GENERALIZED SASAKIAN SPACE FORMS ON W_{0}-CURVATURE TENSOR

Tuğba Mert* and Mehmet Atçeken

Abstract

In this article, generalized Sasakian space forms are investigated on W_{0}-curvature tensor. Characterizations of generalized Sasakian space forms are obtained on W_{0}-curvature tensor. Special curvature conditions established with the help of Riemann, Ricci, concircular, projective curvature tensors are discussed on W_{0}-curvature tensor. With the help of these curvature conditions, important characterizations of generalized Sasakian space forms are obtained. In addition, the concepts of W_{0}-pseudosymmetry and W_{0}-Ricci pseudosymmetry are defined and the behavior according to these concepts for the generalized Sasakian space form is examined.

1. Introduction

Let $M(\phi, \xi, \eta, g)$ be the almost contact metric manifold. If there are functions $\digamma_{1}, \digamma_{2}, \digamma_{3}$ on M such that

$$
\begin{align*}
& R\left(V_{1}, V_{2}\right) V_{3}=\digamma_{1}\left[g\left(V_{2}, V_{3}\right) V_{1}-g\left(V_{1}, V_{3}\right) V_{2}\right] \\
& +\digamma_{2}\left[g\left(V_{1}, \phi V_{3}\right) \phi V_{2}-g\left(V_{2}, \phi V_{3}\right) \phi V_{1}\right. \\
& \left.+2 g\left(V_{1}, \phi V_{2}\right) \phi V_{3}\right]+\digamma_{3}\left[\eta\left(V_{1}\right) \eta\left(V_{3}\right) V_{2}\right. \tag{1}\\
& -\eta\left(V_{2}\right) \eta\left(V_{3}\right) V_{1}+g\left(V_{1}, V_{3}\right) \eta\left(V_{2}\right) \xi \\
& \left.-g\left(V_{2}, V_{3}\right) \eta\left(V_{1}\right) \xi\right],
\end{align*}
$$

$M=M(\phi, \xi, \eta, g)$ is called a generalized Sasakian space form and such a manifold is denoted by $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$. Such manifolds were introduced by P. Alegre et al [1]. P. Alegre, D. Blair and A. Carriazo calculated the Riemann curvature tensor of a generalized Sasakian space form. In [5], generalized Sasakian space forms are studied under some conditions related to projective

[^0]curvature. In this work, U.C. De and A. Sarkar obtained the necessary and sufficient conditions for generalized Sasakian space forms satisfying $P \cdot S=0$ and $P \cdot R=0$. Again, in [6], the same authors studied quasi conformal flat, Ricci symmetric and Ricci semi-symmetric generalized Sasakian space forms. In [9], the curvatures of para-Sasakian manifolds are studied and in this study C. Özgür and M.M. Tiripathi found necessary and sufficient conditions for the curvatures of para-Sasakian manifolds. M. Atçeken studied and classified generalized Sasakian space forms for some curvature conditions related to concircular, Riemann, Ricci and projective curvature tensors in [3]. Again, many authors have worked on generalized Sasakian space forms ([10]-[7]) and have studied the curvature conditions for different manifolds on some special curvature tensors ([8],[12]).

In this article, generalized Sasakian space forms are investigated on W_{0} -curvature tensor. Characterizations of generalized Sasakian space forms are obtained on W_{0}-curvature tensor. Special curvature conditions established with the help of Riemann, Ricci, concircular, projective curvature tensors are discussed on W_{0}-curvature tensor. With the help of these curvature conditions, important characterizations of generalized Sasakian space forms are obtained. In addition, the concepts of W_{0}-pseudosymmetry and $W_{0}-$ Ricci pseudosymmetry are defined and the behavior according to these concepts for the generalized Sasakian space form is examined.

2. Preliminary

Let's take an $(2 n+1)$-dimensional differentiable manifold M. If it admits a tensor field ϕ of type $(1,1)$, a vector field ξ and a 1-form η satisfying the following conditions;

$$
\phi^{2} V_{1}=-V_{1}+\eta\left(V_{1}\right) \xi \text { and } \eta(\xi)=1,
$$

then this structure (ϕ, ξ, η) is called an almost contact structure, and the (M, ϕ, ξ, η) is called an almost contact manifold. If there is a metric g that satisfies the condition

$$
g\left(\phi V_{1}, \phi V_{2}\right)=g\left(V_{1}, V_{2}\right)-\eta\left(V_{1}\right) \eta\left(V_{2}\right) \text { and } g\left(V_{1}, \xi\right)=\eta\left(V_{1}\right),
$$

for all $V_{1}, V_{2} \in \chi(M)$, the structure (ϕ, ξ, η, g) is called almost contact metric structure and (M, ϕ, ξ, η, g) is called almost contact metric manifold. On the $(2 n+1)$ dimensional manifold M,

$$
g\left(\phi V_{1}, V_{2}\right)=-g\left(V_{1}, \phi V_{2}\right)
$$

for all $V_{1}, V_{2} \in \chi(M)$, that is, ϕ is an anti-symmetric tensor field according to the metric g. The transformation Φ defined as

$$
\Phi\left(V_{1}, V_{2}\right)=g\left(V_{1}, \phi V_{2}\right)
$$

for all $V_{1}, V_{2} \in \chi(M)$, is called the fundamental 2-form of the almost contact metric structure (ϕ, ξ, η, g), where

$$
\eta \wedge \Phi^{n} \neq 0
$$

Sasakian space forms are very important for contact metric geometry. The curvature tensor for the Sasakian space form is defined as

$$
\begin{aligned}
& R\left(V_{1}, V_{2}\right) V_{3}=\left(\frac{c+3}{4}\right)\left[g\left(V_{2}, V_{3}\right) V_{1}-g\left(V_{1}, V_{3}\right) V_{2}\right] \\
& +\left(\frac{c-1}{4}\right)\left[g\left(V_{1}, \phi V_{3}\right) \phi V_{2}-g\left(V_{2}, \phi V_{3}\right) \phi V_{1}\right. \\
& +2 g\left(V_{1}, \phi V_{2}\right) \phi V_{3}+\eta\left(V_{1}\right) \eta\left(V_{3}\right) V_{2} \\
& -\eta\left(V_{2}\right) \eta\left(V_{3}\right) V_{1}+g\left(V_{1}, V_{3}\right) \eta\left(V_{2}\right) \xi \\
& \left.-g\left(V_{2}, V_{3}\right) \eta\left(V_{1}\right) \xi\right] .
\end{aligned}
$$

If we choose $V_{1}=\xi, V_{2}=\xi$ and $V_{3}=\xi$ respectively in (1), we obtain

$$
\begin{equation*}
R\left(\xi, V_{2}\right) V_{3}=\left(\digamma_{1}-\digamma_{3}\right)\left[g\left(V_{2}, V_{3}\right) \xi-\eta\left(V_{3}\right) V_{2}\right] \tag{2}
\end{equation*}
$$

$$
\begin{gather*}
R\left(V_{1}, \xi\right) V_{3}=\left(\digamma_{1}-\digamma_{3}\right)\left[-g\left(V_{1}, V_{3}\right) \xi+\eta\left(V_{3}\right) V_{1}\right], \tag{3}\\
R\left(V_{1}, V_{2}\right) \xi=\left(\digamma_{1}-\digamma_{3}\right)\left[\eta\left(V_{2}\right) V_{1}-\eta\left(V_{1}\right) V_{2}\right] . \tag{4}
\end{gather*}
$$

