Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.07.660

Nano-thick Nickel Silicide and Polycrystalline Silicon on Glass Substrate with Low Temperature Catalytic CVD  

Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
Kim, Kunil (Department of Materials Science and Engineering, University of Seoul)
Choi, Yongyoon (Department of Materials Science and Engineering, University of Seoul)
Publication Information
Korean Journal of Metals and Materials / v.48, no.7, 2010 , pp. 660-666 More about this Journal
Abstract
30 nm thick Ni layers were deposited on a glass substrate by e-beam evaporation. Subsequently, 30 nm or 60 nm ${\alpha}-Si:H$ layers were grown at low temperatures ($<220^{\circ}C$) on the 30 nm Ni/Glass substrate by catalytic CVD (chemical vapor deposition). The sheet resistance, phase, microstructure, depth profile and surface roughness of the $\alpha-Si:H$ layers were examined using a four-point probe, HRXRD (high resolution Xray diffraction), Raman Spectroscopy, FE-SEM (field emission-scanning electron microscopy), TEM (transmission electron microscope) and AES depth profiler. The Ni layers reacted with Si to form NiSi layers with a low sheet resistance of $10{\Omega}/{\Box}$. The crystallinty of the $\alpha-Si:H$ layers on NiSi was up to 60% according to Raman spectroscopy. These results show that both nano-scale NiSi layers and crystalline Si layers can be formed simultaneously on a Ni deposited glass substrate using the proposed low temperature catalytic CVD process.
Keywords
amorphous matrials; deposition; crystallization; transmission electronmicroscopy (TEM); thin films;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 A. W. Blakers and T. Armour, Solar Energy Materials and Solar Cells 93, 1440 (2009).   DOI   ScienceOn
2 Y. Ichikawa, T. Yoshida, T. Hama, H. Sakai, and K. Harashima, Solar Energy Mater. Solar Cells 66, 107 (2001).   DOI   ScienceOn
3 Y. Y. Choi, K. I. Kim, and O. S. Song, Kor. J. Met. Mater. 48, (2010).
4 W. S. Hong, J. T. Walton, P. M. Luke, N. W. Wang, and F. P. Ziemba, IEEE Transactions on Nuclear Science 44, 961 (1997).   DOI   ScienceOn
5 J. R. Kim, Y. Y. Choi, J. S. Park, and O. S. Song, J. Kor. Inst. Met. & Mater 46, 762 (2008).
6 A. Heya, N. Matsuo, T. Serikawa, and N. Kawamoto, Materials Transactions 48, 975 (2007).   DOI   ScienceOn
7 L. Pfeiffer, A. E. Gelman, K. A. Jackson, K. W. West, and J. L. Batstone, Applied Physics Letters 51, 1256 (1987).   DOI
8 J. P. Gambino and E. G. Colgan, Mater. Chem. Phys. 52, 99 (1998).   DOI   ScienceOn
9 E. G. Colgan, J. P. Gambino, and Q. Z. Hong, Mater. Sci. Engin. 16, 43 (1996).   DOI   ScienceOn
10 C. Lavoie, F. M. d`Heurle, C. Detavernier, and C. Cabral, J. Microelectronic Engin. 70, 144 (2003).   DOI   ScienceOn
11 M. C. Poon, C. H. Ho, F. Deng, S. S. Lau, and H. Wong, Microelectronics Reliability 38, 1495 (1998).   DOI   ScienceOn
12 J. J. Jeong, J. Lim, and C. Lee, Coatings Technology 171, 6 (2003).   DOI
13 S. P. Murarka, Silicide for VLSI Applications, p.90, Academic Press (1983).
14 S. Yamazaki, Japanese Patent 686,435, Appl., No. S43- 41742 (1968).
15 S. Yamazaki, K. Wada, and I. Taniguchi, Jpn. J. Appl. Phys. 9 (1970).
16 H. Matsumura, Jpn. J. Appl. Phys. 25, 949 (1986).   DOI   ScienceOn
17 A. G. Sault and D. W. Goodman, Surf. Sci. 235, 28 (1990).   DOI   ScienceOn
18 B. P. Nelson, E. Iwaniczko, A. H. Mahan, Q. Wang, Y. Xu, R. S. Crandall, and H. M. Branz, Thin Solid Films 395, 292 (2001).   DOI   ScienceOn
19 M. Karasawa, M. Sakai, K. Ishibashi, M. Tanaka, A. Masuda, and H. Matsumura, Proc. 21st Int. Display Research Conf. in Conjunction with 8th Int. Display Workshops, Nagoya, p.1735 (2001).
20 A. Izumi and H. Matsumura, Jpn. J. Appl. Phys. 41, 4639 (2002).   DOI
21 K. J. Yoon and O. S. Song, J. Kor. Inst. Met. & Mater 46, 69 (2008).
22 J. W. Mayer and S. S. Lau, Electronic Materials Science, For Integrated Circuits in Si and GaAs, p.308-310, Macmillan Publishing Company, New York (1989).