Structure Eigenvectors of the Ricci Tensor in a Real Hypersurface of a Complex Projective Space

Chunji Li
Institute of System Science, College of Sciences, Northeastern University, Shenyang, 110-004, P. R. China
e-mail: chunjili@hanmail.net
U-Hang Ki
Department of Mathematics, Kyungpook National University, Daegu, 702-701, Korea
e-mail: uhangki2005@yahoo.co.kr

Abstract. It is known that there are no real hypersurfaces with parallel Ricci tensor in a nonflat complex space form ([6], [9]). In this paper we investigate real hypersurfaces in a complex projective space $P_{n} \mathbb{C}$ using some conditions of the Ricci tensor S which are weaker than $\nabla S=0$. We characterize Hopf hypersurfaces of $P_{n} \mathbb{C}$.

0. Introduction

An n-dimensional complex space form $M_{n}(c)$ is a Kaehlerian manifold of constant holomorphic sectional curvature c.

As is well known, complete and simply connected complex space forms are isometric to a complex projective space $P_{n} \mathbb{C}$, a complex Euclidean space \mathbb{C}_{n} or a complex hyperbolic space $H_{n} \mathbb{C}$ according as $c>0, c=0$ or $c<0$.

Let M be a real hypersurface of $M_{n}(c)$. Then M has an almost contact metric structure (ϕ, ξ, η, g) induced from the complex structure J and the Kaehlerian metric of $M_{n}(c)$ (for details see section 1). The structure vector field ξ is said to be principal if $A \xi=\alpha \xi$ is satisfied, where A is the shape operator of M and $\alpha=\eta(A \xi)$. A real hypersurface is said to be a Hopf hypersurface if the structure vector field ξ of M is principal.

Tagaki ([16], [17]) classified all homogeneous real hypersurfaces of $P_{n} \mathbb{C}$ as six model spaces which are said to be $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}, \mathrm{C}, \mathrm{D}$ and E , and Cecil-Ryan ([2]) and Kimura ([11]) proved that they are realized as the tubes of constant radius over the Kaehlerian submanifolds. Namely, he proved the following:

Theorem T ([16]). Let M be a homogeneous real hypersurface of $P_{n} \mathbb{C}$. Then M

Received March 10, 2005, and, in revised form, February 22, 2006.
2000 Mathematics Subject Classification: 53C40, 53C15.
Key words and phrases: real hypersurface, structure vector field, Ricci tensor, Hopf hypersurface.
is a tube of radius r over one of the following Kaehlerian submanifolds:
$\left(\mathrm{A}_{1}\right)$ a hyperplane $P_{n-1} \mathbb{C}$, where $0<r<\frac{\pi}{2}$,
$\left(\mathrm{A}_{2}\right)$ a totally geodesic $P_{k} \mathbb{C}(1 \leq k \leq n-2)$, where $0<r<\frac{\pi}{2}$,
(B) a complex quadric Q_{n-1}, where $0<r<\frac{\pi}{4}$,
(C) $P_{1} \mathbb{C} \times P_{(n-1) / 2} \mathbb{C}$, where $0<r<\frac{\pi}{4}$ and $n(\geq 5)$ is odd,
(D) a complex Grassmann $G_{2,5} \mathbb{C}$, where $0<r<\frac{\pi}{4}$ and $n=9$,
(E) a Hermitian symmetric space $S O(10) / U(5)$, where $0<r<\frac{\pi}{4}$ and $n=15$.

Also Berndt([1]) classified all Hopf real hypersurfaces of $H_{n} \mathbb{C}$ with constant principal curvatures as follows:

Theorem B ([1]). Let M be a real hypersurface of $H_{n} \mathbb{C}$. Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the following:
$\left(\mathrm{A}_{0}\right)$ a self-tube, that is, a horosphere,
$\left(\mathrm{A}_{1}\right)$ a geodesic hypersphere or a tube over a hyperplane $H_{n-1} \mathbb{C}$,
$\left(\mathrm{A}_{2}\right)$ a tube over a totally geodesic $H_{k} \mathbb{C}(1 \leq k \leq k-2)$,
(B) a tube over a totally real hyperbolic space $H_{n} \mathbb{R}$.

We denote by ∇ and S be the Levi-Civita connection and the Ricci tensor of M. There are many studies about Ricci tensors of real hypersurfaces ([3], [4], [5], [6], [7], [8], [9], [12], [15], etc.). Very important fact is that there are no real hypersurfaces with parallel Ricci tensor in $M_{n}(c), n \geq 2, c \neq 0$ ([6], [9], [10]). So it is natural to investigate real hypersurfaces M by using some conditions about derivative of S which are weaker than $\nabla S=0$. For each Hopf hypersurface M in a nonflat complex space form, the structure vector field ξ is an eigenvector of the Ricci tensor S of M, and the scalar $g\left(\nabla_{\xi} \xi, \nabla_{\xi} \xi\right)$ vanishes identically on M. So it is natural to consider a problem that if $S \xi=g(S \xi, \xi) \xi$ holds or $g\left(\nabla_{\xi} \xi, \nabla_{\xi} \xi\right)=$ const., is M a Hopf hypersurface? Nagai and one of the present authors ([8]) proved the following which gives a partial answer to this problem:

Theorem KN ([8]). Let M be a real hypersurface in a complex projective space $P_{n} \mathbb{C}$. Then the following are equivalent:
(1) M is a Hopf hypersurface in the ambient space $P_{n} \mathbb{C}$.
(2) The structure vector ξ is an eigenvector with constant eigenvalue of the Ricci tensor S of M and $\nabla_{\phi \nabla_{\xi} \xi} S=0$ holds.