Also, if we take inner product of both sides of (1) by $\xi \in \chi\left(M^{2 n+1}\right)$, we get

$$
\eta\left(R\left(V_{1}, V_{2}\right) V_{3}\right)=\left(\digamma_{1}-\digamma_{3}\right)\left[g\left(V_{2}, V_{3}\right) \eta\left(V_{1}\right)-g\left(V_{1}, V_{3}\right) \eta\left(V_{2}\right)\right] .
$$

Lemma 2.1. For a $(2 n+1)$-dimensional generalized Sasakian space form $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ the following equations are provided [5].

$$
S\left(V_{1}, V_{2}\right)=\left[2 n \digamma_{1}+3 \digamma_{2}-\digamma_{3}\right] g\left(V_{1}, V_{2}\right)-\left[3 \digamma_{2}+(2 n-1) \digamma_{3}\right] \eta\left(V_{1}\right) \eta\left(V_{2}\right),
$$

$$
\begin{equation*}
S\left(V_{1}, \xi\right)=2 n\left(\digamma_{1}-\digamma_{3}\right) \eta\left(V_{1}\right), \tag{5}
\end{equation*}
$$

$$
\begin{gathered}
Q V_{1}=\left[2 n \digamma_{1}+3 \digamma_{2}-\digamma_{3}\right] V_{1}-\left[3 \digamma_{2}+(2 n-1) \digamma_{3}\right] \eta\left(V_{1}\right) \xi, \\
Q \xi=2 n\left(\digamma_{1}-\digamma_{3}\right) \xi, \\
r=2 n(2 n+1) \digamma_{1}+6 n \digamma_{2}-4 n \digamma_{3},
\end{gathered}
$$

for all $V_{1}, V_{2} \in \chi\left(M^{2 n+1}\right)$, where Q, S and r are the Ricci operator, Ricci tensor and scalar curvature of manifold $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$, respectively.
M. Tripathi and P. Gunam described a τ-curvature tensors of the $(1,3)$ type in an n-dimensional semi-Riemann manifold (M, g) [11]. One of these tensors is defined as follows.

Definition 2.2. Let M be a $(2 n+1)$-dimensional semi-Riemannian manifold. The curvature tensor defined as

$$
\begin{equation*}
T\left(V_{1}, V_{2}\right) V_{3}=R\left(V_{1}, V_{2}\right) V_{3}-\frac{1}{2 n}\left[S\left(V_{2}, V_{3}\right) V_{1}-g\left(V_{1}, V_{3}\right) Q V_{2}\right] \tag{6}
\end{equation*}
$$

is called the W_{0}-curvature tensor.
For the $(2 n+1)$-dimensional generalized Sasakian space form, if we choose $V_{1}=\xi, V_{2}=\xi, V_{3}=\xi$ respectively in (6), then we get

$$
\begin{equation*}
T\left(\xi, V_{2}\right) V_{3}=\frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left[g\left(V_{2}, V_{3}\right) \xi-\eta\left(V_{3}\right) V_{2}\right] \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
T\left(V_{1}, \xi\right) V_{3}=0 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
T\left(V_{1}, V_{2}\right) \xi=\frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left[-\eta\left(V_{1}\right) V_{2}+\eta\left(V_{1}\right) \eta\left(V_{2}\right) \xi\right] . \tag{9}
\end{equation*}
$$

Definition 2.3. Let M be a paracontact manifold. If its Ricci tensor S of type $(0,2)$ is of the form

$$
S\left(V_{1}, V_{2}\right)=a g\left(V_{1}, V_{2}\right)+b \eta\left(V_{1}\right) \eta\left(V_{2}\right),
$$

where a, b are smooth functions on M, then M is called η-Einstein manifold. Also, if $b=0$, then the manifold is called Einstein.

Definition 2.4. Let (M, g) be a semi-Riemannian manifold and the twodimensional subspace Π of the tangent space $T_{p}(M)$. If $K\left(V_{1 p}, V_{2 p}\right)$ is constant for each $p \in M$ and $V_{1 p}, V_{2 p} \in T_{p}(M)$, then M is called a real space form, where $K\left(V_{1 p}, V_{2 p}\right)$ is the section curvature of the plane Π.

3. Generalized Sasakian Space Forms On W_{0} - Curvature Tensor

In this section, the characterization of generalized Sasakian space forms under special curvature conditions created by W_{0}-curvature tensor with Riemann, Ricci, concircular and projective curvature tensors will be given. Let us state and prove the following theorems.

Theorem 3.1. Let $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ be the $(2 n+1)$-dimensional generalized Sasakian space form. If $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ satisfies the curvature condition $T\left(V_{1}, V_{2}\right) R=0$, then $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ is either the real space form or $3 \digamma_{2}=(1-2 n) \digamma_{3}$.

Proof. Let's assume that

$$
\left(T\left(V_{1}, V_{2}\right) R\right)\left(V_{3}, V_{5}, V_{4}\right)=0
$$

for every $V_{1}, V_{2}, V_{3}, V_{4}, V_{5} \in \chi\left(M^{2 n+1}\right)$. So, we can write

$$
\begin{align*}
& T\left(V_{1}, V_{2}\right) R\left(V_{3}, V_{5}\right) V_{4}-R\left(T\left(V_{1}, V_{2}\right) V_{3}, V_{5}\right) V_{4} \tag{10}\\
& -R\left(V_{3}, T\left(V_{1}, V_{2}\right) V_{5}\right) V_{4}-R\left(V_{3}, V_{5}\right) T\left(V_{1}, V_{2}\right) V_{4}=0
\end{align*}
$$

If we choose $V_{1}=\xi$ in (10) and make use of (7), we get

$$
\begin{align*}
& \frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left\{g\left(V_{2}, R\left(V_{3}, V_{5}\right) V_{4}\right) \xi\right. \\
& -\eta\left(R\left(V_{3}, V_{5}\right) V_{4}\right) V_{2}-g\left(V_{2}, V_{3}\right) R\left(\xi, V_{5}\right) V_{4} \\
& +\eta\left(V_{3}\right) R\left(V_{2}, V_{5}\right) V_{4}-g\left(V_{2}, V_{5}\right) R\left(V_{3}, \xi\right) V_{4} \tag{11}\\
& +\eta\left(V_{5}\right) R\left(V_{3}, V_{2}\right) V_{4}-g\left(V_{2}, V_{4}\right) R\left(V_{3}, V_{5}\right) \xi \\
& \left.+\eta\left(V_{4}\right) R\left(V_{3}, V_{5}\right) V_{2}\right\}=0 .
\end{align*}
$$

