DOI QR코드

DOI QR Code

Nano-thick Nickel Silicide and Polycrystalline Silicon on Glass Substrate with Low Temperature Catalytic CVD

유리 기판에 Catalytic CVD 저온공정으로 제조된 나노급 니켈실리사이드와 결정질 실리콘

  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul) ;
  • Kim, Kunil (Department of Materials Science and Engineering, University of Seoul) ;
  • Choi, Yongyoon (Department of Materials Science and Engineering, University of Seoul)
  • 송오성 (서울시립대학교 신소재공학과) ;
  • 김건일 (서울시립대학교 신소재공학과) ;
  • 최용윤 (서울시립대학교 신소재공학과)
  • Received : 2010.02.24
  • Published : 2010.07.22

Abstract

30 nm thick Ni layers were deposited on a glass substrate by e-beam evaporation. Subsequently, 30 nm or 60 nm ${\alpha}-Si:H$ layers were grown at low temperatures ($<220^{\circ}C$) on the 30 nm Ni/Glass substrate by catalytic CVD (chemical vapor deposition). The sheet resistance, phase, microstructure, depth profile and surface roughness of the $\alpha-Si:H$ layers were examined using a four-point probe, HRXRD (high resolution Xray diffraction), Raman Spectroscopy, FE-SEM (field emission-scanning electron microscopy), TEM (transmission electron microscope) and AES depth profiler. The Ni layers reacted with Si to form NiSi layers with a low sheet resistance of $10{\Omega}/{\Box}$. The crystallinty of the $\alpha-Si:H$ layers on NiSi was up to 60% according to Raman spectroscopy. These results show that both nano-scale NiSi layers and crystalline Si layers can be formed simultaneously on a Ni deposited glass substrate using the proposed low temperature catalytic CVD process.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. A. W. Blakers and T. Armour, Solar Energy Materials and Solar Cells 93, 1440 (2009). https://doi.org/10.1016/j.solmat.2009.03.016
  2. Y. Ichikawa, T. Yoshida, T. Hama, H. Sakai, and K. Harashima, Solar Energy Mater. Solar Cells 66, 107 (2001). https://doi.org/10.1016/S0927-0248(00)00163-X
  3. Y. Y. Choi, K. I. Kim, and O. S. Song, Kor. J. Met. Mater. 48, (2010).
  4. W. S. Hong, J. T. Walton, P. M. Luke, N. W. Wang, and F. P. Ziemba, IEEE Transactions on Nuclear Science 44, 961 (1997). https://doi.org/10.1109/23.603785
  5. J. R. Kim, Y. Y. Choi, J. S. Park, and O. S. Song, J. Kor. Inst. Met. & Mater 46, 762 (2008).
  6. A. Heya, N. Matsuo, T. Serikawa, and N. Kawamoto, Materials Transactions 48, 975 (2007). https://doi.org/10.2320/matertrans.48.975
  7. L. Pfeiffer, A. E. Gelman, K. A. Jackson, K. W. West, and J. L. Batstone, Applied Physics Letters 51, 1256 (1987). https://doi.org/10.1063/1.98697
  8. J. P. Gambino and E. G. Colgan, Mater. Chem. Phys. 52, 99 (1998). https://doi.org/10.1016/S0254-0584(98)80014-X
  9. E. G. Colgan, J. P. Gambino, and Q. Z. Hong, Mater. Sci. Engin. 16, 43 (1996). https://doi.org/10.1016/0927-796X(95)00186-7
  10. C. Lavoie, F. M. d`Heurle, C. Detavernier, and C. Cabral, J. Microelectronic Engin. 70, 144 (2003). https://doi.org/10.1016/S0167-9317(03)00380-0
  11. M. C. Poon, C. H. Ho, F. Deng, S. S. Lau, and H. Wong, Microelectronics Reliability 38, 1495 (1998). https://doi.org/10.1016/S0026-2714(98)00045-6
  12. J. J. Jeong, J. Lim, and C. Lee, Coatings Technology 171, 6 (2003). https://doi.org/10.1016/S0257-8972(03)00227-5
  13. S. P. Murarka, Silicide for VLSI Applications, p.90, Academic Press (1983).
  14. S. Yamazaki, Japanese Patent 686,435, Appl., No. S43- 41742 (1968).
  15. S. Yamazaki, K. Wada, and I. Taniguchi, Jpn. J. Appl. Phys. 9 (1970).
  16. H. Matsumura, Jpn. J. Appl. Phys. 25, 949 (1986). https://doi.org/10.1143/JJAP.25.L949
  17. A. G. Sault and D. W. Goodman, Surf. Sci. 235, 28 (1990). https://doi.org/10.1016/0039-6028(90)90103-F
  18. B. P. Nelson, E. Iwaniczko, A. H. Mahan, Q. Wang, Y. Xu, R. S. Crandall, and H. M. Branz, Thin Solid Films 395, 292 (2001). https://doi.org/10.1016/S0040-6090(01)01274-3
  19. M. Karasawa, M. Sakai, K. Ishibashi, M. Tanaka, A. Masuda, and H. Matsumura, Proc. 21st Int. Display Research Conf. in Conjunction with 8th Int. Display Workshops, Nagoya, p.1735 (2001).
  20. A. Izumi and H. Matsumura, Jpn. J. Appl. Phys. 41, 4639 (2002). https://doi.org/10.1143/JJAP.41.4639
  21. K. J. Yoon and O. S. Song, J. Kor. Inst. Met. & Mater 46, 69 (2008).
  22. J. W. Mayer and S. S. Lau, Electronic Materials Science, For Integrated Circuits in Si and GaAs, p.308-310, Macmillan Publishing Company, New York (1989).