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ABSTRACT. It is known that there are no real hypersurfaces with parallel Ricci tensor in
a nonflat complex space form ([6], [9]). In this paper we investigate real hypersurfaces
in a complex projective space P,C using some conditions of the Ricci tensor S which are
weaker than V.S = 0. We characterize Hopf hypersurfaces of P,C.

0. Introduction

An n-dimensional complex space form M, (¢) is a Kaehlerian manifold of con-
stant holomorphic sectional curvature c.

As is well known, complete and simply connected complex space forms are
isometric to a complex projective space P,,C, a complex Euclidean space C,, or a
complex hyperbolic space H,,C according as ¢ > 0, ¢ =0 or ¢ < 0.

Let M be a real hypersurface of M, (¢). Then M has an almost contact met-
ric structure (¢, £, 7, ¢g) induced from the complex structure J and the Kaehlerian
metric of M, (¢) (for details see section 1). The structure vector field £ is said
to be principal if AS = af is satisfied, where A is the shape operator of M and
a =n(AEf). A real hypersurface is said to be a Hopf hypersurface if the structure
vector field £ of M is principal.

Tagaki ([16], [17]) classified all homogeneous real hypersurfaces of P,,C as six
model spaces which are said to be Aj, Ag, B, C, D and E, and Cecil-Ryan ([2]) and
Kimura ([11]) proved that they are realized as the tubes of constant radius over the
Kaehlerian submanifolds. Namely, he proved the following:

Theorem T ([16]). Let M be a homogeneous real hypersurface of P,C. Then M
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is a tube of radius r over one of the following Kaehlerian submanifolds:
(A1) a hyperplane P,_1C, where 0 < r < s

(A2) a totally geodesic P,C (1 <k <mn—2), where 0 <r < I,

(B) a complex quadric Qn_1, where 0 <17 < 7,

(C) PiC x P,—1)/2C, where 0 <r < % and n(> 5) is odd,
(D)

(E)

E) a Hermitian symmetric space SO(10)/U(5), where 0 <r < T and n = 15.

a complex Grassmann Ga5C, where 0 <r < 7 andn =9,

Also Berndt([1]) classified all Hopf real hypersurfaces of H,,C with constant
principal curvatures as follows:

Theorem B ([1]). Let M be a real hypersurface of H,C. Then M has constant
principal curvatures and & is principal if and only if M is locally congruent to one
of the following:

(Ag) a self-tube, that is, a horosphere,

(A1) a geodesic hypersphere or a tube over a hyperplane H, _1C,

(A2) a tube over a totally geodesic H,C(1 <k <k —2),
)

(B) a tube over a totally real hyperbolic space H,R.

We denote by V and S be the Levi-Civita connection and the Ricci tensor
of M. There are many studies about Ricci tensors of real hypersurfaces ([3], [4],
[5], 6], [7], [8], [9], [12], [15], etc.). Very important fact is that there are no real
hypersurfaces with parallel Ricci tensor in M, (¢), n > 2, ¢ # 0 ([6], [9], [10]). So
it is natural to investigate real hypersurfaces M by using some conditions about
derivative of S which are weaker than V.S = 0. For each Hopf hypersurface M in
a nonflat complex space form, the structure vector field £ is an eigenvector of the
Ricci tensor S of M, and the scalar g (V¢&, V&) vanishes identically on M. So it is
natural to consider a problem that if S& = g(SE, £)€ holds or g (V¢&, V&) = const.,
is M a Hopf hypersurface? Nagai and one of the present authors ([8]) proved the
following which gives a partial answer to this problem:

Theorem KN ([8]). Let M be a real hypersurface in a complex projective space
P,C. Then the following are equivalent:

(1) M is a Hopf hypersurface in the ambient space P,C.

(2) The structure vector £ is an eigenvector with constant eigenvalue of the Ricci
tensor S of M and V yv.¢S = 0 holds.

