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ABSTRACT. In this paper we consider a real hypersurface M in complex hyperbolic space
H,C satisfying SpA = ¢AS, where ¢, A and S denote the structure tensor, the shape
operator and the Ricci tensor of M respectively. Moreover, we give a characterization of
real hypersurfaces of type A in H,C by such a commuting Ricci tensor.

0. Introduction

A complex n-dimensional Kaehler manifold of constant holomorphic sectional
curvature c is called a complex space form, which is denoted by M, (c). As is well-
known, a connected complete and simply connected complex space form is complex
analytically isometric to a complex projective space P, C, a complex Euclidean space
C™ or a complex hyperbolic space H,,C according as ¢ > 0,¢ =0 or ¢ < 0.

Let M be a real hypersurface in M, (c). Then M has an almost contact metric
structure (¢, &, n, g) induced from the Kaehler structure J and the Kaehlerian metric
G of My(c). The structure vector field £ is said to be principal if A = o holds
on M, where A denotes the shape operator of M in M,(c) and o = n(Agf). A
real hypersurface is said to be a Hopf hypersurface if the structure vector field £ of
M is principal. For examples of such kind of Hopf hypersurfaces in P,,C we give
some homogeneous real hypersurfaces which are represented as orbits under certain
subgroup of the projective unitary group PU(n + 1) ([8]).

Berndt [1] showed that all real hypersurfaces with constant principal curvature
of a complex hyperbolic space H,,C are realized as the tubes of constant radius over
certain submanifolds when the structure vector field £ is principal. Nowadays in
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H,,C they said to be of type (Ag), (A1), (A2) and (B). He proved the following :

Theorem B ([1]). Let M be a real hypersurface in H,,C. Then M has constant
principal curvatures and £ is principal if and only if M is locally congruent to one
of the following :

(Ap) a self-tube, that is, a horosphere,

(A1) a geodesic hypersphere or a tube over a hyperplane H,,_;C,

(A2) a tube over a totally geodesic H,C (1 < k <n —2),

(B) a tube over a totally real hyperbolic space H,R.

On the other hand, we remark that every homogeneous real hypersurface in P,,C
was proved a Hopf hypersurface (cf. [2], [8]). However, in H,C there exists some
kinds of homogeneous real hypersurfaces, called ruled real hypersurfaces, which are
not Hopf hypersurfaces (see [6]).

Let M be a real hypersurface of type (Ag), (A1) or (Ag) in a complex hyperbolic
space H,C. Now, hereafter unless otherwise stated, such hypersurfaces are said to
be of type A for our convenience sake. Now we introduce a theorem due to Montiel
and Romero [7] as follows:

Theorem MR ([7]). If the shape operator A and the structure operator ¢ commute
to each other, then a real hypersurface of a complex hyperbolic space H,C is locally
congruent to be of type A.

Now let us denote by S the Ricci tensor of M in a complex space form M, (c).
Then in a paper due to Kwon and the second author [3], they considered a real
hypersurface M in a complex space form M, (c) with L¢S = V¢S, where L¢ and
V¢ respectively denotes the Lie derivative and the covariant derivative along the
direction of the structure vector £ of M. Then it was proved that £S5 = V.S is
equivalent to the condition SpA = pAS.

In such a case we say that M has commuting Ricci tensor. That is, the Ricci
tensor S of M in M, (c) commutes with the tensor ¢A.

Now let us consider a real hypersurface M in M, (c) with SpA — pAS = 0.
Then we have (see [5])

IS0 - 65| + SelloAg] =o.

From this naturally M becomes a Hopf hypersurface if ¢ > 0. In the case where
¢ < 0, by using the method of A26=0 (mod ¢, A¢), Kwon and the second author
([3]) proved the following :

Theorem KS ([3]). Let M be a real hypersurface in H,,C, n > 3, with commuting
Ricci tensor. If the structure vector field & is principal, then M is locally congruent
to of type A.