The purpose of this paper is to establish the following:
Theorem. Let M be a real hypersurface of $P_{n} \mathbb{C}$. The the following are equivalent:
(1) M is a Hopf hypersurface in $P_{n} \mathbb{C}$.
(2) $S \xi=g(S \xi, \xi) \xi$ and $\nabla_{\phi \nabla_{\xi} \xi} S=0$ hold, and $g\left(\nabla_{\xi} \xi, \nabla_{\xi} \xi\right)$ is constant on M.

1. Preliminaries

Let M be a real hypersurface immersed in a complex space form $\left(M_{n}(c), G\right)$ with almost complex structure J and the Kaehler metric G of constant holomorphic sectional curvature c, and let N be a unit normal vector field on M. The Riemannian connection $\tilde{\nabla}$ in $M_{n}(c)$ and ∇ in M are related by the following formulas for any vector fields X and Y on M :

$$
\tilde{\nabla}_{Y} X=\nabla_{Y} X+g(A Y, X) N, \quad \tilde{\nabla}_{X} N=-A X
$$

where g denotes the Riemannian metric on M induced from that G of $M_{n}(c)$ and A is the shape operator in the direction of N in $M_{n}(c)$. For any vector field X tangent to M, we put

$$
J X=\phi X+\eta(X) N, \quad J N=-\xi
$$

Then we may see that the structure (ϕ, ξ, η, g) is an almost contact metric structure on M, namely, we have

$$
\begin{gathered}
\phi^{2} X=-X+\eta(X) \xi, \quad g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \\
\eta(\xi)=1, \quad \phi \xi=0, \quad \eta(X)=g(X, \xi)
\end{gathered}
$$

for any vector fields X and Y on M.
From the fact $\tilde{\nabla} J=0$ and above equations we verify that

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi, \quad \nabla_{X} \xi=\phi A X \tag{1.1}
\end{equation*}
$$

Since the ambient manifold is of constant holomorphic sectional curvature c, we have the following Gauss and Codazzi equations respectively:

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\frac{c}{4}\{\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi\} \tag{1.3}
\end{equation*}
$$

for any vector fields X, Y and Z on M, where R denotes Riemann-Christoffel curvature tensor of M. We shall denote the Ricci tensor of type (1.1) by S. Then it follows from (1.2) that

$$
\begin{equation*}
S X=\frac{c}{4}\{(2 n+1) X-3 \eta(X) \xi\}+h A X-A^{2} X \tag{1.4}
\end{equation*}
$$

where $h=$ trace A. Further, using (1.1), we obtain

$$
\begin{align*}
\left(\nabla_{X} S\right) Y= & -\frac{3}{4} c\{g(\phi A X, Y) \xi+\eta(Y) \phi A X\}+(X h) A Y \tag{1.5}\\
& +(h I-A)\left(\nabla_{X} A\right) Y-\left(\nabla_{X} A\right) A Y
\end{align*}
$$

where I is the identity map.
In what follows, to write our formulas in convention forms, we denote by $\alpha=$ $\eta(A \xi), \beta=\eta\left(A^{2} \xi\right)$, and for a function f we denote by ∇f the gradient vector field of f.

We put $U=\nabla_{\xi} \xi$, then U is orthogonal to the structure vector field ξ. Thus it is, using (1.1), seen that

$$
\begin{equation*}
\phi U=-A \xi+\alpha \xi \tag{1.6}
\end{equation*}
$$

which enables us to obtain $g(U, U)=\beta-\alpha^{2}$. Thus we easily see that ξ is a principal curvature vector, that is, $A \xi=\alpha \xi$ if and only if $\beta-\alpha^{2}=0$.

Now differentiating (1.6) covariantly along M and using (1.1), we find

$$
\begin{align*}
& \eta(X) g(A U+\nabla \alpha, Y)+g\left(\phi X, \nabla_{Y} U\right) \tag{1.7}\\
= & g\left(\left(\nabla_{Y} A\right) X, \xi\right)-g(A \phi A X, Y)+\alpha g(A \phi X, Y),
\end{align*}
$$

which shows that

$$
\begin{equation*}
\left(\nabla_{\xi} A\right) \xi=2 A U+\nabla \alpha \tag{1.8}
\end{equation*}
$$

because of (1.3). From (1.7) we also have

$$
\begin{equation*}
\nabla_{\xi} U=3 \phi A U+\alpha A \xi-\beta \xi+\phi \nabla \alpha \tag{1.9}
\end{equation*}
$$

where we have used (1.1).
If $\beta-\alpha^{2} \neq 0$, then we can put

$$
\begin{equation*}
A \xi=\alpha \xi+\mu W \tag{1.10}
\end{equation*}
$$

where W is a unit vector field orthogonal to ξ. Then by (1.1) we see that $U=\mu \phi W$ and hence $g(U, U)=\mu^{2}$, and W is also orthogonal to U. Thus, we see, making use of (1.1) and (1.10), that

$$
\begin{align*}
\mu g\left(\nabla_{X} W, \xi\right) & =g(A U, X) \tag{1.11}\\
g\left(\nabla_{X} \xi, U\right) & =\mu g(A W, X) . \tag{1.12}
\end{align*}
$$

