• Title/Summary/Keyword: TEM microstructure

Search Result 415, Processing Time 0.022 seconds

Mechanical Properties of ODS Fe Alloys Produced by Mechano-Chemical Cryogenic Milling (극저온 기계화학적 밀링(Mechano-Chemical Milling)에 의해 제조된 ODS Fe 합금의 기계적 특성)

  • Hahn, Sung-In;Hong, Young-Hwan;Hwang, Seung-Joon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.3
    • /
    • pp.138-145
    • /
    • 2012
  • An ${\alpha}$-Ferrite (Fe) powder dispersed with 4 vol.% of $Al_2O_3$ was successfully produced by a simple miling at 210 K with a mixture of $Fe_2O_3$, Fe and Al ingredient powders, followed by 2 step high temperature consolidation: Hot Pressing (HP) at 1323 K and then Hot Isostatic Pressing at 1423 K. The microstructure of the consolidated material was characterized by standard metallographic techniques such as XRD (X-ray Diffraction), TEM and STEM-EDS. The results of STEM-EDS analysis showed that the HIPed materials comprised a mixture of pure Fe matrix with a grain size of ~20 nm and $Al_2O_3$ with a bimodal size distribution of extremely fine (~5 nm) and medium size dispersoids (~20 nm). The mechanical properties of the consolidated materials were characterized by compressive test and micro Vickers hardness test at room temperature. The results showed that the yield strength of the ODS (Oxide Dispersion Strengthened) Fe alloy are as much as $674{\pm}39$ MPa and the improvement of the yield strength is attributed to the presence of the fine $Al_2O_3$ dispersoid.

The Effect of Uni-nanoadditive Manufactured Using RF Plasma Processing on Core-shell Structure in MLCC

  • Song, Soon-Mo;Kim, Hyo-Sub;Park, Kum-Jin;Sohn, Sung-Bum;Kim, Young-Tae;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.131-136
    • /
    • 2009
  • Radio frequency (RF) plasma treatment is studied for the size reduction and the spheroidization of coarse particles to change them into nano-sized powders of spherical shape in MLCC fields. The uni-nanoadditives manufactured by RF plasma processing for high dispersion have been investigated for the effect on core-shell structure in dielectrics of MLCC. Microstructures have been characterized using scanning electron microscope (SEM), transmission electron microscope (TEM) and Electron Probe Micro Analyzer (EPMA). We compared the distribution of core-shell grains between specimens manufactured using uni-nanoadditive and using mixed additive. In addition, the uniformity of rare earth elements in the core-shell structured grains was analyzed. It was shown, from TEM observations, that the sintered specimen manufactured using uni-nanoadditives had more dense small grains with well-developed core-shell structure than the specimen using mixed additives, which had a homogeneous microstructure without abnormal grain growth and shows broad temperature coefficient of capacitance (TCC) curves in all temperature ranges because of well dispersed additives.

Microstructure and Characteristics of Mechanically Alloyed Ni-W(WC) (기계적 합금화한 Ni-W(WC)의 미세구조 및 특성)

  • Sin, Su-Cheol;Jang, Geon-Ik
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1133-1137
    • /
    • 1998
  • By the mechanical alloying method Ni-W(WC) composite materials were prepared to improve the resistance for creep and sintering of Ni-anode at the operating temperature of$ 650^{\circ}C$. Amorphization was observed from the XRD analysis of mechanically alloyed powder caused by the destruction of ordered crystals. Sintering was performed at $1280^{\circ}C$ for 10 hours in $H_2$ atmosphere. From the result of dot-mapping and TEM analysis the second phase was not observed at Ni-W interface while W particles of less 0.lam were distributed finely and uniformly in Ni matrix. This finely and uniformly distributed W in Ni matrix is expected to enhance the mechanical properties of Ni-anode through the dispersion and solid solution hardening mechanisms.

