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STUDY OF P -CURVATURE TENSOR IN THE SPACE-TIME

OF GENERAL RELATIVITY

Ganesh Prasad Pokhariyal and Sudhakar Kumar Chaubey∗

Abstract. The P -curvature tensor has been studied in the space-time
of general relativity and it is found that the contracted part of this tensor

vanishes in the Einstein space. It is shown that Rainich conditions for

the existence of non-null electro variance can be obtained by Pαβ . It is
established that the divergence of tensor Gαβ defined with the help of

Pαβ and scalar P is zero, so that it can be used to represent Einstein

field equations. It is shown that for V4 satisfying Einstein like field equa-
tions, the tensor Pαβ is conserved, if the energy momentum tensor is

Codazzi type. The space-time satisfying Einstein’s field equations with

vanishing of P -curvature tensor have been considered and existence of
Killing, conformal Killing vector fields and perfect fluid space-time has

been established.

1. Introduction

Consider an n-dimensional space Vn in which the curvature tensor W2 has
been defined by

W2(X,Y, Z, T ) = Rm(X,Y, Z, T )− 1

n− 1
[g(Y,Z)Ric(X,T )−g(X,Z)Ric(Y, T )]

for any vector fields X, Y , Z and T on Vn [29]. Here Rm(X,Y, Z, T ), Ric(X,Y )
and g(X,Y ) denote the curvature tensor, Ricci tensor and metric tensor of Vn,
respectively, for arbitrary vector fields X, Y , Z and T . It is seen that

W2(X,Y, Z, T ) = −W2(Y,X,Z, T )

and

W2(X,Y, Z, T ) +W2(Y, Z,X, T ) +W2(Z,X, Y, T ) = 0.
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Breaking W2-curvature tensor in skew-symmetric parts in Z and T , the P -
curvature tensor has been defined by

P (X,Y, Z, T ) = Rm(X,Y, Z, T )− 1

2(n− 1)
[g(Y,Z)Ric(X,T )

−g(X,Z)Ric(Y, T ) + g(X,T )Ric(Y,Z)− g(Y, T )Ric(X,Z)],(1)

called Pokhariyal and Mishra tensor, which possesses all skew-symmetric and
symmetric as well as cyclic properties satisfied by Riemann curvature tensor
(see, [28]). The W2-tensor has been quite widely studied in the space-time
of general relativity as well as in differential geometry. Ahsan and Ali [2]
have studied space-time satisfying Einstein’s field equations with vanishing
of W2-curvature tensor as well as existence of Killing and conformal Killing
vector fields. They further examined vanishing and divergence of W2-tensor
in perfect fluid space-time. Matsumoto et al. [24] have studied W2-curvature
tensor in para-Sasakian manifolds. The geometrical and physical properties
of W2-curvature tensor have been studied by several geometers and physicists
(for instance, [20], [23], [26], [27], [31], [35], [36], [37]). P -curvature tensor has
been defined fromW2-curvature tensor in (1). Various physical and geometrical
properties of this curvature tensor are studied in ([3], [11]-[18], [29]) and also
by others.

2. P -curvature tensor

We consider the P -curvature tensor in the local coordinates as:

Pαβγδ = Rαβγδ −
1

2(n− 1)
[gβγRαδ − gαγRβδ + gαδRβγ − gβδRαγ ],

where Rαβγδ and Rαδ represent the curvature tensor and Ricci tensor, respec-
tively. Here α, β, γ, δ = 1, 2, 3, . . . , n. This can be written as:

(2) Pα
βγδ = Rα

βγδ −
1

2(n− 1)
[gβγR

α
δ − gαγRβδ + gαδ Rβγ − gβδR

α
γ ],

where Rα
γ stands for Ricci operator. Contracting α and δ, we get

(3) Pβγ = Rβγ − 1

2(n− 1)
[gβγR

α
α − gαγRβα + gααRβγ − gβαR

α
γ ].

On simplification, we get

Pβγ =
n

2(n− 1)
[Rβγ − R

n
gβγ ],

where R denotes the scalar curvature. For n = 4, in V4, we have

(4) Pβγ =
2

3
[Rβγ − R

4
gβγ ].

Hence in an Einstein space Pβγ vanishes. Thus, the contracted part of Pokhariyal
and Mishra tensor Pαβγδ vanishes in Einstein space. This enables us to extend
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the Pirani formalization of gravitational waves in the Einstein space with these
tensors. Further, by multiplying (4) by gβγ , we get

gβγPβγ = P =
2

3
[gβγRβγ − R

4
gβγgβγ ] = 0.