2. Structure eigenvectors of the Ricci tensor

Let M be a real hypersurface of a complex space form $M_{n}(c), c \neq 0$. Now, suppose that the structure vector ξ is an eigenvector of the Ricci tensor, that is,

$$
\begin{equation*}
S \xi=g(S \xi, \xi) \xi \tag{2.1}
\end{equation*}
$$

We then have by (1.4)

$$
\begin{equation*}
A^{2} \xi=h A \xi+(\beta-h \alpha) \xi \tag{2.2}
\end{equation*}
$$

In the following we assume that $\mu \neq 0$ on M, that is, ξ is not a principal curvature vector field and we put $\Omega=\{p \in M \mid \mu(p) \neq 0\}$. Then Ω is an open subset of M, and from now on we discuss our arguments on Ω unless otherwise stated.

From (1.10) and (2.2) we verify that

$$
\begin{equation*}
A W=\mu \xi+(h-\alpha) W \tag{2.3}
\end{equation*}
$$

and hence

$$
\begin{equation*}
A^{2} W=h A W+(\beta-h \alpha) W \tag{2.4}
\end{equation*}
$$

because $\mu \neq 0$.
Differentiating (2.3) covariantly along Ω, we find

$$
\begin{equation*}
\left(\nabla_{X} A\right) W+A \nabla_{X} W=(X \mu) \xi+\mu \nabla_{X} \xi+X(h-\alpha) W+(h-\alpha) \nabla_{X} W \tag{2.5}
\end{equation*}
$$

If we take an inner product with W in this, then we obtain

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) W, W\right)=-2 g(A U, X)+X h-X \alpha \tag{2.6}
\end{equation*}
$$

because W is a unit vector field orthogonal to ξ. We also have by applying ξ to (2.5)

$$
\begin{equation*}
\mu g\left(\left(\nabla_{X} A\right) W, \xi\right)=(h-2 \alpha) g(A U, X)+\mu(X \mu) \tag{2.7}
\end{equation*}
$$

where we have used (1.11).
Putting $X=\xi$ in (2.5) and making use of (1.3) and (2.7), we find

$$
\begin{align*}
& (h-2 \alpha) A U-\frac{c}{4} U+\mu \nabla \mu+\mu\left\{A \nabla_{\xi} W-(h-\alpha) \nabla_{\xi} W\right\} \tag{2.8}\\
= & \mu(\xi \mu) \xi+\mu^{2} U+\mu(\xi h-\xi \alpha) W
\end{align*}
$$

On the other hand, it is, using $\phi U=-\mu W$, seen that

$$
g(A U, X) \xi-\phi \nabla_{X} U=(X \mu) W+\mu \nabla_{X} W
$$

Replacing X by ξ in this and taking account of (1.6) and (1.9), we have

$$
\begin{equation*}
\mu \nabla_{\xi} W=3 A U-\alpha U-(\xi \alpha) \xi-(\xi \mu) W \tag{2.9}
\end{equation*}
$$

which shows that

$$
\begin{equation*}
W \alpha=\xi \mu \tag{2.10}
\end{equation*}
$$

Substituting (2.9) and (2.10) into (2.8), we get

$$
\begin{align*}
& 3 A^{2} U-2 h A U+A \nabla \alpha+\frac{1}{2} \nabla \beta-h \nabla \alpha+\left(\alpha h-\beta-\frac{c}{4}\right) U \tag{2.11}\\
= & 2 \mu(W \alpha) \xi+\mu(\xi h) W-(h-2 \alpha)(\xi \alpha) \xi,
\end{align*}
$$

where we have used $\mu^{2}=\beta-\alpha^{2}$.
Differentiating (2.2) covariantly and making use of (1.1), we find

$$
\begin{align*}
& \left(\nabla_{X} A\right) A \xi+A\left(\nabla_{X} A\right) \xi+A^{2} \phi A X-h A \phi A X \tag{2.12}\\
= & (X h) A \xi+h\left(\nabla_{X} A\right) \xi+X(\beta-h \alpha) \xi+(\beta-h \alpha) \phi A X
\end{align*}
$$

which together with (1.3) yields

$$
\text { 3) } \begin{align*}
& \frac{c}{4}\{u(Y) \eta(X)-u(X) \eta(Y)\}+\frac{c}{2}(h-\alpha) g(\phi Y, X)-g\left(A^{2} \phi A X, Y\right) \tag{2.13}\\
= & g\left(A^{2} \phi A Y, X\right)+2 h g(\phi A X, A Y)-(\beta-h \alpha)\{g(\phi A Y, X)-g(\phi A X, Y)\} \\
= & g\left(A Y,\left(\nabla_{X} A\right) \xi\right)-g\left(A X,\left(\nabla_{Y} A\right) \xi\right)+(Y h) g(A \xi, X)-(X h) g(A \xi, Y) \\
& +Y(\beta-h \alpha) \eta(X)-X(\beta-h \alpha) \eta(Y),
\end{align*}
$$

where we have defined a 1-form u by $u(X)=g(U, X)$ for any vector field X.
Putting $X=\mu W$ in (2.12) and taking account of (1.3), (1.8), (2.3), (2.4) and (2.7), we obtain

$$
\begin{aligned}
& (2.14)(3 \alpha-2 h) A^{2} U+2\left(h^{2}+\beta-2 \alpha h+\frac{c}{4}\right) A U+(h-\alpha)\left(\beta-\alpha h-\frac{c}{2}\right) U \\
& \quad=\mu A \nabla \mu+(\alpha h-\beta) \nabla \alpha-\frac{1}{2}(h-\alpha) \nabla \beta+\mu^{2} \nabla h-\mu(W h) A \xi-\mu W(\beta-\alpha h) \xi
\end{aligned}
$$