The purpose of this paper is to establish the following:

Theorem. Let M be a real hypersurface of P,C. The the following are equivalent:
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(1) M is a Hopf hypersurface in P,C.
(2) SE€=g(5¢,€)¢ and Vyy,eS =0 hold, and g (V¢ VeE) is constant on M.

1. Preliminaries

Let M be a real hypersurface immersed in a complex space form (M, (c),G)
with almost complex structure J and the Kaehler metric G of constant holomorphic
sectional curvature ¢, and let N be a unit normal vector field on M. The Rieman-
nian connection V in M, (¢) and V in M are related by the following formulas for
any vector fields X and Y on M:

VyX =VyX +g(AY,X)N, VxN =-AX,

where g denotes the Riemannian metric on M induced from that G of M, (¢) and
A is the shape operator in the direction of N in M, (¢). For any vector field X
tangent to M, we put

JX =¢X +n(X)N, JN=—¢

Then we may see that the structure (¢, £, 7, g) is an almost contact metric structure
on M, namely, we have

P’X =-X+n(X)E g(X,0Y)=g(X,Y)—n(X)n(Y),

77(5):17 »§ =0, U(X):g(Xaf),

for any vector fields X and Y on M.
From the fact VJ = 0 and above equations we verify that

(L1) (Vx@)Y = n(Y)AX — g(AX,Y)E, V€= gAX.

Since the ambient manifold is of constant holomorphic sectional curvature ¢, we
have the following Gauss and Codazzi equations respectively:

(12) RXY)Z = S{g(V2)X - g(X, 2)Y +g(6Y, 2)6X — g(6X, Z)0Y
~29(¢X,Y)$Z} + g (AY, Z) AX — g(AX, Z)AY,

¢

(1.3) (VxA)Y = (VyA) X = -{n(X)¢Y =0 (Y) dX — 29 (X, V) &}

for any vector fields X, Y and Z on M, where R denotes Riemann-Christoffel
curvature tensor of M. We shall denote the Ricci tensor of type (1.1) by S. Then
it follows from (1.2) that

(1.4) SX = g{(2n+ 1)X — 37 (X) €} + hAX — A’X,
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where h = trace A. Further, using (1.1), we obtain

(15)  (VxS)Y = —Scfgl6AX,Y)E+n (V) 9AX} + (Xh) AY
F(hI — A) (VxA)Y — (VxA) AY,

where [ is the identity map.

In what follows, to write our formulas in convention forms, we denote by o =
n(Ag), B =n (Azf), and for a function f we denote by Vf the gradient vector
field of f.

We put U = V&, then U is orthogonal to the structure vector field £. Thus it
is, using (1.1), seen that

(1.6) OU = —AE + of,

which enables us to obtain g (U,U) = —a?. Thus we easily see that £ is a principal
curvature vector, that is, A = o if and only if 3 — a? = 0.
Now differentiating (1.6) covariantly along M and using (1.1), we find

(1.7) n(X)g(AU + Va,Y) + g(¢X,VyU)

which shows that

(1.8) (VeA) & =2AU + Va,
because of (1.3). From (1.7) we also have

(1.9) VeU = 30AU + oA — BE + ¢V,

where we have used (1.1).
If 3 —a? # 0, then we can put

(1.10) AE = af + W,

where W is a unit vector field orthogonal to £&. Then by (1.1) we see that U = u¢pW
and hence g (U,U) = p?, and W is also orthogonal to U. Thus, we see, making use
of (1.1) and (1.10), that

(1.11) ng (VxW,§) = g(AUX),
(1.12) 9(Vx§U) = pug(AW,X).
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2. Structure eigenvectors of the Ricci tensor

Let M be a real hypersurface of a complex space form M, (¢), ¢ # 0. Now,
suppose that the structure vector £ is an eigenvector of the Ricci tensor, that is,

(2.1 5S¢ =g(5¢,€)¢.
We then have by (1.4)
(2.2) A%¢ = hAE + (B — ha) €.