Thus, the scalar invariant P vanishes identically. Misner and Wheeler [25]
introduced a vector

(5) Θi =
gαβϵ

βγµνRδ
γRδµ;ν√

−gRαβRαβ

called complexion vector of a non-null electromagnetic field with no matter and
its vanishing implies that field is purely electrical. Here semicolon “ ; ” is used
for covariant derivative and ϵβγµν represents the Levi-Civita symbol, which is
skew-symmetric in all pairs of indices with ϵ1234 = 1 [33]. It was shown by
Pokhariyal and Mishra [29] that we can not get purely electric field with the
help of W2(X,Y, Z, T ). Rainich [30] has shown that the necessary and sufficient
conditions for the existence of non-null electrovariance are

R = 0,

(6) Rα
βR

β
γ =

1

4
δαγRabR

ab,

(7) Θα;β = Θβ;α.

In an electromagnetic field, equation (4) gives

Pβγ =
2

3
Rβγ .

By replacing the matter tensor Rαβ by Pαβ in (5), (6) and (7), respectively, we
get the Rainich conditions with the help of Pαβγδ.

2.1. Divergence of Pαβγδ

We start with the Bianchi differential identity for Pαβγδ with the condition
that the Ricci tensor is of Codazzi type [19] obtained by Pokhariyal [28]

∇XP (Y, Z, T, U) +∇Y P (Z,X, T, U) +∇ZP (X,Y, T, U) = 0.

This is expressed in the index notation as

∇σPαβµν +∇νPαβσµ +∇µPαβνσ = 0.

Multiply through by gγσgαµgβν (knowing that the metric derivatives are zero,
as they act as constants, thus can be taken inside the derivative sign), we get

∇σg
γσgαµgβνPαβµν +∇νg

γσgαµgβνPαβσµ +∇µg
γσgαµgβνPαβνσ = 0.

Using the property that Pαβµγ is symmetric in pair and skew-symmetric in the
indices, on simplification, we get

∇σ(P
γσ − 1

2
Pgγσ) = 0.
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We introduce

(8) Gγσ = P γσ − 1

2
Pgγσ,

and call it Ganesh tensor, whose divergence is zero. Einstein’s field equations
(that are 10 contained in the tensor equation) with cosmological term are given
by

(9) Eαβ + ∧gαβ = κTαβ ,

with Eαβ = Rαβ− 1
2Rgαβ is the Einstein tensor, where Tαβ is the stress-energy

tensor and contains all forms of energy and momentum, κ is the coupling
constant with the value 8πG

c4 and ∧ is cosmological constant. These equations
describe gravity as a result of spacetimes being curved by means of mass and
energy. Eαβ is determined by the curvature of spacetime at a particular point
in spacetime which is equated with the energy momentum at that point. The
Einstein’s field equation (9) can be expressed using the tensor Gαβ defined
by (8). Since Gαβ contains extra terms as compared to Einstein tensor Eαβ ,
Rαβ and R is likely to have additional physical and geometrical interpretations
derived through the solutions that are the components of metric tensor gαβ
specifying the spacetime geometry.

2.2. Contraction of Pαβ

Replacing Einstein tensor Eαβ by Gαβ in (9), the Einstein’s field equations
without cosmological constant ∧ in the presence of matter can be expressed as

(10) Pαβ − 1

2
Pgαβ = κTαβ .

Multiplying this equation by gαβ , on simplification we get

(11) P = −κT,

where P = Pαβg
αβ and T = Tαβg

αβ . Putting (11) in (10), we get

Pαβ = κ{Tαβ − 1

2
Tgαβ}.

It is known that the energy-momentum tensor for the electromagnetic field is
given by

(12) Tαβ = −FαγF
γ
β +

1

4
gαβFδγF

δγ ,

where Fαβ represents skew-symmetric field tensor, satisfying Maxwell’s equa-
tion [34]. From (12) it is clear that Tα

α = T = 0. Einstein equations written in
(10) for purely electromagnetic distribution take the form

Pαβ = κTαβ .

From (10) we have

∇γPαβ = κ∇γTαβ +
1

2
gαβ∇γP.
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Thus, we can write

(13) ∇γPαβ −∇βPαγ = κ{∇γTαβ −∇βTαγ}+
1

2
{gαβ∇γP − gαγ∇βP}.

If Tαβ is of Codazzi type, then (13) becomes

∇γPαβ −∇βPαγ =
1

2
{gαβ∇γP − gαγ∇βP}.

Multiplying this equation by gαβ , on simplification, we get

∇γP
γ
γ = −1

2
∇γP.

Multiplying by gαβ , we get on simplification

∇βP
αβ = 0.

Thus, we have the following theorem.

Theorem 2.1. For V4 satisfying Einstein (like) field equation, the tensor
Pαβ is conserved if the energy-momentum tensor is of Codazzi type.