Because of (1.10), we have from (2.12)

$$
\begin{aligned}
& A\left(\nabla_{X} A\right) \xi+(\alpha-h)\left(\nabla_{X} A\right) \xi+\mu\left(\nabla_{X} A\right) W \\
= & (X h) A \xi+X(\beta-h \alpha) \xi+(\beta-h \alpha) \phi A X+h A \phi A X-A^{2} \phi A X .
\end{aligned}
$$

Therefore, replacing X by $\alpha \xi+\mu W$ in this and using (1.1), (1.3), (1.8), (1.10), (2.6) and (2.7), we find

$$
\begin{align*}
& 2 h A^{2} U+2\left(\alpha h-\beta-h^{2}-\frac{c}{4}\right) A U+\left(h^{2} \alpha-h \beta+\frac{c}{2} h-\frac{3}{4} c \alpha\right) U \tag{2.15}\\
= & g(A \xi, \nabla h) A \xi-\frac{1}{2} A \nabla \beta+\frac{1}{2}(h-2 \alpha) \nabla \beta+\beta \nabla \alpha \\
& -\mu^{2} \nabla h+g(A \xi, \nabla(\beta-\alpha h)) \xi .
\end{align*}
$$

In the following we assume that $\nabla_{\phi U} S=0$ and hence $\nabla_{W} S=0$ since we assume that $\mu \neq 0$. Then, by replacing X by W, we have from (1.5)

$$
\begin{aligned}
& -\frac{3}{4} c(h-\alpha)(u(Y) \xi+\eta(Y) U)+\mu(W h) A Y+\mu h\left(\nabla_{W} A\right) Y \\
= & \mu A\left(\nabla_{W} A\right) Y+\mu\left(\nabla_{W} A\right) A Y
\end{aligned}
$$

where we have used (1.1) and (2.3). Putting $Y=W$ in this and making use of (1.3), (2.6) and (2.7), we find

$$
\begin{equation*}
(W h) A W=h A U-\frac{c}{2} U-2 A^{2} U+\frac{1}{2} \nabla \beta-\alpha \nabla h+A \nabla h-A \nabla \alpha \tag{2.16}
\end{equation*}
$$

because $\mu \neq 0$.
Differentiating (2.1) covariantly and using $\nabla_{W} S=0$, we find

$$
\begin{equation*}
S \nabla_{W} \xi=W(\alpha h-\beta) \xi+\left\{\frac{c}{2}(n-1)+h \alpha-\beta\right\} \nabla_{W} \xi \tag{2.17}
\end{equation*}
$$

which implies

$$
\begin{equation*}
W(\beta-h \alpha)=0 \tag{2.18}
\end{equation*}
$$

By the way we see, using (1.1) and (2.3), that $\mu \nabla_{W} \xi=(h-\alpha) U$, it follows from (1.4) and (2.17) that

$$
\begin{equation*}
(h-\alpha)\left\{A^{2} U-h A U-\left(\beta-h \alpha+\frac{3}{4} c\right) U\right\}=0 \tag{2.19}
\end{equation*}
$$

3. Real hypersurfaces with $g\left(\nabla_{\xi} \xi, \nabla_{\xi} \xi\right)=$ const.

We continue now, our arguments under the same hypotheses $S \xi=g(S \xi, \xi) \xi$ and $\nabla_{\phi U} S=0$ as in section 2. Further, suppose that $g(U, U)=$ const., that is, $\nabla \mu=0$. Then we have

$$
\begin{equation*}
\nabla \beta=2 \alpha \nabla \alpha \tag{3.1}
\end{equation*}
$$

which together with (2.10) gives

$$
\begin{equation*}
W \alpha=0 \tag{3.2}
\end{equation*}
$$

Using these facts, (2.14) and (2.16) turn out respectively to

$$
\begin{align*}
& (3 \alpha-2 h) A^{2} U+2\left(h^{2}+\beta-2 \alpha h+\frac{c}{4}\right) A U+(h-\alpha)\left(\beta-h \alpha-\frac{c}{2}\right) U \tag{3.3}\\
= & \mu^{2}(\nabla h-\nabla \alpha)-\mu^{2}(W h) W
\end{align*}
$$

$$
\begin{equation*}
2 A^{2} U-h A U+\frac{c}{2} U+(W h) A W=A \nabla h-A \nabla \alpha-\alpha(\nabla h-\nabla \alpha) . \tag{3.4}
\end{equation*}
$$