  • PDF

Effects of V and Sb on the Recrystallization of Zr-0.8Sn alloy (Zr-0.8Sn 합금의 재결정에 미치는 V과 Sb의 영향)

  • Gu, Jae-Song;Kim, Jeong-Min;Hong, Sun-Ik;Jeong, Yong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.1000-1005
    • /
    • 1999
  • To investigate the effects of V and Sb on the recrystallization of Zr-0.8Sn alloy, the microstructure of heat-treated specimens was observed by optical microscope, SEM, and TEM. Microhardness tests were also carried out for the annealed specimens. From microstructural studies, the V or Sb additions were found to delay recrystallization process as well as grain growth. Especially, Sb was more effective in delaying the recrystallization. This delay of recrystallization and grain growth by V or Sb additions may be due to the interference in the movement of dislocation and crystal interface by V or Sb precipitates.

  • PDF

Effect of Al Precursor Type on Mesoporous Alumina Particles Prepared by Spray Pyrolysis (분무열분해공정에 의한 메조기공 알루미나 제조에 있어 Al 전구체 영향)

  • Kim, Joo-Hyun;Jung, Kyeong-Youl;Park, Kyun-Young
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.209-215
    • /
    • 2010
  • Mesoporous alumina particles were prepared by spray pyrolysis using cetyltrimethyl-ammonium bromide (CTAB) as a structure directing agent and the effect of Al precursor types on the texture properties was studied using $N_2$ adsorption isotherms, small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The surface area and the microstructure of alumina particles were significantly influenced by the Al precursor type. The largest BET surface area was obtained when Al chloride was used, whereas alumina particles prepared from Al acetate had the largest pore volume. According to small-angle X-ray scattering (SAXS) analysis, the alumina powders prepared using nitrate and acetate precursors had a clear single SAXS peak around $2{\theta}=1.0{\sim}1.5^{\circ}$, indicating that regular mesopores with sponge-like structure were produced. On the basis of TEM, SAXS, and $N_2$ isotherm results, the chloride precursor was most profitable to obtain the largest surface area ($265\;m^2/g$), whereas, the nitrate precursor is useful for the preparation of non-hollow mesoporous alumina with regular pore size, maintaining high surface area (${\sim}233\;m^2/g$).

Property Evaluation of Reaction Sintered SiC/SiC Composites Fabricated by Melt Infiltration Process (용융함침법에 의한 반응소결 SiC/SiC 복합재료의 특성 평가)

  • Lee, Sang-Pill;Shin, Yun-Seok;Kohyama, Akira
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.205-210
    • /
    • 2007
  • SiC/SiC composites and monolithic SiC materials have been fabricated by the melt infiltration process, through the creation of crystallized SiC phase by the chemical reaction of C and Si. The reinforcing material used in this system was a braided Hi-Nicalon SiC fiber with double interphases of BN and SiC. The microstructures and the mechanical properties of RS-SiC based materials were investigated through means of SEM, TEM, EDS and three point bending test. The matrix morphology of RS-SiS/SiC composites was greatly composed of the SiC phases that the chemical composition of Si and C is different. The TEM analysis showed that the crystallized SiC phases were finely distributed in the matrix region of RS-SiC/SiC composites. RS-SiC/SiC composites also represented a good flexural strength and a high density, accompanying a pseudo failure behavior.

Effects of Cobalt Ohmic Layer on Contact Resistance (코발트 오믹층의 적용에 의한 콘택저항 변화)

  • 정성희;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.390-396
    • /
    • 2003
  • As the design rule of device continued to shrink, the contact resistance in small contact size became important. Although the conventional TiN/Ti structure as a ohmic layer has been widely used, we propose a new TiN/Co film structure. We characterized a contact resistance by using a chain pattern and a KELVIN pattern, and a leakage current determined by current-voltage measurements. Moreover, the microstructure of TiN/ Ti/ silicide/n$\^$+/ contact was investigated by a cross-sectional transmission electron microscope (TEM). The contact resistance by the Co ohmic layer showed the decrease of 26 % compared to that of a Ti ohmic layer in the chain resistance, and 50 % in KELYIN resistance, respectively. A Co ohmic layer shows enough ohmic behaviors comparable to the Ti ohmic layer, while higher leakage currents in wide area pattern than Ti ohmic layer. We confirmed that an uniform silicide thickness and a good interface roughness were able to be achieved in a CoSi$_2$ Process formed on a n$\^$+/ silicon junction from TEM images.