If we use $(2),(3),(4)$ in (11), we obtain

$$
\begin{align*}
& \frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left\{g\left(V_{2}, R\left(V_{3}, V_{5}\right) V_{4}\right) \xi\right. \\
& -\eta\left(R\left(V_{3}, V_{5}\right) V_{4}\right) V_{2}+\eta\left(V_{3}\right) R\left(V_{2}, V_{5}\right) V_{4} \\
& +\eta\left(V_{5}\right) R\left(V_{3}, V_{2}\right) V_{4}+\eta\left(V_{4}\right) R\left(V_{3}, V_{5}\right) V_{2} \\
& -\left(\digamma_{1}-\digamma_{3}\right)\left[g\left(V_{2}, V_{3}\right) g\left(V_{5}, V_{4}\right) \xi\right. \tag{12}\\
& -g\left(V_{2}, V_{3}\right) \eta\left(V_{4}\right) V_{5}-g\left(V_{2}, V_{5}\right) g\left(V_{3}, V_{4}\right) \xi \\
& +g\left(V_{2}, V_{5}\right) \eta\left(V_{4}\right) V_{3}+g\left(V_{2}, V_{4}\right) \eta\left(V_{5}\right) V_{3} \\
& \left.\left.-g\left(V_{2}, V_{4}\right) \eta\left(V_{3}\right) V_{5}\right]\right\}=0
\end{align*}
$$

If we choose $V_{3}=\xi$ in (12) and make the necessary adjustments using (2), we get

$$
\begin{align*}
& \frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left\{R\left(V_{2}, V_{5}\right) V_{4}-\left(\digamma_{1}-\digamma_{3}\right)\right. \tag{13}\\
& \left.\left[g\left(V_{5}, V_{4}\right) V_{2}-g\left(V_{2}, V_{4}\right) V_{5}\right]\right\}=0 .
\end{align*}
$$

Therefore, the proof of the theorem is completed.

Theorem 3.2. Let $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ be the $(2 n+1)$-dimensional generalized Sasakian space form. If $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ satisfies the curvature condition $T\left(V_{1}, V_{2}\right) T=0$, then $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ is either an η-Einstein manifold provided $\digamma_{3} \neq 2 n \digamma_{1}+3 \digamma_{2}$ and $3 \digamma_{2} \neq(1-2 n) \digamma_{3}$ or $3 \digamma_{2}=(1-2 n) \digamma_{3}$.

Proof. Let's assume that

$$
\left(T\left(V_{1}, V_{2}\right) T\right)\left(V_{3}, V_{5}, V_{4}\right)=0
$$

for every $V_{1}, V_{2}, V_{3}, V_{4}, V_{5} \in \chi\left(M^{2 n+1}\right)$. So, we can write

$$
\begin{align*}
& T\left(V_{1}, V_{2}\right) T\left(V_{3}, V_{5}\right) V_{4}-T\left(T\left(V_{1}, V_{2}\right) V_{3}, V_{5}\right) V_{4} \tag{14}\\
& -T\left(V_{3}, T\left(V_{1}, V_{2}\right) V_{5}\right) V_{4}-T\left(V_{3}, V_{5}\right) T\left(V_{1}, V_{2}\right) V_{4}=0 .
\end{align*}
$$

If we choose $V_{1}=\xi$ in (14) and make use of (7), we get

$$
\begin{align*}
& \frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left\{g\left(V_{2}, T\left(V_{3}, V_{5}\right) V_{4}\right) \xi\right. \\
& -\eta\left(T\left(V_{3}, V_{5}\right) V_{4}\right) V_{2}-g\left(V_{2}, V_{3}\right) T\left(\xi, V_{5}\right) V_{4} \\
& +\eta\left(V_{3}\right) T\left(V_{2}, V_{5}\right) V_{4}-g\left(V_{2}, V_{5}\right) T\left(V_{3}, \xi\right) V_{4} \tag{15}\\
& +\eta\left(V_{5}\right) T\left(V_{3}, V_{2}\right) V_{4}-g\left(V_{2}, V_{4}\right) T\left(V_{3}, V_{5}\right) \xi \\
& \left.+\eta\left(V_{4}\right) T\left(V_{3}, V_{5}\right) V_{2}\right\}=0 .
\end{align*}
$$

If we use $(7),(8),(9)$ in (15), we obtain

$$
\begin{align*}
& \frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left\{g\left(V_{2}, T\left(V_{3}, V_{5}\right) V_{4}\right) \xi\right. \\
& -\eta\left(T\left(V_{3}, V_{5}\right) V_{4}\right) V_{2}+\eta\left(V_{3}\right) T\left(V_{2}, V_{5}\right) V_{4} \\
& +\eta\left(V_{5}\right) T\left(V_{3}, V_{2}\right) V_{4}+\eta\left(V_{4}\right) T\left(V_{3}, V_{5}\right) V_{2} \\
& -\frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left[g\left(V_{2}, V_{3}\right) g\left(V_{5}, V_{4}\right) \xi\right. \tag{16}\\
& -g\left(V_{2}, V_{3}\right) \eta\left(V_{4}\right) V_{5}-g\left(V_{2}, V_{4}\right) \eta\left(V_{3}\right) V_{5} \\
& \left.\left.+g\left(V_{2}, V_{4}\right) \eta\left(V_{3}\right) \eta\left(V_{5}\right) \xi\right]\right\}=0 .
\end{align*}
$$

If we choose $V_{3}=\xi$ in (16) and make the necessary adjustments using (7), we get

$$
\begin{align*}
& \frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left\{T\left(V_{2}, V_{5}\right) V_{4}-\frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\right. \tag{17}\\
& \left.\left[g\left(V_{5}, V_{4}\right) V_{2}-g\left(V_{2}, V_{4}\right) V_{5}\right]\right\}=0 .
\end{align*}
$$

If (6) is written in (17), we obtain

$$
\begin{align*}
& \frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left\{R\left(V_{2}, V_{5}\right) V_{4}-\frac{1}{2 n} S\left(V_{5}, V_{4}\right) V_{2}\right. \\
& +\frac{1}{2 n} g\left(V_{2}, V_{4}\right) Q V_{5}-\frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left[g\left(V_{5}, V_{4}\right) V_{2}\right. \tag{18}\\
& \left.\left.-g\left(V_{2}, V_{4}\right) V_{5}\right]\right\}=0
\end{align*}
$$

If we choose $V_{4}=\xi$ in (18) and make use of (4) and (5), we get

$$
\begin{aligned}
& \frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left\{-\frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n} \eta\left(V_{5}\right) V_{2}\right. \\
& \left.+\frac{1}{2 n} \eta\left(V_{2}\right) Q V_{5}-\frac{2 n \digamma_{1}+3 \digamma_{2}-\digamma_{3}}{2 n} \eta\left(V_{2}\right) V_{5}\right\}=0
\end{aligned}
$$

In the last equation, if we choose $V_{2}=\xi$, and then we take inner product both sides of the equation by $V_{4} \in \chi(M)$, we have

$$
\begin{aligned}
& \frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left\{\frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n} \eta\left(V_{5}\right) \eta\left(V_{4}\right)\right. \\
& \left.+\frac{1}{2 n} S\left(V_{5}, V_{4}\right)-\frac{2 n \digamma_{1}+3 \digamma_{2}-\digamma_{3}}{2 n} g\left(V_{5}, V_{4}\right)\right\}=0 .
\end{aligned}
$$

This completes the proof.
Corollary 3.3. Let $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ be the $(2 n+1)$-dimensional generalized Sasakian space form. If $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ satisfies the curvature condition $T\left(V_{1}, V_{2}\right) T=0$, then $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ is an Einstein manifold if and only if $2 n \digamma_{1}+3 \digamma_{2} \neq \digamma_{3}$ and $3 \digamma_{2}=(1-2 n) \digamma_{3}$ relations are provided.