We notice here that $h-\alpha \neq 0$ on Ω. In fact, if not, then we have $h=\alpha$. So (3.3) and (3.4) are reduced respectively to

$$
\begin{equation*}
\alpha A^{2} U+2\left(\beta-\alpha^{2}+\frac{c}{4}\right) A U=0, \quad 2 A^{2} U=\alpha A U-\frac{c}{2} U \tag{3.5}
\end{equation*}
$$

because of (3.2), which enables us to obtain

$$
\alpha A U=2\left(\alpha^{2}-\beta-\frac{c}{4}\right) U
$$

on this set. However, we verify that $\alpha \neq 0$ on this subset by virtue of (2.11) and (3.4) with $h=\alpha$, it follows that $A U=\nu U$, where a function ν given by $\alpha \nu=2\left(\alpha^{2}-\beta-\frac{c}{4}\right)$ is defined. From this and (3.5) we see that ν is constant by virtue of $\mu=$ constant and hence $\nabla \alpha=0$. Further, we have

$$
\nu^{2}+\beta-\alpha^{2}+\frac{c}{2}=0 .
$$

Since α is constant, (2.11) implies

$$
3 \nu^{2}-2 \alpha \nu+\alpha^{2}-\beta-\frac{c}{4}=0,
$$

which will produce a contradiction. Hence $h-\alpha \neq 0$ on Ω is proved. Thus (2.19) becomes

$$
\begin{equation*}
A^{2} U=h A U+\left(\beta-h \alpha+\frac{3}{4} c\right) U . \tag{3.6}
\end{equation*}
$$

Now, we are going to prove $W h=0$ on Ω. From (2.18), (3.1) and (3.2) we verify that $\alpha(W h)=0$. Suppose that $W h \neq 0$. Then we have $\alpha=0$. So (2.11) implies that

$$
3 A^{2} U=2 h A U+\left(\beta+\frac{c}{4}\right) U
$$

because U is orthogonal to ξ, or using (3.6)

$$
h A U+2(\beta+c) U=0 .
$$

Applying this by A and making use of (3.6), we find

$$
\left\{h^{2}+2(\beta+c)\right\} A U+h\left(\beta+\frac{3}{4} c\right) U=0 .
$$

Combining the last two equations, it follows that

$$
h^{2}\left(\beta+\frac{5}{4} c\right)+4(\beta+c)^{2}=0,
$$

which shows that $W h=0$ by virtue of (3.1), a contradiction. Thus, $W h=0$ on Ω is proved.

Using (3.6) and the fact that $W h=0,(3.3)$ and (3.4) turn out respectively to (3.7) $\mu^{2}(\nabla h-\nabla \alpha)=\left(2 \beta-h \alpha+\frac{c}{2}\right) A U+\left\{(\beta-h \alpha)(2 \alpha-h)+\frac{c}{4}(11 \alpha-8 h)\right\} U$,

$$
\begin{equation*}
A \nabla h-A \nabla \alpha=\alpha(\nabla h-\nabla \alpha)+h A U+2(\beta-h \alpha+c) U \tag{3.8}
\end{equation*}
$$

Applying to the both sides of (3.7) by A and making use of (3.6) and (3.8), we find

$$
\begin{equation*}
(3 \alpha-2 h) A U=\left(\alpha^{2}-h \alpha-\frac{c}{2}\right) U \tag{3.9}
\end{equation*}
$$

Let Ω_{0} be a set of points in Ω such that $\|A U-\lambda U\|_{p} \neq 0$ at $p \in \Omega$ and suppose that Ω_{0} is nonvoid. If $\alpha^{2}-h \alpha-\frac{c}{2} \neq 0$, then from (3.9) we get $3 \alpha-2 h \neq 0$ and hence Ω_{0} is empty. Thus, it is, using (3.9), seen that

$$
\alpha^{2}-h \alpha-\frac{c}{2}=0, \quad 3 \alpha=2 h
$$

which shows that $\alpha^{2}+c=0$. Hence α is nonzero constant. So does h on Ω_{0}. Therefore (3.8) is reduced to

$$
\begin{equation*}
3 \alpha A U+\left(4 \beta-10 \alpha^{2}\right) U=0 \tag{3.10}
\end{equation*}
$$

which together with (3.6) implies that

$$
\begin{equation*}
\left(8 \beta-11 \alpha^{2}\right) A U+\alpha\left(6 \beta-\frac{27}{2} \alpha^{2}\right) U=0 \tag{3.11}
\end{equation*}
$$

On the other hand, by using the fact that $\alpha^{2}+c=0$ and $3 \alpha=2 h$ we have from

$$
\begin{equation*}
4\left(\beta-\alpha^{2}\right) A U+\alpha\left(\beta-4 \alpha^{2}\right) U=0 \tag{3.7}
\end{equation*}
$$

Combining (3.10) and (3.11) to this, we see that $\beta-\alpha^{2}=0$ and hence $\Omega_{0}=\emptyset$. Thus we have from (3.9)

$$
\begin{equation*}
A U=\lambda U \tag{3.12}
\end{equation*}
$$

where the function λ given by

$$
\begin{equation*}
(3 \alpha-2 h) \lambda=\alpha^{2}-h \alpha-\frac{c}{2} \tag{3.13}
\end{equation*}
$$

is defined.
Because of (3.12), it follows, making use of (3.6) and (3.7), that

$$
\begin{equation*}
\lambda^{2}=h \lambda+\beta-h \alpha+\frac{3}{4} c \tag{3.14}
\end{equation*}
$$

$$
\begin{equation*}
\mu^{2}(\nabla h-\nabla \alpha)=\left\{\left(2 \beta-h \alpha+\frac{c}{2}\right) \lambda+(\beta-h \alpha)(2 \alpha-h)+\frac{c}{4}(11 \alpha-8 h)\right\} U \tag{3.15}
\end{equation*}
$$