In the following we assume that p # 0 on M, that is, £ is not a principal curvature
vector field and we put Q@ = {p € M | p(p) # 0}. Then Q is an open subset of M,
and from now on we discuss our arguments on 2 unless otherwise stated.

From (1.10) and (2.2) we verify that

(2.3) AW =pé+(h—a) W
and hence
(2.4) A*W = hAW + (B8 — ha) W

because p # 0.
Differentiating (2.3) covariantly along €2, we find

(2.5) (VxAW+AVXW = (Xp)E+uVxE+X(h—a)W+ (h—a) VxW.
If we take an inner product with W in this, then we obtain
(2.6) g(Vx AW W) =—-29(AU,X)+ Xh — X«

because W is a unit vector field orthogonal to £&. We also have by applying & to
(2.5)

(2.7) pg (VxA)W,§) = (h —2a) g (AU, X) + pu(Xn),

where we have used (1.11).
Putting X = ¢ in (2.5) and making use of (1.3) and (2.7), we find

(2.8) (h — 2a) AU — EU + UV + p{AVeW — (h — ) VW)
= p(Ep)E+pPU+p(Eh —Ea) W.
On the other hand, it is, using U = —uW, seen that
g(AU, X) & — ¢VxU = (Xp) W + uVxW.
Replacing X by ¢ in this and taking account of (1.6) and (1.9), we have
(2.9) UV = 3AU — Ul — (¢a) € — (&) W,
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which shows that
(2.10) Wa =E&p.

Substituting (2.9) and (2.10) into (2.8), we get

(2.11) 3A2U—2hAU+AVa+%Vﬁ—hVa+ (ah—ﬂ— 2) U
= 2uWa){+puEh)W = (h—2a) (o),

where we have used p? = 3 — o?.

Differentiating (2.2) covariantly and making use of (1.1), we find
(2.12) (VxA)AE + A(Vx A) €+ A2pAX — hApAX
= (Xh)AL+h(Vx AL+ X(B—ha) + (6 — ha)pAX,

which together with (1.3) yields

(213)  L{u(V)n(X) —u(X)n (V)} + 5 (h - a)g (&Y, X) - g(A?6AX.Y)
+g(AGAY, X) + 2hg (6AX, AY) — (8 — ha){g(6AY, X) — g(6AX,Y)}
= g(AY,(VxA)¢§) — g(AX, (Vy A) &) + (Yh)g(Ag, X) — (Xh)g(AL,Y)
+Y (B8 — ha)n (X) = X(6 = ha)n (Y),
where we have defined a 1-form u by u(X) = g(U, X) for any vector field X.

Putting X = pW in (2.12) and taking account of (1.3), (1.8), (2.3), (2.4) and
(2.7), we obtain

(2.14) (3 — 2h) A2U + 2(h? + B — 2ah + E)AU +(h—a)(B—ah— g)U

= pAVp+ (ah —p)Va — % (h — Q) VB + u?Vh — u (Wh) A& — pW (B — ah)E.

Because of (1.10), we have from (2.12)
A(VxA)E + (= B)(Vx A) + p(Vx A)W
= (Xh)AE+ X (B — ha)é + (B — ha)pAX + hApAX — A?pAX.
Therefore, replacing X by a&+ pW in this and using (1.1), (1.3), (1.8), (1.10), (2.6)
and (2.7), we find

(2.15) 2hA%U + 2(ah — B — h* — E)AU + (h?a— hpB + gh - an)U

= g(AE,Vh) A — %AVH + %(h —2a)VB + fVa
—p*Vh+ g (AE, V(B — ah)) €.
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In the following we assume that VS = 0 and hence VS = 0 since we assume
that o # 0. Then, by replacing X by W, we have from (1.5)

—gc(h — @) @Y+ (Y)U) + u(Wh) AY + uh (Vi A)Y

where we have used (1.1) and (2.3). Putting Y = W in this and making use of
(1.3), (2.6) and (2.7), we find

(2.16) (Wh)AW = hAU — gU — 242U + %vg —aVh+ AVh — AVa

because p # 0.
Differentiating (2.1) covariantly and using VS = 0, we find

(2.17) SVwe = W(ah — B)E + {g(n— 1) +ha—6} Ve,
which implies
(2.18) W (8 — ha) = 0.