Let us now prepare to examine the curvature condition associated with the concircular curvature tensor.

Definition 3.4. Let M be a $(2 n+1)$-dimensional Riemannian manifold. The curvature tensor defined as

$$
\begin{equation*}
\tilde{Z}\left(V_{1}, V_{2}\right) V_{3}=R\left(V_{1}, V_{2}\right) V_{3}-\frac{r}{2 n(2 n+1)}\left[g\left(V_{2}, V_{3}\right) V_{1}-g\left(V_{1}, V_{3}\right) V_{2}\right] \tag{19}
\end{equation*}
$$

is called the concircular curvature tensor.
For the $(2 n+1)$-dimensional generalized Saskian space form, if we choose $V_{1}=\xi, V_{2}=\xi, V_{3}=\xi$ respectively in (19), then we get

$$
\begin{gather*}
\tilde{Z}\left(\xi, V_{2}\right) V_{3}=\left[\left(\digamma_{1}-\digamma_{3}\right)-\frac{r}{2 n(2 n+1)}\right]\left[g\left(V_{2}, V_{3}\right) \xi-\eta\left(V_{3}\right) V_{2}\right] \tag{20}\\
\tilde{Z}\left(V_{1}, \xi\right) V_{3}=\left[\left(\digamma_{1}-\digamma_{3}\right)-\frac{r}{2 n(2 n+1)}\right]\left[-g\left(V_{1}, V_{3}\right) \xi+\eta\left(V_{3}\right) V_{1}\right] \tag{21}
\end{gather*}
$$

$$
\begin{equation*}
\tilde{Z}\left(V_{1}, V_{2}\right) \xi=\left[\left(\digamma_{1}-\digamma_{3}\right)-\frac{r}{2 n(2 n+1)}\right]\left[\eta\left(V_{2}\right) V_{1}-\eta\left(V_{1}\right) V_{2}\right] \tag{22}
\end{equation*}
$$

Theorem 3.5. Let $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ be the $(2 n+1)$-dimensional generalized Sasakian space form. If $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ satisfies the curvature condition $T\left(V_{1}, V_{2}\right) \tilde{Z}=0$, then $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ is either the real space form or $3 \digamma_{2}=(1-2 n) \digamma_{3}$.

Proof. Let's assume that

$$
\left(T\left(V_{1}, V_{2}\right) \tilde{Z}\right)\left(V_{3}, V_{5}, V_{4}\right)=0
$$

for every $V_{1}, V_{2}, V_{3}, V_{4}, V_{5} \in \chi\left(M^{2 n+1}\right)$. So, we can write

$$
\begin{align*}
& T\left(V_{1}, V_{2}\right) \tilde{Z}\left(V_{3}, V_{5}\right) V_{4}-\tilde{Z}\left(T\left(V_{1}, V_{2}\right) V_{3}, V_{5}\right) V_{4} \\
& -\tilde{Z}\left(V_{3}, T\left(V_{1}, V_{2}\right) V_{5}\right) V_{4}-\tilde{Z}\left(V_{3}, V_{5}\right) T\left(V_{1}, V_{2}\right) V_{4}=0 \tag{23}
\end{align*}
$$

If we choose $V_{1}=\xi$ in (23) and make use of (7), we get

$$
\begin{align*}
& \frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left\{g\left(V_{2}, \tilde{Z}\left(V_{3}, V_{5}\right) V_{4}\right) \xi\right. \\
& --\eta\left(\tilde{Z}\left(V_{3}, V_{5}\right) V_{4}\right) V_{2} g\left(V_{2}, V_{3}\right) \tilde{Z}\left(\xi, V_{5}\right) V_{4} \\
& +\eta\left(V_{3}\right) \tilde{Z}\left(V_{2}, V_{5}\right) V_{4}-g\left(V_{2}, V_{5}\right) \tilde{Z}\left(V_{3}, \xi\right) V_{4} \tag{24}\\
& +\eta\left(V_{5}\right) \tilde{Z}\left(V_{3}, V_{2}\right) V_{4}-g\left(V_{2}, V_{4}\right) \tilde{Z}\left(V_{3}, V_{5}\right) \xi \\
& \left.+\eta\left(V_{4}\right) \tilde{Z}\left(V_{3}, V_{5}\right) V_{2}\right\}=0
\end{align*}
$$

If we use $(20),(21),(22)$ in (24), we obtain

$$
\begin{aligned}
& \frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left\{g\left(V_{2}, \tilde{Z}\left(V_{3}, V_{5}\right) V_{4}\right) \xi\right. \\
& -\eta\left(\tilde{Z}\left(V_{3}, V_{5}\right) V_{4}\right) V_{2}+\eta\left(V_{3}\right) \tilde{Z}\left(V_{2}, V_{5}\right) V_{4} \\
& +\eta\left(V_{5}\right) \tilde{Z}\left(V_{3}, V_{2}\right) V_{4}+\eta\left(V_{4}\right) \tilde{Z}\left(V_{3}, V_{5}\right) V_{2} \\
& -A\left[g\left(V_{2}, V_{3}\right) g\left(V_{5}, V_{4}\right) \xi\right. \\
& -g\left(V_{2}, V_{3}\right) \eta\left(V_{4}\right) V_{5}-g\left(V_{2}, V_{5}\right) g\left(V_{3}, V_{4}\right) \xi \\
& +g\left(V_{2}, V_{5}\right) \eta\left(V_{4}\right) V_{3}+g\left(V_{2}, V_{4}\right) \eta\left(V_{5}\right) V_{3} \\
& \left.\left.-g\left(V_{2}, V_{4}\right) \eta\left(V_{3}\right) V_{5}\right]\right\}=0,
\end{aligned}
$$

where $A=\left[\left(\digamma_{1}-\digamma_{3}\right)-\frac{r}{2 n(2 n+1)}\right]$. If we choose $V_{3}=\xi$ in (25) and make the necessary adjustments using (20), we get

$$
\begin{align*}
& \frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left\{\tilde{Z}\left(V_{2}, V_{5}\right) V_{4}\right. \tag{26}\\
& \left.-A\left[g\left(V_{5}, V_{4}\right) V_{2}-g\left(V_{2}, V_{4}\right) V_{5}\right]\right\}=0
\end{align*}
$$

If we substitute the (19) in (26) and we make the necessary arrangements, we obtain

$$
\begin{aligned}
& \frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left\{R\left(V_{2}, V_{5}\right) V_{4}-\left(\digamma_{1}-\digamma_{3}\right)\right. \\
& \left.\left[g\left(V_{5}, V_{4}\right) V_{2}-g\left(V_{2}, V_{4}\right) V_{5}\right]\right\}=0
\end{aligned}
$$

This completes the proof.
Now let's characterize the $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ with the help of the special curvature condition established between the W_{0}-curvature tensor and the Ricci curvature tensor for the generalized Sasakian space form.

