which shows that

(2.10) Wα = ξµ.

Substituting (2.9) and (2.10) into (2.8), we get

3A2U − 2hAU + A∇α +
1
2
∇β − h∇α +

(
αh− β − c

4

)
U(2.11)

= 2µ (Wα) ξ + µ (ξh) W − (h− 2α) (ξα) ξ,

where we have used µ2 = β − α2.
Differentiating (2.2) covariantly and making use of (1.1), we find

(∇XA)Aξ + A (∇XA) ξ + A2φAX − hAφAX(2.12)
= (Xh)Aξ + h(∇XA)ξ + X(β − hα)ξ + (β − hα)φAX,

which together with (1.3) yields

c

4
{u(Y )η(X)− u(X)η (Y )}+

c

2
(h− α)g (φY,X)− g(A2φAX, Y )(2.13)

+g(A2φAY,X) + 2hg (φAX,AY )− (β − hα){g(φAY, X)− g(φAX, Y )}
= g(AY, (∇XA) ξ)− g(AX, (∇Y A) ξ) + (Y h)g(Aξ, X)− (Xh)g(Aξ, Y )

+Y (β − hα)η (X)−X(β − hα)η (Y ) ,

where we have defined a 1-form u by u(X) = g(U,X) for any vector field X.
Putting X = µW in (2.12) and taking account of (1.3), (1.8), (2.3), (2.4) and

(2.7), we obtain

(3α− 2h)A2U + 2(h2 + β − 2αh +
c

4
)AU + (h− α)(β − αh− c

2
)U(2.14)

= µA∇µ + (αh− β)∇α− 1
2

(h− α)∇β + µ2∇h− µ (Wh)Aξ − µW (β − αh)ξ.

Because of (1.10), we have from (2.12)

A(∇XA)ξ + (α− h)(∇XA)ξ + µ(∇XA)W
= (Xh)Aξ + X(β − hα)ξ + (β − hα)φAX + hAφAX −A2φAX.

Therefore, replacing X by αξ+µW in this and using (1.1), (1.3), (1.8), (1.10), (2.6)
and (2.7), we find

2hA2U + 2(αh− β − h2 − c

4
)AU + (h2α− hβ +

c

2
h− 3

4
cα)U(2.15)

= g (Aξ,∇h)Aξ − 1
2
A∇β +

1
2
(h− 2α)∇β + β∇α

−µ2∇h + g (Aξ,∇ (β − αh)) ξ.
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In the following we assume that∇φUS = 0 and hence∇W S = 0 since we assume
that µ 6= 0. Then, by replacing X by W, we have from (1.5)

−3
4
c(h− α) (u(Y )ξ + η (Y )U) + µ (Wh) AY + µh (∇W A)Y

= µA (∇W A)Y + µ (∇W A)AY,

where we have used (1.1) and (2.3). Putting Y = W in this and making use of
(1.3), (2.6) and (2.7), we find

(2.16) (Wh)AW = hAU − c

2
U − 2A2U +

1
2
∇β − α∇h + A∇h−A∇α

because µ 6= 0.
Differentiating (2.1) covariantly and using ∇W S = 0, we find

(2.17) S∇W ξ = W (αh− β)ξ +
{ c

2
(n− 1) + hα− β

}
∇W ξ,

which implies

(2.18) W (β − hα) = 0.

By the way we see, using (1.1) and (2.3), that µ∇W ξ = (h− α) U, it follows
from (1.4) and (2.17) that

(2.19) (h− α)
{

A2U − hAU −
(

β − hα +
3
4
c

)
U

}
= 0.

3. Real hypersurfaces with g (∇ξξ,∇ξξ) = const.

We continue now, our arguments under the same hypotheses Sξ = g(Sξ, ξ)ξ
and ∇φUS = 0 as in section 2. Further, suppose that g (U,U) = const., that is,
∇µ = 0. Then we have

(3.1) ∇β = 2α∇α,

which together with (2.10) gives

(3.2) Wα = 0.