Since $\nabla \mu=0$ by assumption, we find from the last equation

$$
\begin{equation*}
(X f) u(Y)-(Y f) u(X)+f d u(X, Y)=0 \tag{3.16}
\end{equation*}
$$

for any vector fields X and Y, where we have put

$$
\begin{equation*}
f=\left(2 \beta-h \alpha+\frac{c}{2}\right) \lambda+(\beta-h \alpha)(2 \alpha-h)+\frac{c}{4}(11 \alpha-8 h) \tag{3.17}
\end{equation*}
$$

and the exterior derivation $d u$ of u is given by

$$
d u(Y, X)=\frac{1}{2}\{Y u(X)-X u(Y)-u([Y, X])\} .
$$

Putting $X=\xi$ in (3.16), we find

$$
\begin{equation*}
(\xi f) u(Y)+f d u(\xi, Y)=0 \tag{3.18}
\end{equation*}
$$

$d u(\xi, U)$ being vanish identically on Ω, it follows that

$$
\xi f=0
$$

because we have (1.9), (3.2), (3.12) and $\nabla \mu=0$. Therefore (3.18) becomes

$$
\begin{equation*}
f d u(\xi, X)=0 \tag{3.19}
\end{equation*}
$$

for any vector field X.
Finally we have from (2.15)

$$
\begin{aligned}
& \left\{2 \lambda\left(\alpha h-\beta-\frac{c}{4}\right)+h \beta-\alpha h^{2}+2 c h-\frac{3}{4} c \alpha\right\} U \\
= & \alpha(\xi h) A \xi+\alpha\{(2 \alpha-h)(\xi \alpha)-\alpha(\xi h)\} \xi \\
& -\alpha A \nabla \alpha+\left(\beta+\alpha h-2 \alpha^{2}\right) \nabla \alpha-\left(\beta-\alpha^{2}\right) \nabla h,
\end{aligned}
$$

where we have used $(3.1),(3.2),(3.6),(3.12)$ and the fact that $W h=0$. If we take an inner product ξ with this and make use of (3.2), then we obtain

$$
\begin{equation*}
\xi \alpha=\xi h \tag{3.20}
\end{equation*}
$$

Thus, above equation can be written as

$$
\begin{align*}
& \left\{2 \lambda\left(\alpha h-\beta-\frac{c}{4}\right)+h \beta-\alpha h^{2}+2 c h-\frac{3}{4} c \alpha\right\} U \tag{3.21}\\
= & \alpha(\xi \alpha)\{(2 \alpha-h) \xi+\mu W\}-\alpha A \nabla \alpha+\left(\beta+\alpha h-2 \alpha^{2}\right) \nabla \alpha-\left(\beta-\alpha^{2}\right) \nabla h .
\end{align*}
$$

4. Real hypersurfaces satisfying $d u(\xi, X)=0$

We will continue, our arguments under the same hypotheses $S \xi=g(S \xi, \xi) \xi, \nabla_{\phi U} S=$ 0 and $g(U, U)=$ const. as in section 3 .

Now, suppose that $d u(\xi, X)=0$ for any vector field X on Ω. Then we have $g\left(\nabla_{\xi} U, X\right)+g\left(\nabla_{X} \xi, U\right)=0$, or using (1.1), (1.9), (1.12) and (3.12), $\phi \nabla \alpha=$ $\mu(h-3 \lambda) W$ and hence

$$
\begin{equation*}
\nabla \alpha-(\xi \alpha) \xi=(h-3 \lambda) U \tag{4.1}
\end{equation*}
$$

Differentiating (3.14) covariantly and using (3.1), we find

$$
(2 \lambda-h)(X \lambda)=(\lambda-\alpha)(X h)+(2 \alpha-h)(X \alpha)
$$

Putting $X=\xi$ in this and taking account of (3.20), we get

$$
\begin{equation*}
(2 \lambda-h) \xi \lambda=(\lambda+\alpha-h) \xi \alpha . \tag{4.2}
\end{equation*}
$$

In the same way, we also have from (3.13)

$$
\begin{equation*}
(3 \alpha-2 h) \xi \lambda=(-\lambda+\alpha-h) \xi \alpha \tag{4.3}
\end{equation*}
$$

which together with (4.2) yields

$$
(-3 \alpha+h-2 \lambda) \xi \lambda=2 \lambda(\xi \alpha), \quad(3 \alpha-3 h+2 \lambda) \xi \lambda=2(\alpha-h) \xi \alpha
$$