Theorem 3.6. Let $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ be the $(2 n+1)$-dimensional generalized Sasakian space form. If $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ satisfies the curvature condition $T\left(V_{1}, V_{2}\right) Q=0$, then $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ is either an Einstein manifold or $3 \digamma_{2}=(1-2 n) \digamma_{3}$.

Proof. Let's assume that

$$
T\left(V_{1}, V_{2}\right) Q=0
$$

From here it is clear that

$$
\left(T\left(V_{1}, V_{2}\right) S\right)\left(V_{3}, V_{5}\right)=0
$$

for every $V_{1}, V_{2}, V_{3}, V_{5} \in \chi\left(M^{2 n+1}\right)$. So, we can write

$$
\begin{equation*}
S\left(T\left(V_{1}, V_{2}\right) V_{3}, V_{5}\right)+S\left(V_{3}, T\left(V_{1}, V_{2}\right) V_{5}\right)=0 \tag{27}
\end{equation*}
$$

If we choose $V_{1}=\xi$ in (27) and make use of (7), we get

$$
\frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left\{g\left(V_{2}, V_{3}\right) S\left(\xi, V_{5}\right)-\eta\left(V_{3}\right) S\left(V_{2}, V_{5}\right)\right.
$$

$$
\begin{equation*}
\left.+g\left(V_{2}, V_{5}\right) S\left(\xi, V_{3}\right)-\eta\left(V_{5}\right) S\left(V_{3}, V_{2}\right)\right\}=0 \tag{28}
\end{equation*}
$$

If we choose $V_{3}=\xi$ in (28) and make use of (5), we have

$$
\frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left\{-S\left(V_{2}, V_{5}\right)+2 n\left(\digamma_{1}-\digamma_{3}\right) g\left(V_{2}, V_{5}\right)\right\}=0
$$

This completes the proof.
Let us now prepare to examine the curvature condition associated with the projective curvature tensor.

Definition 3.7. Let M be a $(2 n+1)$-dimensional Riemannian manifold. The curvature tensor defined as

$$
\begin{equation*}
P\left(V_{1}, V_{2}\right) V_{3}=R\left(V_{1}, V_{2}\right) V_{3}-\frac{1}{2 n}\left[S\left(V_{2}, V_{3}\right) V_{1}-S\left(V_{1}, V_{3}\right) V_{2}\right] \tag{29}
\end{equation*}
$$

is called the projective curvature tensor.
For the $(2 n+1)$-dimensional generalized Saskian space form, if we choose $V_{1}=\xi, V_{2}=\xi, V_{3}=\xi$ respectively in (29), then we get

$$
\begin{equation*}
P\left(\xi, V_{2}\right) V_{3}=\frac{3 \digamma_{2}+(2 n-1) \digamma_{3}}{2 n}\left[-g\left(V_{2}, V_{3}\right) \xi+\eta\left(V_{2}\right) \eta\left(V_{3}\right) \xi\right] \tag{30}
\end{equation*}
$$

$$
\begin{gather*}
P\left(V_{1}, \xi\right) V_{3}=\frac{3 \digamma_{2}+(2 n-1) \digamma_{3}}{2 n}\left[g\left(V_{1}, V_{3}\right) \xi-\eta\left(V_{1}\right) \eta\left(V_{3}\right) \xi\right] \tag{31}\\
P\left(V_{1}, V_{2}\right) \xi=0 .
\end{gather*}
$$

Theorem 3.8. Let $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ be the $(2 n+1)$-dimensional generalized Sasakian space form. If $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ satisfies the curvature condition $T\left(V_{1}, V_{2}\right) P=0$, then $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ provides the relation $3 \digamma_{2}=$ $(1-2 n) \digamma_{3}$.

Proof. Let's assume that

$$
\left(T\left(V_{1}, V_{2}\right) P\right)\left(V_{3}, V_{5}, V_{4}\right)=0
$$

for every $V_{1}, V_{2}, V_{3}, V_{4}, V_{5} \in \chi\left(M^{2 n+1}\right)$. So, we can write

$$
\begin{align*}
& T\left(V_{1}, V_{2}\right) P\left(V_{3}, V_{5}\right) V_{4}-P\left(T\left(V_{1}, V_{2}\right) V_{3}, V_{5}\right) V_{4} \\
& -P\left(V_{3}, T\left(V_{1}, V_{2}\right) V_{5}\right) V_{4}-P\left(V_{3}, V_{5}\right) T\left(V_{1}, V_{2}\right) V_{4}=0 \tag{33}
\end{align*}
$$

If we choose $V_{1}=\xi$ in (33) and make use of (7), we get

$$
\begin{align*}
& \frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left\{g\left(V_{2}, P\left(V_{3}, V_{5}\right) V_{4}\right) \xi\right. \\
& -\eta\left(P\left(V_{3}, V_{5}\right) V_{4}\right) V_{2}-g\left(V_{2}, V_{3}\right) P\left(\xi, V_{5}\right) V_{4} \\
& +\eta\left(V_{3}\right) P\left(V_{2}, V_{5}\right) V_{4}-g\left(V_{2}, V_{5}\right) P\left(V_{3}, \xi\right) V_{4} \tag{34}\\
& +\eta\left(V_{5}\right) P\left(V_{3}, V_{2}\right) V_{4}-g\left(V_{2}, V_{4}\right) P\left(V_{3}, V_{5}\right) \xi \\
& \left.+\eta\left(V_{4}\right) P\left(V_{3}, V_{5}\right) V_{2}\right\}=0 .
\end{align*}
$$

