Browse > Article
http://dx.doi.org/10.12656/jksht.2012.25.3.138

Mechanical Properties of ODS Fe Alloys Produced by Mechano-Chemical Cryogenic Milling  

Hahn, Sung-In (Dep’t of Advanced Materials Science & Engineering, Daejin University)
Hong, Young-Hwan (Dept. Advanced Materials Application, Suwon Science College)
Hwang, Seung-Joon (Dep’t of Advanced Materials Science & Engineering, Daejin University)
Publication Information
Journal of the Korean Society for Heat Treatment / v.25, no.3, 2012 , pp. 138-145 More about this Journal
Abstract
An ${\alpha}$-Ferrite (Fe) powder dispersed with 4 vol.% of $Al_2O_3$ was successfully produced by a simple miling at 210 K with a mixture of $Fe_2O_3$, Fe and Al ingredient powders, followed by 2 step high temperature consolidation: Hot Pressing (HP) at 1323 K and then Hot Isostatic Pressing at 1423 K. The microstructure of the consolidated material was characterized by standard metallographic techniques such as XRD (X-ray Diffraction), TEM and STEM-EDS. The results of STEM-EDS analysis showed that the HIPed materials comprised a mixture of pure Fe matrix with a grain size of ~20 nm and $Al_2O_3$ with a bimodal size distribution of extremely fine (~5 nm) and medium size dispersoids (~20 nm). The mechanical properties of the consolidated materials were characterized by compressive test and micro Vickers hardness test at room temperature. The results showed that the yield strength of the ODS (Oxide Dispersion Strengthened) Fe alloy are as much as $674{\pm}39$ MPa and the improvement of the yield strength is attributed to the presence of the fine $Al_2O_3$ dispersoid.
Keywords
Cryogenic-milling; Mechano-chemical reaction; ODS Fe; Nanocrystalline Fe; TEM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Suryanarayana, C. : Mechanical Alloying and Milling, Marcel Dekker (2004) 14-17.
2 Benjamin, J. S. : Scientific American, 234 (1976) 40.
3 F. H. Froes and B. Trindade : J. Mat. Proc. Tech. 153-154 (2004) 472-475.   DOI
4 R. L. Klueh, P. J. Maziasz, I. S. Kim, L. Heatherly, D. T. Hoelzr, N. Hashimoto, E. A. Kenik and K. Miyahara : J. of Nucl. Mater. 307-311 (2002) 773.   DOI
5 I. -S. Kim, C. -Y. Kang, C. H. Sung, T. Okuda, K. Miyahara, P. J. Maziasz and R. L. Klueh : Materials and Materials Intern. 6 (2000) 513.
6 B. A. Pint and I. G. Wright : J. of Nucl. Mater. 307-311 (2002) 763.   DOI
7 D. T. Hoelzer, B. A. Pint and I. G. Wright : J. of Nucl. Mater. 283-287 (2000) 1306.   DOI
8 D. K. Mukhopadhyay, F. H. Froes and D. S. Gelles : J. of Nucl. MAter. 258-263 (1998) 1209.   DOI
9 I. -S. Kim, J. D. Hunn, N. Hashimoto, D. L. Larson, P. J. Maziasz, K. Miyahara and E. H. Lee : J. of Nucl. Mater. 280 (2000) 264.   DOI
10 I. -S. Kim, J. -S. Jang and C. -Y. Kang : J. of Kor. Inst. Met and Mater. 41 (2003) 337.
11 I. -S. Kim, B. -Y. Choi, C. -Y. Kang, T. Okuda, P. J. Maziasz and K. Miyahara : ISIJ Intern. 43 (2003) 1640.   DOI
12 S. Ukai and M Fujiwara : J. of Nucl. Mater. 307-311 (2002) 749.   DOI
13 I. -S. Kim, and B-Y. Choi : Materials and Materials Intern. 8 (2002) 265.   DOI
14 J. Cui, I. -S. Kim, C. -Y. Kang, and K. Miyahara : ISU Intern. 41 (2001) 36.   DOI
15 D. J. Sherwood, A. L. Ward and G. D. Johnson : J. of Nucl. Tech. 178 (1987) 83.
16 X선 회절분석, 김문집, 서일환, 반도출판사, 1993, P254-256
17 S. Z. Anvari, Fkarimaadeh, M. H. Enayati : Journal of Alloys and Compounds 477 (2009)178-181.   DOI   ScienceOn
18 T. Venugopal, K. Prasad Rao, B. S. Murty, Materials Science and Engineering A 393 (2005) 382-386.   DOI   ScienceOn
19 D. R. Gaskell : Introduction to the Thermodynamics of Materials, SciTech, 3rd ed. (1999) 145.
20 J. W. Martin : Micromechanisms in particle-hardened alloys, Cambridge University Press (1980) 60-63.