Then we want to make a generalization of Theorem KS without the assumption
that the structure vector field £ is principal. In this paper we have introduced
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a certain vector U defined by U = V£ and have applied such a vector to the
expression of A%2£=0 (mod &, A¢), and finally proved that the structure vector ¢ is
principal. Namely, we prove the following

Theorem. Let M be a real hypersurface in a complex hyperbolic space H,C, n > 3,
with commuting Ricci tensor. Then M becomes a Hopf hypersurface. Further, M
is locally congruent to one of the following spaces :

(Ag) a self-tube, that is, a horosphere,

(A1) a geodesic hypersphere or a tube over a hyperplane H,_1C,

(A2) a tube over a totally geodesic Hi,C (1 <k <n —2).

1. Preliminaries

Let M be a real hypersurface immersed in a complex space form (M,(c),G)
with almost complex structure J of constant holomorphic sectional curvature c,
and let C' be a unit normal vector field on M. The Riemannian connection V in
M, (c) and V in M are related by the following formulas for any vector fields X
and Y on M :

(1.1) VyX = VyX + g(AY, X)C,
(1.2) VxC = —AX,

where g denotes the Riemannian metric on M induced from that G of M,,(c) and A
is the shape operator of M in M,,(c). A characteristic vector X of the shape operator
of A is called a principal curvature vector. Also an eigenvalue A of A is called a
principal curvature. It is known that M has an almost contact metric structure
induced from the almost complex structure J on M, (c), that is, we define a tensor
field ¢ of type (1,1), a vector field &, a 1-form n on M by g(¢X,Y) = G(JX,Y)
and ¢g(&, X) =n(X) = G(JX,C). Then we have

(1.3) ¢*X =X +n(X)¢ 966 =1, ¢£=0.
From (1.1) we see that

(1.4) (Vx9)Y =n(Y)AX — g(AX, Y,
(1.5) V& =pAX.

Since the ambient space is of constant holomorphic sectional curvature ¢, equa-
tions of the Gauss and Codazzi are respectively given by

(L6)  R(X,Y)Z=1{g(Y.2)X — g(X. 2)Y + (oY, Z)6X — g(¢X, Z)oY
~ 29(9X.Y)0Z} + g(AY. Z)AX — g(AX, Z)AY.

(L7 (VxAY = (VyA)X = 2{(X)8Y —n(Y)eX - 29(6X,Y)¢}
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for any vector fields X,Y and Z on M, where R denotes the Riemannian curvature
tensor of M. We shall denote the Ricci tensor of type (1,1) by S. Then it follows
from (1.6) that

(1.8) &ngﬁmy+nx_3mxx}+hAx_A%&

where h = trace A.

To write our formulas in convention forms, we denote a = n(A¢), 8 = n(A2%¢),
v = n(A3¢), § = n(A%), u?> = B — a? and Vf by the gradient vector field of a
function f on M. In the following, we use the same terminology and notation as
above unless otherwise stated.

If we put U = V¢€, then U is orthogonal to the structure vector field £. Then
using (1.3) and (1.5), we see that

(1.9) oU = —Af + af,

which shows that g(U,U) = 8 — o?. By the definition of U, (1.3) and (1.5) it is
verify that

(1.10) 9(Vx&,U) = g(A%, X) — ag(A¢, X).

Now, differentiating (1.9) covariantly along M and using (1.4) and (1.5), we
find

(1.11) 1(X)g(AU + Va,Y) + g(6X, VyU)
= 9((Vy 4)X,§) — g(ApAX,Y) + ag(AdX,Y),

which enables us to obtain
(1.12) (VeA) =2AU + Va

because of (1.7). From (1.11) we also have

(1.13) VeU = 30AU + aAE — BE+ ¢V,
where we have used (1.3), (1.5) and (1.10).

We put
(1.14) A€ = a€ + uW,

where W is a unit vector field orthogonal to £. Then from (1.9) it is seen that
U = u¢W and hence g(U,U) = pu?, and W is also orthogonal to U. Thus, we see,
making use of (1.5), that

(1.15) ng(VxW,§) = g(AU, X).
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2. Real hypersurfaces satisfying A%2¢ = 0 (mod &, A¢)

Let M be a real hypersurface of a complex space form M,(c), ¢ # 0. If it
satisfies A%2¢ =0 (mod &, AE). So we can put

(2.1) A€ = pAE + (B — pa)é

for a certain scalar p.