Using these facts, (2.14) and (2.16) turn out respectively to

(3α− 2h) A2U + 2(h2 + β − 2αh +
c

4
)AU + (h− α)

(
β − hα− c

2

)
U(3.3)

= µ2(∇h−∇α)− µ2 (Wh)W,
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(3.4) 2A2U − hAU +
c

2
U + (Wh)AW = A∇h−A∇α− α(∇h−∇α).

We notice here that h − α 6= 0 on Ω. In fact, if not, then we have h = α. So
(3.3) and (3.4) are reduced respectively to

(3.5) αA2U + 2
(
β − α2 +

c

4

)
AU = 0, 2A2U = αAU − c

2
U

because of (3.2), which enables us to obtain

αAU = 2
(
α2 − β − c

4

)
U

on this set. However, we verify that α 6= 0 on this subset by virtue of (2.11)
and (3.4) with h = α, it follows that AU = νU, where a function ν given by
αν = 2

(
α2 − β − c

4

)
is defined. From this and (3.5) we see that ν is constant by

virtue of µ = constant and hence ∇α = 0. Further, we have

ν2 + β − α2 +
c

2
= 0.

Since α is constant, (2.11) implies

3ν2 − 2αν + α2 − β − c

4
= 0,

which will produce a contradiction. Hence h − α 6= 0 on Ω is proved. Thus (2.19)
becomes

(3.6) A2U = hAU +
(

β − hα +
3
4
c

)
U.

Now, we are going to prove Wh = 0 on Ω. From (2.18), (3.1) and (3.2) we verify
that α (Wh) = 0. Suppose that Wh 6= 0. Then we have α = 0. So (2.11) implies
that

3A2U = 2hAU +
(
β +

c

4

)
U

because U is orthogonal to ξ, or using (3.6)

hAU + 2(β + c)U = 0.

Applying this by A and making use of (3.6), we find

{
h2 + 2(β + c)

}
AU + h

(
β +

3
4
c

)
U = 0.

Combining the last two equations, it follows that

h2

(
β +

5
4
c

)
+ 4(β + c)2 = 0,
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which shows that Wh = 0 by virtue of (3.1), a contradiction. Thus, Wh = 0 on Ω
is proved.

Using (3.6) and the fact that Wh = 0, (3.3) and (3.4) turn out respectively to

(3.7) µ2(∇h−∇α) = (2β − hα +
c

2
)AU +

{
(β − hα) (2α− h) +

c

4
(11α− 8h)

}
U,

(3.8) A∇h−A∇α = α(∇h−∇α) + hAU + 2(β − hα + c)U.

Applying to the both sides of (3.7) by A and making use of (3.6) and (3.8), we
find

(3.9) (3α− 2h)AU = (α2 − hα− c

2
)U.

Let Ω0 be a set of points in Ω such that ‖AU − λU‖p 6= 0 at p ∈ Ω and suppose
that Ω0 is nonvoid. If α2 − hα − c

2 6= 0, then from (3.9) we get 3α − 2h 6= 0 and
hence Ω0 is empty. Thus, it is, using (3.9), seen that

α2 − hα− c

2
= 0, 3α = 2h,

which shows that α2 + c = 0. Hence α is nonzero constant. So does h on Ω0.
Therefore (3.8) is reduced to

(3.10) 3αAU + (4β − 10α2)U = 0,

which together with (3.6) implies that

(3.11)
(
8β − 11α2

)
AU + α

(
6β − 27

2
α2

)
U = 0.

On the other hand, by using the fact that α2 + c = 0 and 3α = 2h we have from
(3.7)

4
(
β − α2

)
AU + α

(
β − 4α2

)
U = 0.

Combining (3.10) and (3.11) to this, we see that β − α2 = 0 and hence Ω0 = ∅.
Thus we have from (3.9)

(3.12) AU = λU,

where the function λ given by

(3.13) (3α− 2h)λ = α2 − hα− c

2
,

is defined.
Because of (3.12), it follows, making use of (3.6) and (3.7), that

(3.14) λ2 = hλ + β − hα +
3
4
c,
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(3.15) µ2(∇h−∇α) =
{

(2β − hα +
c

2
)λ + (β − hα) (2α− h) +

c

4
(11α− 8h)

}
U.