Let $\Omega_{1}=\left\{p \in \Omega \mid\left\{(\xi \lambda)^{2}+(\xi \alpha)^{2}\right\}(p) \neq 0\right\}$. Assume that $\Omega_{1} \subset \Omega$ and $\Omega_{1} \neq \emptyset$.
Then we have by above equations

$$
\begin{equation*}
h^{2}-4 \alpha h+3 \alpha^{2}+2 \lambda^{2}+\lambda(\alpha-h)=0 \tag{4.4}
\end{equation*}
$$

on Ω_{1}. Differentiating this covariantly and using (3.20), we find

$$
(4 \lambda+\alpha-h) \xi \lambda=2(h-\alpha) \xi \alpha
$$

From this and (4.3), we verify that

$$
\begin{equation*}
5 h^{2}-12 h \alpha+7 \alpha^{2}-4 \lambda^{2}+3 \lambda(\alpha-h)=0 \tag{4.5}
\end{equation*}
$$

Using Sylvester's elimination method to (4.4) and (4.5), we deduce that

$$
\begin{equation*}
\left(204 \alpha^{2}-121 c\right)\left(\alpha^{2}+c\right)=0 \tag{4.6}
\end{equation*}
$$

on Ω_{1}. (We use a computer to calculate this.) It is contradictory for $c>0$ or $c<0$. Thus $\Omega_{1}=\emptyset$ and hence $\xi \lambda=\xi \alpha=0$ on Ω. Thus (4.1) is reduced to

$$
\begin{equation*}
\nabla \alpha=(h-3 \lambda) U . \tag{4.7}
\end{equation*}
$$

on Ω_{2}, where $\Omega_{2}=\{p \in \Omega \mid f(p) \neq 0\} \neq \emptyset$ since we have (3.19).

We notice here that α does not vanish on Ω_{2}. In fact, if not, we have $h=3 \lambda$ because of (4.7). By (3.13) we see that $h \lambda=\frac{c}{4}$ and hence $3 \lambda^{2}=\frac{c}{4}$. So we have $c>0$ on Ω_{2}. We also have from (3.14), $2 \lambda^{2}+\beta+\frac{3}{4} c=0$, a contradiction by virtue of $c>0$.

Using (4.7), the equations (3.15) and (3.21) turn out respectively to

$$
\begin{align*}
\mu^{2} \nabla h= & \left\{\left(\beta-\alpha^{2}\right)(h-3 \lambda)+\left(2 \beta-h \alpha+\frac{c}{2}\right) \lambda\right. \tag{4.8}\\
& \left.+(\beta-h \alpha)(2 \alpha-h)+\frac{c}{4}(11 \alpha-8 h)\right\} U \\
\mu^{2} \nabla h= & \left\{(h-3 \lambda)\left(\beta+\alpha h-2 \alpha^{2}-\alpha \lambda\right)\right. \tag{4.9}\\
& \left.+(\beta-h \alpha)(2 \lambda-h)+\frac{c}{2} \lambda-2 c h+\frac{3}{4} c \alpha\right\} U .
\end{align*}
$$

Comparing the last two equations, we obtain

$$
h^{2}+h \alpha-2 \beta-5 h \lambda+3 \alpha \lambda+3 \lambda^{2}-2 c=0
$$

because $\alpha \neq 0$ on Ω_{2}, which together with (3.13) and (3.14) gives

$$
\begin{equation*}
\beta-h \alpha+(h-\alpha)^{2}-\frac{c}{4}=0 \tag{4.10}
\end{equation*}
$$

From this and (3.14) we have

$$
\lambda^{2}=h \lambda-(h-\alpha)^{2}+c
$$

which connected with (3.13) implies that

1) $4 h^{4}-22 \alpha h^{3}+\left(43 \alpha^{2}-5 c\right) h^{2}+\left(\frac{29}{2} c-35 \alpha^{2}\right) \alpha h+10 \alpha^{4}-10 c \alpha^{2}+\frac{c^{2}}{4}=0$.

Differentiating (4.10) covariantly and making use of (3.1), we find on Ω_{2}

$$
(3 \alpha-2 h) \nabla h+(3 h-4 \alpha) \nabla \alpha=0
$$

Similarly we also have from (4.11)

$$
\begin{aligned}
& \left\{16 h^{3}-66 \alpha h^{2}+\left(86 \alpha^{2}-10 c\right) h-35 \alpha^{3}+\frac{29}{2} c \alpha\right\} \nabla h \\
& +\left\{-22 h^{3}+86 \alpha h^{2}-10 \alpha^{2} h+\frac{29}{2} c h+40 \alpha^{3}-20 c \alpha\right\} \nabla \alpha=0
\end{aligned}
$$

Since $(\nabla \alpha)^{2}+(\nabla h)^{2} \neq 0$ on Ω_{2} with the aid of (3.15) and (3.17), it follows, using the last two equations, that

$$
\begin{equation*}
2 h^{4}-12 \alpha h^{3}+\left(27 \alpha^{2}-\frac{c}{2}\right) h^{2}-27 \alpha^{3} h+10 \alpha^{4}+c \alpha^{2}=0 \tag{4.12}
\end{equation*}
$$

Using the same method as that used to derive (4.6) from (4.4) and (4.5), we can deduce from (4.11) and (4.2) the following: (We use a computer to calculate this.)

$$
\left(\alpha^{2}+c\right)\left(80 \alpha^{4}-260 c \alpha^{2}+c^{2}\right)=0
$$

on Ω_{2}. It is contradictory for $c>0$ or $c<0$. Therefore $\Omega_{2}=\emptyset$ and consequently $f=0$ on Ω because of (3.19).