Hereafter, unless otherwise stated, let us assume that o # 0 on M, that is, £ is
not a principal curvature vector field and we put Q@ = {p € M|u(p) # 0}. Then 2
is an open subset of M, and from now on we discuss our arguments on 2.

From (1.14) and (2.1), we see that

(2.2) AW = pé+ (p— )W
and hence
(2.3) APW = pAW + (8 — pa)W

because p # 0.
Now, differentiating (2.2) covariantly along €, we find

(24) (VxAW + AVXW = (Xp)€ + pVx&+ X(p—a)W + (p —a)Vx W.
By taking an inner product with W in the last equation, we obtain
(2.5) g(Vx AW W) = =29(AX,U) + Xp — X«
since W is a unit vector field orthogonal to £&. We also have by applying & to (2.4)
(2.6) ng(Vx A)W,§) = (p — 2a)g(AU, X) + (X ),
where we have used (1.15), which together with the Codazzi equation (1.7) gives
(2.7) (Vi A)E = (p = 20)AU = SU + Vi,
(2.8) W(Ve AW = (p — 22) AU — EU + UV,

Replacing X by £ in (2.4) and taking account of (2.8), we find
(2.9) (p — 20) AU — EU 4 U+ p{AVeW — (p— a)VeW}

= p(Em)€ + U + u(ép — Ea)W.

On the other hand, from ¢U = —uW we have

g(AU, X)§ — ¢V xU = (X)W + uVxW.
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Replacing X by £ in this and using (1.9) and (1.13), we get
(2.10) pVeW =3AU — aU 4+ Va — (§a)§ — (§u)W,
which implies

(2.11) Wa = &p.

From the last three equations, it follows that

(2.12) 3A2U—2pAU+AVa+%Vﬁ—pVomL(ap—ﬁ— E)U
=2u(Wa)§ + u(Ep)W — (p — 20)(§a)s,
which enables us to obtain
(2.13) €8 = 2a(ta) + 2u(Wa).
Differentiating (2.1) covariantly and making use of (1.5), we get
(2.14) (VxA)AE + A(Vx A)E + A%9AX — pApAX
= (Xp)AL+ p(VxA)§ + X(B — pa)§ + (B — pa)pAX,

which together with (1.7) implies that

(2.15)  J{u(¥)n(X) —u(X)n(¥)} + 5(p — 0)g(@Y, X) — g(4*pAX.Y)
+9(A%QAY, X) +2pg(9AX, AY) — (B — pa){g(¢AY, X) — g(pAX,Y)}
= 9(AY, (Vx A)§) — g(AX, (Vy A)§) + (Y p)g(AS, X) — (Xp)g(AL,Y)
+Y (B = pa)n(X) = X(8 = pa)n(Y),
where we have defined a 1-form u by u(X) = ¢g(U, X) for any vector field X. If we

replace X by uW to the both sides of (2.15) and take account of (1.12), (2.2), (2.3),
(2.6) and (2.7), we obtain

(2.16) (B — 2p) AU +2(p” + 8 — 2pa + E)AU +(p—a)(8— pa— g)U
= pAVu+ (ap — B)Va — %(p —a)VB+u?Vp
— uw(Wp)AE — pW (B — pa)s.

Using (1.14), we can write the equation (2.14) as

AV A+ (a— p) (Vx A)E + p(Vx A)W
— (Xp)AE + X (B — pa)é + (B — pa)pAX + pAGAX — A>GAX.
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Thus, from this, by replacing X by af + uW and making use of (1.5), (1.12), (1.14)
and (2.5) ~ (2.7), we find

(2.17) 20A%U +2(ap — B — p* — E)AU + (p*a — pB + gp - gca)U

= 9(AE, Vp) A€ — JAVS + (o~ 20)V5 + iV
— u*Vp+ g(AE, V(B — pa))é.