Since ∇µ = 0 by assumption, we find from the last equation

(3.16) (Xf)u(Y )− (Y f)u(X) + fdu(X,Y ) = 0

for any vector fields X and Y , where we have put

(3.17) f = (2β − hα +
c

2
)λ + (β − hα) (2α− h) +

c

4
(11α− 8h) ,

and the exterior derivation du of u is given by

du(Y, X) =
1
2
{Y u(X)−Xu(Y )− u ([Y, X])} .

Putting X = ξ in (3.16), we find

(3.18) (ξf)u(Y ) + fdu(ξ, Y ) = 0.

du(ξ, U) being vanish identically on Ω, it follows that

ξf = 0

because we have (1.9), (3.2), (3.12) and ∇µ = 0. Therefore (3.18) becomes

(3.19) fdu(ξ, X) = 0.

for any vector field X.
Finally we have from (2.15)

{
2λ

(
αh− β − c

4

)
+ hβ − αh2 + 2ch− 3

4
cα

}
U

= α (ξh)Aξ + α {(2α− h) (ξα)− α (ξh)} ξ

−αA∇α + (β + αh− 2α2)∇α− (β − α2)∇h,

where we have used (3.1), (3.2), (3.6), (3.12) and the fact that Wh = 0. If we take
an inner product ξ with this and make use of (3.2), then we obtain

(3.20) ξα = ξh.

Thus, above equation can be written as
{

2λ
(
αh− β − c

4

)
+ hβ − αh2 + 2ch− 3

4
cα

}
U(3.21)

= α (ξα) {(2α− h) ξ + µW} − αA∇α + (β + αh− 2α2)∇α− (β − α2)∇h.
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4. Real hypersurfaces satisfying du(ξ,X) = 0

We will continue, our arguments under the same hypotheses Sξ = g(Sξ, ξ)ξ,∇φUS =
0 and g(U,U) = const. as in section 3.

Now, suppose that du(ξ, X) = 0 for any vector field X on Ω. Then we have
g (∇ξU,X) + g (∇Xξ, U) = 0, or using (1.1), (1.9), (1.12) and (3.12), φ∇α =
µ (h− 3λ)W and hence

(4.1) ∇α− (ξα) ξ = (h− 3λ) U.

Differentiating (3.14) covariantly and using (3.1), we find

(2λ− h) (Xλ) = (λ− α) (Xh) + (2α− h)(Xα).

Putting X = ξ in this and taking account of (3.20), we get

(4.2) (2λ− h) ξλ = (λ + α− h)ξα.

In the same way, we also have from (3.13)

(4.3) (3α− 2h) ξλ = (−λ + α− h)ξα,

which together with (4.2) yields

(−3α + h− 2λ) ξλ = 2λ (ξα) , (3α− 3h + 2λ)ξλ = 2(α− h)ξα.

Let Ω1 = {p ∈ Ω|{(ξλ)2 + (ξα)2}(p) 6= 0}. Assume that Ω1 ⊂ Ω and Ω1 6= ∅.
Then we have by above equations

(4.4) h2 − 4αh + 3α2 + 2λ2 + λ (α− h) = 0

on Ω1. Differentiating this covariantly and using (3.20), we find

(4λ + α− h) ξλ = 2(h− α)ξα.

From this and (4.3), we verify that

(4.5) 5h2 − 12hα + 7α2 − 4λ2 + 3λ(α− h) = 0.

Using Sylvester’s elimination method to (4.4) and (4.5), we deduce that

(4.6)
(
204α2 − 121c

)
(α2 + c) = 0

on Ω1. (We use a computer to calculate this.) It is contradictory for c > 0 or c < 0.
Thus Ω1 = ∅ and hence ξλ = ξα = 0 on Ω. Thus (4.1) is reduced to

(4.7) ∇α = (h− 3λ)U.

on Ω2, where Ω2 = {p ∈ Ω|f(p) 6= 0} 6= ∅ since we have (3.19).
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We notice here that α does not vanish on Ω2. In fact, if not, we have h = 3λ
because of (4.7). By (3.13) we see that hλ = c

4 and hence 3λ2 = c
4 . So we have

c > 0 on Ω2. We also have from (3.14), 2λ2 + β + 3
4c = 0, a contradiction by virtue

of c > 0.
Using (4.7), the equations (3.15) and (3.21) turn out respectively to

µ2∇h = {(β − α2
)
(h− 3λ) + (2β − hα +

c

2
)λ(4.8)

+ (β − hα) (2α− h) +
c

4
(11α− 8h)}U.