5. Proof of Theorems

First of all, we prove
Lemma 5.1. Let M be a real hypersurface of $M_{n}(c), c \neq 0$. If it satisfies $S \xi=$ $g(S \xi, \xi) \xi, \nabla_{\phi U} S=0$ and $g(U, U)=$ const., then we have

$$
\begin{equation*}
g(U, U)+9 \lambda^{2}+\frac{9}{4} c=0 . \tag{5.1}
\end{equation*}
$$

Proof. As is already shown in section 4, we have $f=0$ on Ω and hence $\nabla h=\nabla \alpha$ because of (3.15). Thus (3.8) becomes

$$
\begin{equation*}
h \lambda+2(\beta-h \alpha+c)=0, \tag{5.2}
\end{equation*}
$$

which together with (3.14) implies that

$$
\begin{equation*}
\lambda^{2}+\beta-h \alpha+\frac{5}{4} c=0, \quad \lambda^{2}=\frac{1}{2} h \lambda-\frac{c}{4} . \tag{5.3}
\end{equation*}
$$

Since $\nabla h=\nabla \alpha$, we see, using (5.3), that $\nabla \alpha=0$ on Ω. Thus, (3.21) implies

$$
\begin{equation*}
(h-2 \lambda)(\beta-h \alpha)-\frac{c}{2} \lambda+2 c h-\frac{3}{4} c \alpha=0, \tag{5.4}
\end{equation*}
$$

which connected to (5.2) and (5.3) yields $h=\alpha-2 \lambda, \alpha \lambda=4 \lambda^{2}+\frac{c}{2}$. Substituting these into (5.2), we verify that $\beta-\alpha^{2}+9 \lambda^{2}+\frac{9}{4} c=0$. This completes the proof.

According to Lemma 5.1, we see that $\Omega=\emptyset$ if $c>0$. Thus, we have
Theorem 5.1. Let M be a real hypersurface of a complex projective space $P_{n} \mathbb{C}$. The the following are equivalent:
(1) M is a Hopf hypersurface in the ambient space $P_{n} \mathbb{C}$.
(2) The structure vector ξ is an eigenvector of the Ricci tensor S of M and satisfies $g\left(\nabla_{\xi} \xi, \nabla_{\xi} \xi\right)$ is constant on M and $\nabla_{\phi \nabla_{\xi} \xi} S=0$ holds.

Remark. For a real hypersurface of a nonflat complex space form, Theorem 5.1 is valid provided that $\left\|\nabla_{\xi} \xi\right\|^{2}+\frac{9}{4} c \geq 0$.

Acknowledgement. The authors would like to express their gratitude to the referee for valuable comments.

References

[1] J. Berndt, Real hypersurfaces with constant principal curvatures in a complex hyperbolic space, J. Reine Angew. Math., 395(1989), 132-141.
[2] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in a complex projective space, Trans. Amer. Math. Soc., 269(1982), 481-499.
[3] T. Y. Hwang, U-H. Ki and N.-G. Kim, Ricci tensors of real hypersurfaces in a nonflat complex space form, Math. J. Toyama Univ., 27(2004), 1-22.
[4] E.-H. Kang and U-H. Ki, On real hypersurfaces of a complex hyperbolic space, Bull. Korean Math. Soc., 34(1997), 173-184.
[5] E.-H. Kang and U-H. Ki, Real hypersurfaces satisfying $\nabla_{\xi} S=0$ of a complex space form, Bull. Korean Math. Soc., 35(1998), 819-835.
[6] U-H. Ki, Real hypersurfaces with parallel Ricci tensor of a complex space form, Tsukuba J. Math., 13(1989), 73-81.
[7] U-H. Ki, N.-G. Kim, S.-B. Lee, On certain real hypersurfaces of a complex space form, J. Korean Math. Soc., 29(1992), 63-77.
[8] U-H. Ki and S. Nagai, Real hypersurfaces of a nonflat complex space form in terms of the Ricci tensor, Tsukuba J. Math., 29(2005), 511-532.
[9] U-H. Ki, H. Nakagawa and Y. J. Suh, Real hypersurfaces with harmonic Weyl tensor of a complex space form, Hiroshima Math. J., 20(1990), 93-102.
[10] U.-K. Kim, Nonexistence of Ricci-parallel real hypersurfaces in $P_{2} \mathbb{C}$ or $H_{2} \mathbb{C}$, Bull. Korean Math. Soc., 41(4)(2004), 699-708.
[11] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Soc., 296(1986), 137-149.
[12] S. Maeda, Ricci tensors of real hypersurfaces in a complex projective space, Proc. Amer. Math. Soc., 122(1994), 1229-1235.
[13] H. Nakagawa, Lecture note on generalized Einstein conditions, Silla Print Pub. in Korea (2004).
[14] R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms, in Tight and Taut submanifolds, Combridge Univ. Press (1998(T.E. Cecil and S.S. Chern eds.)), 233-305.
[15] Y. J. Suh, On real hypersurfaces of a complex space form with η-parallel Ricci tensor, Tsukuba J. Math., 14(1990), 27-37.
[16] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 10(1973), 495-506.
[17] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures, I, II, J. Math. Soc. Japan, (1975), 43-53, 507-516.