2.3. P -flat space-times

Consider the equation (2) for P -curvature tensor.

Definition 2.2. A space-time is said to be P−flat if the tensor Pα
βγδ, defined

by (3), vanishes in it.

Let us suppose that the space-time is P -flat, then from (2) we have

Rα
βγδ =

1

2(n− 1)
[gβγR

α
δ − gαγRβδ + gαδ Rβγ − gβδR

α
γ ].

Contracting α and δ yields

Rβγ =
1

2(n− 1)
[(n− 2)Rβγ + gβγR].

For V4, on simplification, we have

(14) Rβγ =
R

4
gβγ .

This shows that P -flat space-time is an Einstein space. Thus, we have

Theorem 2.3. A P -flat space-time is an Einstein space-time and conse-
quently the scalar curvature R is covariatly constant, that is, ∇βR = 0.

The gravitational field is adequately described by curvature tensor, as they
consist matter part and gravitational part, whose interaction is depicted by
Bianchi identities. The main focus of various studies have been the construc-
tion of gravitational potential satisfying the Einstein equations for a given
distribution of matter. This is accomplished by imposing symmetries on the
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geometry compatible with the dynamics of the selected distribution of the mat-
ter. For the space-times, the geometrical symmetries are given by the following
equation

£ξA− 2ΩA = 0,

where A represents a geometrical/physical quantity, £ξ denotes the Lie deriv-
ative with respect to a vector field ξ and Ω is a scalar [2].

Consider the equation (9) which is written as:

(15) Rαβ − 1

2
Rgαβ + ∧gαβ = κTαβ .

Using (14) in (15), we get on simplification

(16) gαβ(∧ − R

4
) = κTαβ .

Since for a P -flat space-time, R is constant, by taking the Lie derivative of
both sides of (16) along ξ gives

(17) (∧ − R

4
)£ξgαβ = κ£ξTαβ ,

provided ∧ ≠ R
4 . Thus, we have the following theorem.

Theorem 2.4. For a P -flat space-time satisfying the Einstein’s field equa-
tions with a cosmological term, there exists a Killing vector field ξ if and only
if the Lie derivative of the energy-momentum tensor vanishes with respect to
ξ.

Definition 2.5. A vector field ξ satisfying the equation

(18) £ξgαβ = 2Ωgαβ

is called a conformal Killing vector field, where Ω is a scalar. A space-time
satisfying (18) is said to admits a conformal motion.

From (17) and (18), we have

2Ω(∧ − R

4
)gαβ = κ£ξTαβ .

Using (16) as a consequence of P -flat space-time, we get

(19) £ξTαβ = 2ΩTαβ .

The energy momentum tensor Tαβ satisfying equation (19) is said to preserve
the symmetry inheritance property [1]. Thus, we have the following theorem.

Theorem 2.6. A P -flat space-time satisfying the Einstein’s field equations
with a cosmological term admits a conformal Killing vector field if and only if
the energy-momentum tensor has the symmetry inheritance property.
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The energy-momentum tensor for a perfect fluid is given by

(20) Tαβ = (µ+ p)uαuβ + pgαβ ,

where µ is the energy density, p the isotropic pressure, uα is the velocity of
the fluid such that uα · uα = −1 and gαβu

α = uβ . For more details about the
perfect fluid spacetimes, we refer ([4]-[10], [21], [32]) and the references therein.

We now consider a perfect fluid space-time with vanishing P -curvature ten-
sor. From equations (16) and (20), we get

(21) gαβ(∧ − R

4
− κp) = κ(µ+ p)uαuβ .

Multiplying by gαβ , equation (21) yields on simplification

(22) R = κ(µ− 3p) + 4 ∧ .

Further, contracting equation (21) with uαuβ , we get

(23) R = 4(κµ+ ∧).

Comparing (22) and (23), yield

µ+ p = 0.

This means that either µ = 0, p = 0 (empty space-time) or the perfect fluid
space-time satisfies the vacuum like equation of state [22]. Thus, we have the
following theorem.

Theorem 2.7. In a P -flat perfect fluid space-time satisfying Einstein’s field
equations with cosmological term, the matter contents of the space-time obey
the vacuum like equation of state.

Discussion

The symmetric nature and other features of P -curvature tensor that are
similar to the Riemann curvature become important characteristics for invest-
ing its various physical and geometrical as well as applications. The tensor
Gαβ can be used to get Einstein (like) field equations and their physical con-
sequences can then be explored. Starting with the various metrics and using
the corresponding geodesic equations, the trajectories of the particles are likely
to be obtained which may be different from the ones obtained using Einstein
tensor Eαβ . The comparisons can then be interpreted accordingly.
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