Fabrication of piezoelectric PZT thick film by aerosol deposition method (에어로졸 증착법에 의한 압전 PZT 후막의 제조)

  • Kim, Ki-Hoon;Bang, Kook-Soo;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.95-99
    • /
    • 2013
  • Lead zirconate titanate (PZT) thick films with a thickness of $10-20{\mu}m$ were fabricated on silicone substrates using an aerosol deposition method. The starting powder, which had diameters of $1-2{\mu}m$, was observed using SEM. The average diameter ($d_{50}$) was $1.1{\mu}m$. An XRD analysis showed a typical perovskite structure, a mixture of the tetragonal phase and rhombohedral phase. The as-deposited film with nano-sized grains had a fairly dense microstructure without any cracks. The deposited film showed a mixture of an amorphous phase and a very fine crystalline phase by diffraction pattern analysis using TEM. The as-deposited films on silicon were annealed at a temperature of $700^{\circ}C$. A 20-${\mu}m$ thick PZT film was torn out as a result of the high compressive stress between the PZT film and substrate.

Crystallized Nano-thick ZnO Films with Low Temperature ALD Process (저온 원자층 증착으로 형성된 ZnO 박막의 물성과 결정성 연구)

  • Yu, Byungkwan;Han, Jeungjo;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1109-1115
    • /
    • 2010
  • ZnO thin films were deposited on Si(100) substrates at low temperatures ($44^{\circ}C{\sim}210^{\circ}C$) by atomic layer deposition using DEZn (diethyl zinc) and water as precursors. The film thickness was measured by ellipsometry calibrated with cross-sectional TEM. The phase formation, microstructure evolution, UV-absorbance, and chemical composition changes were examined by XRD, SEM, AFM, TEM, UV-VIS-NIR, and AES, respectively. A uniform amorphous ZnO layer was formed even at $44^{\circ}C$ while stable crystallized ZnO films were deposited above $90^{\circ}C$. All the samples showed uniform surface roughness below 3 nm. Fully crystallized ZnO layers with a band-gap of 3.37 eV without carbon impurities can be formed at substrate temperatures of less than $90^{\circ}C$.

Nano-thick Nickel Silicide and Polycrystalline Silicon on Glass Substrate with Low Temperature Catalytic CVD (유리 기판에 Catalytic CVD 저온공정으로 제조된 나노급 니켈실리사이드와 결정질 실리콘)

  • Song, Ohsung;Kim, Kunil;Choi, Yongyoon
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.660-666
    • /
    • 2010
  • 30 nm thick Ni layers were deposited on a glass substrate by e-beam evaporation. Subsequently, 30 nm or 60 nm ${\alpha}-Si:H$ layers were grown at low temperatures ($<220^{\circ}C$) on the 30 nm Ni/Glass substrate by catalytic CVD (chemical vapor deposition). The sheet resistance, phase, microstructure, depth profile and surface roughness of the $\alpha-Si:H$ layers were examined using a four-point probe, HRXRD (high resolution Xray diffraction), Raman Spectroscopy, FE-SEM (field emission-scanning electron microscopy), TEM (transmission electron microscope) and AES depth profiler. The Ni layers reacted with Si to form NiSi layers with a low sheet resistance of $10{\Omega}/{\Box}$. The crystallinty of the $\alpha-Si:H$ layers on NiSi was up to 60% according to Raman spectroscopy. These results show that both nano-scale NiSi layers and crystalline Si layers can be formed simultaneously on a Ni deposited glass substrate using the proposed low temperature catalytic CVD process.