By the way we see, using (1.1) and (2.3), that uVw& = (h — a) U, it follows
from (1.4) and (2.17) that

(2.19) (h—a){AQU—hAU— <B—ha+ic> U} =0.

3. Real hypersurfaces with g (V¢{, V) = const.

We continue now, our arguments under the same hypotheses S¢ = g(S¢, )¢
and VeuS = 0 as in section 2. Further, suppose that g (U,U) = const., that is,
Vi = 0. Then we have
(3.1) V8 = 2aVa,
which together with (2.10) gives
(3.2) Wa =0.

Using these facts, (2.14) and (2.16) turn out respectively to
(3.3)  (3a— 2h) A2U + 2(h% + B — 2ah + Z)AU +(h—a) (5 — ha — g) U
= @*(Vh—Va)—p* (Wh)W,
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(3.4) 2A2U — hAU + gU + (Wh) AW = AVh — AVa — o(Vh — Va).

We notice here that h — a # 0 on €. In fact, if not, then we have h = a. So
(3.3) and (3.4) are reduced respectively to

(3.5) aA2U +2 (5—a2+§) AU =0, 2A%U = a AU — gU
because of (3.2), which enables us to obtain
— 2_p_¢
aAU =2 (a 16} 4> U

on this set. However, we verify that o # 0 on this subset by virtue of (2.11)
and (3.4) with h = q, it follows that AU = vU, where a function v given by
av =2 (a?— B — £) is defined. From this and (3.5) we see that v is constant by
virtue of ;1 = constant and hence Va = 0. Further, we have

V2+ﬂ—a2+%:0.

Since « is constant, (2.11) implies

31/2—2041/—&—0(2—6—220,

which will produce a contradiction. Hence h — o # 0 on € is proved. Thus (2.19)
becomes

(3.6) AU = hAU + <ﬁ — ha+ Zc) U.

Now, we are going to prove Wh = 0 on €. From (2.18), (3.1) and (3.2) we verify
that o (Wh) = 0. Suppose that Wh # 0. Then we have o = 0. So (2.11) implies
that

B = 20AU + (B + ) U

because U is orthogonal to £, or using (3.6)
hAU +2(8 4 c)U = 0.
Applying this by A and making use of (3.6), we find
{R*+2(8+c)} AU +h (ﬂ+ie) U=0.

Combining the last two equations, it follows that

h? (ﬁ—i— ic) +4(B+c)* =0,
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which shows that Wh = 0 by virtue of (3.1), a contradiction. Thus, Wh = 0 on Q
is proved.
Using (3.6) and the fact that Wh = 0, (3.3) and (3.4) turn out respectively to

(3:7) 13(Vh = Va) = (28— ha+ £)AU + {(8=ha)2a—n)+ “(lla - sh} U,

(3.8) AVh — AVa = a(Vh — Va) + hAU +2(3 — ha + ¢)U.

Applying to the both sides of (3.7) by A and making use of (3.6) and (3.8), we
find
c

(3.9) (3a — 2h) AU = (a® — ha — 5)U.

Let € be a set of points in €2 such that AU — AUJ|, # 0 at p € €2 and suppose
that € is nonvoid. If a® — ha — § # 0, then from (3.9) we get 3ac — 2h # 0 and
hence g is empty. Thus, it is, using (3.9), seen that

c

a2—ha—§:0, 3a = 2h,

which shows that a? + ¢ = 0. Hence « is nonzero constant. So does h on .
Therefore (3.8) is reduced to

(3.10) 30 AU + (48 — 10a2)U = 0,

which together with (3.6) implies that

(3.11) (88 — 11a%) AU + « (66 - 227a2> U=0.