If we use (30), (31), (32) in (34), we obtain

$$
\begin{align*}
& \frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left\{g\left(V_{2}, P\left(V_{3}, V_{5}\right) V_{4}\right) \xi\right. \\
& -\eta\left(P\left(V_{3}, V_{5}\right) V_{4}\right) V_{2}+\eta\left(V_{3}\right) P\left(V_{2}, V_{5}\right) V_{4} \\
& +\eta\left(V_{5}\right) P\left(V_{3}, V_{2}\right) V_{4}+\eta\left(V_{4}\right) P\left(V_{3}, V_{5}\right) V_{2} \tag{35}\\
& +B\left[g\left(V_{2}, V_{3}\right) g\left(V_{5}, V_{4}\right) \xi-g\left(V_{2}, V_{3}\right) \eta\left(V_{4}\right) \eta\left(V_{5}\right) \xi\right. \\
& \left.\left.-g\left(V_{2}, V_{5}\right) g\left(V_{3}, V_{4}\right) \xi+g\left(V_{2}, V_{5}\right) \eta\left(V_{4}\right) \eta\left(V_{3}\right) \xi\right]\right\}=0,
\end{align*}
$$

where $B=\frac{3 \digamma_{2}+(2 n-1) \digamma_{3}}{2 n}$. If we choose $V_{3}=\xi$ in (35) and make the necessary adjustments using (30), we get

$$
\begin{align*}
& \frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}\left\{P\left(V_{2}, V_{5}\right) V_{4}+B\left[g\left(V_{5}, V_{4}\right) V_{2}\right.\right. \\
& -\eta\left(V_{5}\right) \eta\left(V_{4}\right) V_{2}-g\left(V_{2}, V_{4}\right) \eta\left(V_{5}\right) \xi \tag{36}\\
& \left.\left.-g\left(V_{2}, V_{5}\right) \eta\left(V_{4}\right) \xi+2 \eta\left(V_{4}\right) \eta\left(V_{5}\right) \eta\left(V_{2}\right) \xi\right]\right\}=0
\end{align*}
$$

If we choose $V_{4}=\xi$ in (36) and then we take inner product of both sides of the equation by $\xi \in \chi\left(M^{2 n+1}\right)$, we obtain

$$
B^{2}\left[g\left(V_{2}, V_{5}\right)-\eta\left(V_{2}\right) \eta\left(V_{5}\right)\right]=0
$$

This completes the proof.
4. W_{0}-Pseudosymmetric And W_{0}-Ricci Pseudosymmetric Gen-
eralized Sasakian Space Form

Let us now investigate the concepts of $W_{0}-$ pseudosymmetry and $W_{0}-$ Ricci pseudosymmetry for the generalized Sasakian space form.

Definition 4.1. Let $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ be a $(2 n+1)$ dimensional generalized Sasakian space form and R be the Riemann curvature tensor of $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$. If the pair R.T and $Q(g, T)$ are linearly dependent, that is, if a λ_{1} function can be found on the set $M_{1}=\left\{V_{1} \in M^{2 n+1} \mid g\left(V_{1}\right) \neq T\left(V_{1}\right)\right\}$ such that

$$
R \cdot T=\lambda_{1} Q(g, T)
$$

the $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ manifold is called a $W_{0}-$ pseudosymmetric manifold. Particularly, if $\lambda_{1}=0$, then this manifold is said to be semi-symmetric.

Let us state and prove the following theorem.
Theorem 4.2. Let $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ be the $(2 n+1)$-dimensional generalized Sasakian space form. If $M^{2 n+1}$ is $W_{0}-p s e u d o s y m m e t r i c$, then $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ is either an η-Einstein manifold provided $3 \digamma_{2} \neq 2 n \digamma_{1}+\digamma_{3}$ and $(1-2 n) \digamma_{3} \neq$ $3 \digamma_{2}$ or $\lambda_{1}=\digamma_{1}-\digamma_{3}$.

Proof. Let's assume $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ is W_{0}-pseudosymmetric. So, we can write

$$
\left(R\left(V_{1}, V_{2}\right) T\right)\left(V_{4}, V_{5}, V_{3}\right)=\lambda_{1} Q(g, T)\left(V_{4}, V_{5}, V_{3} ; V_{1}, V_{2}\right),
$$

that is

$$
\begin{align*}
& R\left(V_{1}, V_{2}\right) T\left(V_{4}, V_{5}\right) V_{3}-T\left(R\left(V_{1}, V_{2}\right) V_{4}, V_{5}\right) V_{3} \\
& -T\left(V_{4}, R\left(V_{1}, V_{2}\right) V_{5}\right) V_{3}-T\left(V_{4}, V_{5}\right) R\left(V_{1}, V_{2}\right) V_{3} \\
& =-\lambda_{1}\left\{g\left(V_{2}, V_{4}\right) T\left(V_{1}, V_{5}\right) V_{3}-g\left(V_{1}, V_{4}\right) T\left(V_{2}, V_{5}\right) V_{3}\right. \tag{37}\\
& +g\left(V_{2}, V_{5}\right) T\left(V_{4}, V_{1}\right) V_{3}-g\left(V_{1}, V_{5}\right) T\left(V_{4}, V_{2}\right) V_{3} \\
& \left.+g\left(V_{2}, V_{3}\right) T\left(V_{4}, V_{5}\right) V_{1}-g\left(V_{1}, V_{3}\right) T\left(V_{4}, V_{5}\right) V_{2}\right\}
\end{align*}
$$

for every $V_{1}, V_{2}, V_{3}, V_{4}, V_{5} \in \chi\left(M^{2 n+1}\right)$. If we choose $V_{1}=\xi$ in (37) and use (2),(7),(8),(9), we get

$$
\begin{aligned}
& \left(\digamma_{1}-\digamma_{3}\right)\left\{g\left(V_{2}, T\left(V_{4}, V_{5}\right) V_{3}\right) \xi-\eta\left(T\left(V_{4}, V_{5}\right) V_{3}\right) V_{2}\right. \\
& +\eta\left(V_{4}\right) T\left(V_{2}, V_{5}\right) V_{3}+\eta\left(V_{5}\right) T\left(V_{4}, V_{2}\right) V_{3} \\
& +\eta\left(V_{3}\right) T\left(V_{4}, V_{5}\right) V_{2}-C\left[g\left(V_{2}, V_{4}\right) g\left(V_{5}, V_{3}\right) \xi\right. \\
& -g\left(V_{2}, V_{4}\right) \eta\left(V_{3}\right) V_{5}-g\left(V_{2}, V_{3}\right) \eta\left(V_{4}\right) V_{5} \\
& \left.\left.+g\left(V_{2}, V_{3}\right) \eta\left(V_{4}\right) \eta\left(V_{5}\right) \xi\right]\right\} \\
& =-\lambda_{1}\left\{-\eta\left(V_{4}\right) T\left(V_{2}, V_{5}\right) V_{3}-\eta\left(V_{5}\right) T\left(V_{4}, V_{2}\right) V_{3}\right. \\
& -\eta\left(V_{3}\right) T\left(V_{4}, V_{5}\right) V_{2}+C\left[g\left(V_{2}, V_{4}\right) g\left(V_{5}, V_{3}\right) \xi\right. \\
& -g\left(V_{2}, V_{4}\right) \eta\left(V_{3}\right) V_{5}-g\left(V_{2}, V_{3}\right) \eta\left(V_{4}\right) V_{5} \\
& \left.\left.+g\left(V_{2}, V_{3}\right) \eta\left(V_{4}\right) \eta\left(V_{5}\right) \xi\right]\right\},
\end{aligned}
$$

where $C=\frac{(1-2 n) \digamma_{3}-3 \digamma_{2}}{2 n}$. If we choose $V_{4}=\xi$ in (38) and make use of (7), we obtain

$$
\begin{align*}
& \left(\digamma_{1}-\digamma_{3}\right)\left\{T\left(V_{2}, V_{5}\right) V_{3}-C\left[g\left(V_{5}, V_{3}\right) V_{2}-g\left(V_{2}, V_{3}\right) V_{5}\right]\right\} \\
& =-\lambda_{1}\left\{-T\left(V_{2}, V_{5}\right) V_{3}+C\left[g\left(V_{5}, V_{3}\right) \eta\left(V_{2}\right) \xi\right.\right. \tag{39}\\
& \left.\left.+\eta\left(V_{5}\right) \eta\left(V_{3}\right) V_{2}-g\left(V_{2}, V_{3}\right) V_{5}-g\left(V_{5}, V_{2}\right) \eta\left(V_{3}\right) \xi\right]\right\}
\end{align*}
$$