µ2∇h = {(h− 3λ)
(
β + αh− 2α2 − αλ

)
(4.9)

+ (β − hα) (2λ− h) +
c

2
λ− 2ch +

3
4
cα}U.

Comparing the last two equations, we obtain

h2 + hα− 2β − 5hλ + 3αλ + 3λ2 − 2c = 0

because α 6= 0 on Ω2, which together with (3.13) and (3.14) gives

(4.10) β − hα + (h− α)2 − c

4
= 0.

From this and (3.14) we have

λ2 = hλ− (h− α)2 + c,

which connected with (3.13) implies that

(4.11) 4h4− 22αh3 + (43α2− 5c)h2 +
(

29
2

c− 35α2

)
αh + 10α4− 10cα2 +

c2

4
= 0.

Differentiating (4.10) covariantly and making use of (3.1), we find on Ω2

(3α− 2h)∇h + (3h− 4α)∇α = 0.

Similarly we also have from (4.11)
{

16h3 − 66αh2 + (86α2 − 10c)h− 35α3 +
29
2

cα

}
∇h

+
{
−22h3 + 86αh2 − 10α2h +

29
2

ch + 40α3 − 20cα

}
∇α = 0.

Since (∇α)2 + (∇h)2 6= 0 on Ω2 with the aid of (3.15) and (3.17), it follows, using
the last two equations, that

(4.12) 2h4 − 12αh3 +
(
27α2 − c

2

)
h2 − 27α3h + 10α4 + cα2 = 0.
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Using the same method as that used to derive (4.6) from (4.4) and (4.5), we can
deduce from (4.11) and (4.2) the following: (We use a computer to calculate this.)

(
α2 + c

) (
80α4 − 260cα2 + c2

)
= 0

on Ω2. It is contradictory for c > 0 or c < 0. Therefore Ω2 = ∅ and consequently
f = 0 on Ω because of (3.19).

5. Proof of Theorems

First of all, we prove

Lemma 5.1. Let M be a real hypersurface of Mn (c) , c 6= 0. If it satisfies Sξ =
g(Sξ, ξ)ξ,∇φUS = 0 and g(U,U) = const., then we have

(5.1) g(U,U) + 9λ2 +
9
4
c = 0.

Proof. As is already shown in section 4, we have f = 0 on Ω and hence ∇h = ∇α
because of (3.15). Thus (3.8) becomes

(5.2) hλ + 2(β − hα + c) = 0,

which together with (3.14) implies that

(5.3) λ2 + β − hα +
5
4
c = 0, λ2 =

1
2
hλ− c

4
.

Since ∇h = ∇α, we see, using (5.3), that ∇α = 0 on Ω. Thus, (3.21) implies

(5.4) (h− 2λ) (β − hα)− c

2
λ + 2ch− 3

4
cα = 0,

which connected to (5.2) and (5.3) yields h = α − 2λ, αλ = 4λ2 + c
2 . Substituting

these into (5.2), we verify that β − α2 + 9λ2 + 9
4c = 0. This completes the proof.¤

According to Lemma 5.1, we see that Ω = ∅ if c > 0. Thus, we have

Theorem 5.1. Let M be a real hypersurface of a complex projective space PnC.
The the following are equivalent:

(1) M is a Hopf hypersurface in the ambient space PnC.

(2) The structure vector ξ is an eigenvector of the Ricci tensor S of M and
satisfies g (∇ξξ,∇ξξ) is constant on M and ∇φ∇ξξS = 0 holds.

Remark. For a real hypersurface of a nonflat complex space form, Theorem 5.1 is
valid provided that ‖∇ξξ‖2 + 9

4c ≥ 0.
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