On the other hand, by using the fact that a? 4 ¢ = 0 and 3a = 2h we have from
(3.7)
4(B—a®) AU + a (B —4a®) U =0.
Combining (3.10) and (3.11) to this, we see that 3 — a? = 0 and hence Qg = 0.
Thus we have from (3.9)

(3.12) AU = \U,

where the function A given by

(3.13) (3c — 2h)A = 2 — ha — g
is defined.
Because of (3.12), it follows, making use of (3.6) and (3.7), that

(3.14) N =h\+3—ha+ %q
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(3.15) p3(Vh—Va) = {(25 — ha+ g)A + (8- ha) (20— h) + 2 (1la — sh)} U.
Since V= 0 by assumption, we find from the last equation
(3.16) (XHu¥) = (Y HuX)+ fdu(X,Y)=0
for any vector fields X and Y, where we have put
(3.17) f= (267ha+§)>\+(ﬂfha) (2afh)+£(11af8h),
and the exterior derivation du of u is given by
du(Y, X) = 5 {Vu(X) = Xu(Y) —u (Y, X])}.

Putting X = ¢ in (3.16), we find

(3.18) (€S uY) + fdu(€,Y) = 0.
du(&,U) being vanish identically on €, it follows that
§f=0

because we have (1.9), (3.2), (3.12) and Vu = 0. Therefore (3.18) becomes
(3.19) fdu(§, X) = 0.

for any vector field X.
Finally we have from (2.15)

_g_¢ b2 _3
{2/\<ah I} 4)+hﬁ ah” + 2ch 4ca}U

= a(h) AS + a{(2a = h) (§a) — a(En)}E
—aAVa + (B + ah — 20*)Va — (8 — o*)Vh,

where we have used (3.1), (3.2), (3.6), (3.12) and the fact that Wh = 0. If we take
an inner product ¢ with this and make use of (3.2), then we obtain

(3.20) Ea = £&h.
Thus, above equation can be written as
3
(3.21) {2/\ (ah - [ - 2) + hB — ah® + 2ch — 40@} U

= a(a){2a—h)E+uW} —aAVa + (B + ah —2a*)Va — (8 — a*)Vh.
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4. Real hypersurfaces satisfying du(§, X) =0

We will continue, our arguments under the same hypotheses S§ = g(S¢,£)¢, Vyu S =
0 and g(U,U) = const. as in section 3.

Now, suppose that du(¢, X) = 0 for any vector field X on . Then we have
g(VeU, X) + g(VxE,U) = 0, or using (1.1), (1.9), (1.12) and (3.12), ¢Va =
p (h —3X) W and hence

(4.1) Va— ((a)f = (h—3\)U.

Differentiating (3.14) covariantly and using (3.1), we find

2A—h) (X)) =\ —a)(Xh)+ (2a— h)(Xa).

Putting X = ¢ in this and taking account of (3.20), we get
(4.2) 22X —h)EXN = (A + a — h)éa.

In the same way, we also have from (3.13)
(4.3) (Ba—2h)EX = (A + a — h)éa,
which together with (4.2) yields

(=3a+h—=2))EXA=2X(¢a), (Ba—3h+2M)EN=2(a—h)éa.

Let Q1 = {p € Q{(EN)? + (€a)?}(p) # 0}. Assume that Q; C Q and Q; # 0.
Then we have by above equations

(4.4) h? —4ah + 30> +2X2 + A (a—h) =0
on ;. Differentiating this covariantly and using (3.20), we find
(AN 4+ a—h)ex=2(h — a)éa.
From this and (4.3), we verify that
(4.5) 5h? — 12ha + Ta? — 4X% 4+ 3\(a— h) = 0.
Using Sylvester’s elimination method to (4.4) and (4.5), we deduce that
(4.6) (2040 — 121¢) (@® +¢) =0

on ;. (We use a computer to calculate this.) It is contradictory for ¢ > 0 or ¢ < 0.
Thus Q; = 0 and hence A = o = 0 on Q. Thus (4.1) is reduced to

(4.7) Va = (h— 3\)U.

on g, where Qs = {p € Q| f(p) # 0} # 0 since we have (3.19).
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We notice here that o does not vanish on €25. In fact, if not, we have h = 3\
because of (4.7). By (3.13) we see that hA = ¢ and hence 3\* = £. So we have
¢ > 0 on Q. We also have from (3.14), 2A? + 3 + %c = 0, a contradiction by virtue
of ¢ > 0.