If we substitute (6) in (39) and choose $V_{3}=\xi$, we have

$$
\begin{align*}
& \left(\digamma_{1}-\digamma_{3}\right)\left\{\frac{1}{2 n} \eta\left(V_{2}\right) Q V_{5}-\left(\digamma_{1}-\digamma_{3}\right) \eta\left(V_{2}\right) V_{5}\right. \\
& \left.+C\left[\eta\left(V_{2}\right) V_{5}-\eta\left(V_{5}\right) V_{2}\right]\right\} \\
& =-\lambda_{1}\left\{-\frac{1}{2 n} \eta\left(V_{2}\right) Q V_{5}+\left(\digamma_{1}-\digamma_{3}\right) \eta\left(V_{2}\right) V_{5}\right. \tag{40}\\
& +C\left[\eta\left(V_{5}\right) \eta\left(V_{2}\right) \xi+\eta\left(V_{5}\right) V_{2}-\eta\left(V_{2}\right) V_{5}\right. \\
& \left.\left.-g\left(V_{5}, V_{2}\right) \xi\right]\right\}
\end{align*}
$$

If we choose $V_{2}=\xi$ and then we take inner product of both sides of the equation by $V_{3} \in \chi\left(M^{2 n+1}\right)$, we have

$$
\begin{aligned}
& {\left[\lambda_{1}-\left(\digamma_{1}-\digamma_{3}\right)\right]\left[S\left(V_{5}, V_{3}\right)+\left(2 n \digamma_{1}-3 \digamma_{2}+\digamma_{3}\right) g\left(V_{5}, V_{3}\right)\right.} \\
& \left.-\left((1-2 n) \digamma_{3}-3 \digamma_{2}\right) \eta\left(V_{5}\right) \eta\left(V_{3}\right)\right]=0
\end{aligned}
$$

This completes the proof.
Corollary 4.3. Let $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ be the $(2 n+1)$-dimensional generalized Sasakian space form. If $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ is W_{0}-pseudosymmetric, then $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ is Einstein manifold if and only if $3 \digamma_{2}=(1-2 n) \digamma_{3}$ and $3 \digamma_{2} \neq 2 n \digamma_{1}+\digamma_{3}$ relations are provided.

Definition 4.4. Let $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ be a $(2 n+1)$ dimensional generalized Sasakian space form, R and S be the Riemann and Ricci curvature tensor of $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$, respectively. If the pair R.T and $Q(S, T)$ are linearly dependent, that is, if a λ_{2} function can be found on the set $M_{2}=\left\{V_{1} \in M^{2 n+1} \mid S\left(V_{1}\right) \neq T\left(V_{1}\right)\right\}$ such that

$$
R \cdot T=\lambda_{2} Q(S, T)
$$

the $M^{2 n+1}\left(\digamma_{1}, \digamma_{2}, \digamma_{3}\right)$ manifold is called a $W_{0}-$ Ricci pseudosymmetric manifold.

Let us state and prove the following theorem.
Theorem 4.5. Let $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ be the $(2 n+1)$-dimensional generalized Sasakian space form. If $M^{2 n+1}$ is W_{0}-Ricci pseudosymmetric, then $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ is either an η-Einstein manifold provided $f_{3} \neq 2 n f_{1}+3 f_{2}$ and $(1-2 n) f_{3} \neq 3 f_{2}$ or $\lambda_{2}=\frac{1}{2 n}$.

Proof. Let's assume $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ is W_{0}-Ricci pseudosymmetric. So, we can write

$$
\left(R\left(V_{1}, V_{2}\right) T\right)\left(V_{4}, V_{5}, V_{3}\right)=\lambda_{2} Q(S, T)\left(V_{4}, V_{5}, V_{3} ; V_{1}, V_{2}\right)
$$

that is

$$
\begin{align*}
& R\left(V_{1}, V_{2}\right) T\left(V_{4}, V_{5}\right) V_{3}-T\left(R\left(V_{1}, V_{2}\right) V_{4}, V_{5}\right) V_{3} \\
& -T\left(V_{4}, R\left(V_{1}, V_{2}\right) V_{5}\right) V_{3}-T\left(V_{4}, V_{5}\right) R\left(V_{1}, V_{2}\right) V_{3} \\
& =-\lambda_{2}\left\{S\left(V_{2}, V_{4}\right) T\left(V_{1}, V_{5}\right) V_{3}-S\left(V_{1}, V_{4}\right) T\left(V_{2}, V_{5}\right) V_{3}\right. \tag{41}\\
& +S\left(V_{2}, V_{5}\right) T\left(V_{4}, V_{1}\right) V_{3}-S\left(V_{1}, V_{5}\right) T\left(V_{4}, V_{2}\right) V_{3} \\
& \left.+S\left(V_{2}, V_{3}\right) T\left(V_{4}, V_{5}\right) V_{1}-S\left(V_{1}, V_{3}\right) T\left(V_{4}, V_{5}\right) V_{2}\right\},
\end{align*}
$$

for every $V_{1}, V_{2}, V_{3}, V_{4}, V_{5} \in \chi\left(M^{2 n+1}\right)$. If we choose $V_{1}=\xi$ in (41) and use $(2),(5),(7),(8),(9)$, we get

$$
\begin{aligned}
& \left(f_{1}-f_{3}\right)\left\{g\left(V_{2}, T\left(V_{4}, V_{5}\right) V_{3}\right) \xi-\eta\left(T\left(V_{4}, V_{5}\right) V_{3}\right) V_{2}\right. \\
& +\eta\left(V_{4}\right) T\left(V_{2}, V_{5}\right) V_{3}+\eta\left(V_{5}\right) T\left(V_{4}, V_{2}\right) V_{3} \\
& +\eta\left(V_{3}\right) T\left(V_{4}, V_{5}\right) V_{2}-C\left[g\left(V_{2}, V_{4}\right) g\left(V_{5}, V_{3}\right) \xi\right. \\
& -g\left(V_{2}, V_{4}\right) \eta\left(V_{3}\right) V_{5}-g\left(V_{2}, V_{3}\right) \eta\left(V_{4}\right) V_{5} \\
& \left.\left.+g\left(V_{2}, V_{3}\right) \eta\left(V_{4}\right) \eta\left(V_{5}\right) \xi\right]\right\} \\
& =-\lambda_{2}\left\{-2 n\left(f_{1}-f_{3}\right) \eta\left(V_{4}\right) T\left(V_{2}, V_{5}\right) V_{3}\right. \\
& -2 n\left(f_{1}-f_{3}\right) \eta\left(V_{5}\right) T\left(V_{4}, V_{2}\right) V_{3} \\
& -2 n\left(f_{1}-f_{3}\right) \eta\left(V_{3}\right) T\left(V_{4}, V_{5}\right) V_{2} \\
& +C\left[S\left(V_{2}, V_{4}\right) g\left(V_{5}, V_{3}\right) \xi-S\left(V_{2}, V_{4}\right) \eta\left(V_{3}\right) V_{5}\right. \\
& \left.\left.-S\left(V_{2}, V_{3}\right) \eta\left(V_{4}\right) V_{5}+S\left(V_{2}, V_{3}\right) \eta\left(V_{4}\right) \eta\left(V_{5}\right) \xi\right]\right\}
\end{aligned}
$$