3. Real hypersurfaces in H,C with commuting Ricci tensor

Let us consider a real hypersurface M in complex hyperbolic space H,C with
negative constant holomorphic sectional curvature ¢ < 0. If M satisfies SpA —
PAS = 0, we say that M has commuting Ricci tensor. In this section we consider a
real hypersurface M in H,C with commuting Ricci tensor. Then by (1.8) we have

(3.1) h(APA — pA?) + A — A2pA + %cn ®U =0,
where we have used (1.5). Taking the transpose of this, we find
(3.2) h(ApA — A%¢) + A3p — ApA® + ch ®&=0.

Transforming (3.1) by A to the left, and (3.2) to the right respectively, and
combining to these two equations, we obtain

n® AU + £ @n(AgA) =0,
which implies
(3.3) AU =0.
If we take an inner product (3.2) with £ and make use of (3.3), then we have
(3.4) ApA%¢ = 0.

Taking an inner product (3.1) with £ and using (3.3) and the last equation, we
also find

3
H(A3E — hA%€) + U =0.
If we apply this by ¢ and take account of (1.9), then we get
3 9 3 3
A°E — hA“E = (v—ﬂh#—zca){— ZcAg,
which tells us that

(3.5) AYe — hA3¢ = (y — Bh + an)Ag — %CA2£.
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Next, applying (3.1) by A¢ and making use of (3.3) and (3.4), we have
P(A' — hA%E) = zcaU,
which implies that
Ate — hA3E = —an(Ag — ) + (6 — hy)€.
This, together with (3.5) implies that

(3.6) 20A2§ =(y—pBh+ gca)Af + (hy—46— ang)f.

Thus, it follows that

3
(3.7) (B —a®) =aly = ph) + hy 6.
Therefore (3.6) is reformed as

(3.8) A% = pAE + (B — pa)g,

where the function p is defined in such a way that

3 3
(3.9) 1P=T- Oh + 500

Accordingly the formulas stated in Section 2 are established.
Now, we are going to prove our Main Theorem.
Transforming (2.12) by U and using (3.3), we find

(3.10) SUB — p(Ua) = (5~ por + )

Similarly, from (2.16) and (2.17) we have respectively

(311)  (ap— )~ 5(p— U+ (5~ a")Up=(p— a)(6 — par— )i

(312) (o~ 205+ B(U0) — (5 — 0))Up = (Pa— pf+ op— Sca)”

Differentiating (3.3) covariantly along §2, we find
(VxA)U + AVxU = 0.
If we put X = ¢ in this and take account of (1.13) and (3.3), we obtain

(Ve A)U + aA%¢ — BAE + aA¢Va =0,
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which shows that
$(VeAU = (8 — pa)U — apA¢Va,

where we have used (3.8). From this and (1.7), it follows that

(3.13) AV A)E = (B — pa + E)U — adA¢Va.

On the other hand, from Vx§ = ¢AX and U = V¢£, we see that
VxU = ¢(Vx A+ aAX — g(A2X, )6 + pAPAX
by virtue of (1.4). Replacing X by U in this and making use of (3.3), we obtain
VU = ¢(Vy A)E, which together with (3.13) implies that

Vol = (8 — pa + Z)U — adA¢Va.

If we take an inner product with U to the last equation and use (1.9), (3.3) and
12 = B — a2, then we get
1 c, o
(3.14) iUﬁ—a(Ua):(B—pa—i— i)u .
This, together with (3.10), implies that

(3.15) (p— a)Ua = —=2(8 — pa+ )i
Combining (3.12) to (3.14), we find
(3.16) Up:Ua—g(p—a).

Substituting (3.14), (3.15) and (3.16) into (3.12), we obtain p—« = 0 and hence
B —a®+$ =0 by virtue of (3.15). Thus, (3.8) becomes A%{ = aAg — £, which
tells us that v = @ — £a. Then it follows

3
§=a'— icoz2 + (2)2
Using above facts, (3.7) turns out to be
(3.17) ah = ao® + g
Since p = «, (3.9) becomes v — Bh = —3ca, which implies that a® —h(a?—£) =

—$a. This, together with (3.17), yields ¢ = 0, a contradiction. Hence Q = 0. Thus,
the subset Q (of M) on which A — n(A&)E # 0 is an empty set, namely in H,C
every real hypersurface satisfying SpA = ¢pAS is a Hopf hypersurface. Then, by
Theorem KS we complete the proof of our Main Theorem.
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