Using (4.7), the equations (3.15) and (3.21) turn out respectively to

(4.8) pVh = {(8-0%) (h=3X) + (20— ha+ $)A

+ (8 — ha) (20— h) + 2 (1la — 8h)}U.

(4.9) p?Vh = {(h—3X) (B+ah—2a> — al)
(5~ ha) (A~ h) + SA—2ch+ gca}U.
Comparing the last two equations, we obtain
h? + ha — 20 — 5hA + 3aA +3)* —2c =0
because a # 0 on s, which together with (3.13) and (3.14) gives

(4.10) B—ha+(h—a)’—==0.

=10

From this and (3.14) we have
A =hr—(h—a)*+c,

which connected with (3.13) implies that

2

29
(4.11) 4h* —22ah® + (430% — 5c)h* + (2(; — 35a2> ah +10a* —10ca? + CZ =0.

Differentiating (4.10) covariantly and making use of (3.1), we find on Qs
(3a —2h) Vh + (3h — 4a) Va = 0.

Similarly we also have from (4.11)
3 2 2 3 29
16h° — 66ah” + (86a° — 10c)h — 35a° + - ¢ Vh
3 2 2 29 3
+ 4 —22h° + 86ah” — 10a”h + 3ch + 40a” — 20ca p Va = 0.

Since (Va)® + (Vh)® # 0 on Qy with the aid of (3.15) and (3.17), it follows, using
the last two equations, that

(4.12) 2ht — 12ah® + (27(12 - g) h? — 270%h + 100" + ca? = 0.
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Using the same method as that used to derive (4.6) from (4.4) and (4.5), we can
deduce from (4.11) and (4.2) the following: (We use a computer to calculate this.)

(a2 + c) (80a4 — 260ca® + 02) =0

on . It is contradictory for ¢ > 0 or ¢ < 0. Therefore Q2 = () and consequently
f =0 on Q because of (3.19).

5. Proof of Theorems
First of all, we prove

Lemma 5.1. Let M be a real hypersurface of My, (c), ¢ # 0. If it satisfies S =
9(S€,8)E,VeuS =0 and g(U,U) = const., then we have

(5.1) g(U,U) +9\% + zc =0.

Proof. As is already shown in section 4, we have f = 0 on  and hence Vh = Va
because of (3.15). Thus (3.8) becomes

(5.2) hA+2(8 —ha+c) =0,
which together with (3.14) implies that

) 1 c
2 — —C = 2 = — —_ =
(5.3) A+ 08— ha+ 1€ 0, A 2h)\ e

Since Vh = Va, we see, using (5.3), that Va = 0 on . Thus, (3.21) implies
(5.4) (h—2X) (8 — ha) — §A+2ch— %ca =0,
which connected to (5.2) and (5.3) yields h = o — 2\, X = 4A? 4 §. Substituting

these into (5.2), we verify that 3 — a® +9A? + 2¢ = 0. This completes the proof.]
According to Lemma 5.1, we see that Q = () if ¢ > 0. Thus, we have

Theorem 5.1. Let M be a real hypersurface of a complex projective space P,C.
The the following are equivalent:

(1) M is a Hopf hypersurface in the ambient space P,C.

(2) The structure vector & is an eigenvector of the Ricci tensor S of M and

satisfies g (Ve&, V&) is constant on M and Vyy.eS = 0 holds.

Remark. For a real hypersurface of a nonflat complex space form, Theorem 5.1 is
valid provided that ||[V¢||> + J¢>0.

Acknowledgement. The authors would like to express their gratitude to the ref-
eree for valuable comments.
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