(42)
where $C=\frac{(1-2 n) f_{3}-3 f_{2}}{2 n}$. If we choose $V_{4}=\xi$ in (42) and make use of (5) and (7), we obtain

$$
\begin{align*}
& \left(f_{1}-f_{3}\right)\left\{T\left(V_{2}, V_{5}\right) V_{3}-C\left[g\left(V_{5}, V_{3}\right) V_{2}-g\left(V_{2}, V_{3}\right) V_{5}\right]\right\} \\
& =-\lambda_{2}\left\{-2 n\left(f_{1}-f_{3}\right) T\left(V_{2}, V_{5}\right) V_{3}\right. \\
& +2 n\left(f_{1}-f_{3}\right) C\left[g\left(V_{5}, V_{3}\right) \eta\left(V_{2}\right) \xi\right. \\
& +\eta\left(V_{5}\right) \eta\left(V_{3}\right) V_{2}-g\left(V_{2}, V_{3}\right) \eta\left(V_{5}\right) \xi \tag{43}\\
& \left.-g\left(V_{5}, V_{2}\right) \eta\left(V_{3}\right) \xi\right] \\
& \left.-C\left[S\left(V_{2}, V_{3}\right) V_{5}-S\left(V_{2}, V_{3}\right) \eta\left(V_{5}\right) \xi\right]\right\}
\end{align*}
$$

If we choose $V_{3}=\xi$ in (43), we have

$$
\begin{aligned}
& \left(f_{1}-f_{3}\right)\left\{\frac{1}{2 n} \eta\left(V_{2}\right) Q V_{5}-\left(f_{1}-f_{3}\right) \eta\left(V_{2}\right) V_{5}\right. \\
& \left.+C\left[\eta\left(V_{2}\right) V_{5}-\eta\left(V_{5}\right) V_{2}\right]\right\}=-\lambda_{2}\left\{-\left(f_{1}-f_{3}\right) \eta\left(V_{2}\right) Q V_{5}\right. \\
& +2 n\left(f_{1}-f_{3}\right)^{2} \eta\left(V_{2}\right) V_{5}+2 n\left(f_{1}-f_{3}\right) C\left[\eta\left(V_{5}\right) \eta\left(V_{2}\right) \xi\right. \\
& \left.\left.+\eta\left(V_{5}\right) V_{2}-\eta\left(V_{2}\right) V_{5}-g\left(V_{5}, V_{2}\right) \xi\right]\right\} .
\end{aligned}
$$

If we choose $V_{2}=\xi$ in (44)and then we take inner product of both sides of (44) by $V_{3} \in \chi\left(M^{2 n+1}\right)$, we have

$$
\begin{aligned}
& \left(f_{1}-f_{3}\right)\left(1-2 n \lambda_{2}\right)\left[S\left(V_{5}, V_{3}\right)+\left(f_{3}-2 n f_{1}-3 f_{2}\right) g\left(V_{5}, V_{3}\right)\right. \\
& \left.-\left((1-2 n) f_{3}-3 f_{2}\right) \eta\left(V_{5}\right) \eta\left(V_{3}\right)\right]=0
\end{aligned}
$$

This completes the proof.
Corollary 4.6. Let $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ be the $(2 n+1)$-dimensional generalized Sasakian space form. If $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ is W_{0}-Ricci pseudosymmetric, then $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ is Einstein manifold if and only if $3 f_{2}=(1-2 n) f_{3}$ and $f_{3} \neq 2 n f_{1}+3 f_{2}$ relations are provided.

References

[1] P. Alegre, D. E. Blair, and A. Carriazo, Generalized Sasakian space form, Israel Journal of Mathematics 141 (2004), 157-183.
[2] P. Alegre and A. Cariazo, Structures on generalized Sasakian-space-form, Differential Geom. and its Application 26 (2008), 656-666.
[3] M. Atçeken, On generalized Sasakian space forms satisfying certain conditions on the concircular curvature tensor, Bulletin of Math. Analysis and Applications 6 (2014), no. 1, 1-8.
[4] M. Belkhelfa, R. Deszcz, and L. Verstraelen, Symmetry properties of Sasakianspaceforms, Soochow Journal of Mathematics 31 (2005), 611-616.
[5] U. C. De and A. Sarkar, On the projective curvature tensor of generalized Sasakian space forms, Quaestines Mathematicae 33 (2010), 245-252.
[6] U. C. De and A. Sarkar, Some curvature properties of generalized Sasakian space forms, Lobachevskii Journal of Mathematics 33 (2012), no. 1, 22-27.
[7] U. K. Kim, Conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms, Note di Matemetica 26 (2006), 55-67.
[8] T. Mert, Characterization of some special curvature tensor on almost $C(\alpha)$-manifold, Asian Journal of Mathematics and Computer Research, 29 (2022), no. 1, 27-41.
[9] C. Özgür and N. M. Tripathi, On P-Sasakian manifolds satisfying certain conditions on concircular curvature tensor, Turk. J. Math. 31 (2007), 171-179.
[10] G. T. Sreenivasa, Venkatesha, and C. S. Bagewadi, Some results on $(L C S)_{2 n+1^{-}}$ manifolds, Bulletin of Mathematical Analysis and Applications 1 (2009), no. 3, 64-70.
[11] M. Tripathi and P. Gupta, τ-curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Studies 4 (2011), 117-129.
[12] P. Uygun and M. Atçeken, On ($\kappa, \mu)$-paracontact metric spaces satisfying some conditions on the W_{0}-curvature tensor, New Trends in Mathematical Sciences 26 (2021), no. 2, 26-37.

Tuğba Mert

Department of Mathematics, University of Sivas Cumhuriyet, 58140, Sivas, Turkey.
E-mail: tmert@cumhuriyet.edu.tr
Mehmet Atçeken
Department of Mathematics, University of Aksaray, 68100, Aksaray, Turkey.
E-mail: mehmet.atceken382@gmail.com

[^0]: Received May 6, 2022. Revised December 4, 2022. Accepted January 2, 2023.
 2020 Mathematics Subject Classification. 53C15; 53C44, 53D10.
 Key words and phrases. W_{0}-curvature tensors, pseudosymmetric manifold, Sasakian space forms.
 *Corresponding author

