• Title/Summary/Keyword: Symmetric matrices

Search Result 111, Processing Time 0.019 seconds

ON NUMERICAL PROPERTIES OF COMPLEX SYMMETRIC HOUSEHOLDER MATRICES

  • Smoktunowicz, Alicja;Grabarski, Adam
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.2
    • /
    • pp.51-64
    • /
    • 2003
  • Analysis is given of construction and stability of complex symmetric analogues of Householder matrices, with applications to the eigenproblem for such matrices. We investigate numerical properties of the deflation of complex symmetric matrices by using complex symmetric Householder transformations. The proposed method is very similar to the well-known deflation technique for real symmetric matrices (Cf. [16], pp. 586-595). In this paper we present an error analysis of one step of the deflation of complex symmetric matrices.

  • PDF

SAOR METHOD FOR FUZZY LINEAR SYSTEM

  • Miao, Shu-Xin;Zheng, Bing
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.839-850
    • /
    • 2008
  • In this paper, the symmetric accelerated overrelaxation (SAOR) method for solving $n{\times}n$ fuzzy linear system is discussed, then the convergence theorems in the special cases where matrix S in augmented system SX = Y is H-matrices or consistently ordered matrices and or symmetric positive definite matrices are also given out. Numerical examples are presented to illustrate the theory.

  • PDF

SIGN PATTERNS OF IDEMPOTENT MATRICES

  • Hall, Frank J.;Li, Zhong-Shan
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.469-487
    • /
    • 1999
  • Sign patterns of idempotent matrices, especially symmetric idempotent matrices, are investigated. A number of fundamental results are given and various constructions are presented. The sign patterns of symmetric idempotent matrices through order 5 are determined. Some open questions are also given.

  • PDF

Geodesic Clustering for Covariance Matrices

  • Lee, Haesung;Ahn, Hyun-Jung;Kim, Kwang-Rae;Kim, Peter T.;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.4
    • /
    • pp.321-331
    • /
    • 2015
  • The K-means clustering algorithm is a popular and widely used method for clustering. For covariance matrices, we consider a geodesic clustering algorithm based on the K-means clustering framework in consideration of symmetric positive definite matrices as a Riemannian (non-Euclidean) manifold. This paper considers a geodesic clustering algorithm for data consisting of symmetric positive definite (SPD) matrices, utilizing the Riemannian geometric structure for SPD matrices and the idea of a K-means clustering algorithm. A K-means clustering algorithm is divided into two main steps for which we need a dissimilarity measure between two matrix data points and a way of computing centroids for observations in clusters. In order to use the Riemannian structure, we adopt the geodesic distance and the intrinsic mean for symmetric positive definite matrices. We demonstrate our proposed method through simulations as well as application to real financial data.

STRONG PRESERVERS OF SYMMETRIC ARCTIC RANK OF NONNEGATIVE REAL MATRICES

  • Beasley, LeRoy B.;Encinas, Luis Hernandez;Song, Seok-Zun
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1503-1514
    • /
    • 2019
  • A rank 1 matrix has a factorization as $uv^t$ for vectors u and v of some orders. The arctic rank of a rank 1 matrix is the half number of nonzero entries in u and v. A matrix of rank k can be expressed as the sum of k rank 1 matrices, a rank 1 decomposition. The arctic rank of a matrix A of rank k is the minimum of the sums of arctic ranks of the rank 1 matrices over all rank 1 decomposition of A. In this paper we obtain characterizations of the linear operators that strongly preserve the symmetric arctic ranks of symmetric matrices over nonnegative reals.

THE STEEPEST DESCENT METHOD AND THE CONJUGATE GRADIENT METHOD FOR SLIGHTLY NON-SYMMETRIC, POSITIVE DEFINITE MATRICES

  • Shin, Dong-Ho;Kim, Do-Hyun;Song, Man-Suk
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.439-448
    • /
    • 1994
  • It is known that the steepest descent(SD) method and the conjugate gradient(CG) method [1, 2, 5, 6] converge when these methods are applied to solve linear systems of the form Ax = b, where A is symmetric and positive definite. For some finite difference discretizations of elliptic problems, one gets positive definite matrices that are almost symmetric. Practically, the SD method and the CG method work for these matrices. However, the convergence of these methods is not guaranteed theoretically. The SD method is also called Orthores(1) in iterative method papers. Elman [4] states that the convergence proof for Orthores($\kappa$), with $\kappa$ a positive integer, is not heard. In this paper, we prove that the SD method and the CG method converge when the $\iota$$^2$ matrix norm of the non-symmetric part of a positive definite matrix is less than some value related to the smallest and the largest eigenvalues of the symmetric part of the given matrix.(omitted)

  • PDF

A META-SOFTWARE SYSTEM FOR ORTHOGONAL DESIGNS AND HADAMARD MATRICES

  • Kotsireas, Ilias S.;Koukouvinos, Christos;Simos, Dimitris E.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1571-1581
    • /
    • 2011
  • In this paper, we construct inequivalent Hadamard matrices based on several new and old full orthogonal designs, using circulant and symmetric block matrices. Not all orthogonal designs produce inequivalent Hadamard matrices, because the corresponding systems of equations do not possess solutions. The systems of equations arising when we search for inequivalent Hadamard matrices from full orthogonal designs using circulant and symmetric block matrices, can be concisely described using the periodic autocorrelation function of the generators of the block matrices. We use Maple, Magma, C and Unix tools to find many new inequivalent Hadamard matrices.

LINEAR PRESERVERS OF SYMMETRIC ARCTIC RANK OVER THE BINARY BOOLEAN SEMIRING

  • Beasley, LeRoy B.;Song, Seok-Zun
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1317-1329
    • /
    • 2017
  • A Boolean rank one matrix can be factored as $\text{uv}^t$ for vectors u and v of appropriate orders. The perimeter of this Boolean rank one matrix is the number of nonzero entries in u plus the number of nonzero entries in v. A Boolean matrix of Boolean rank k is the sum of k Boolean rank one matrices, a rank one decomposition. The perimeter of a Boolean matrix A of Boolean rank k is the minimum over all Boolean rank one decompositions of A of the sums of perimeters of the Boolean rank one matrices. The arctic rank of a Boolean matrix is one half the perimeter. In this article we characterize the linear operators that preserve the symmetric arctic rank of symmetric Boolean matrices.

THE NEW ALGORITHM FOR $LDL^T$ DECOMPOSITION OF BLOCK HANKEL MATRICES

  • Bao, Wendi;Lv, Zhongquan
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.641-651
    • /
    • 2011
  • In this paper, with use of the displacement matrix, two special matrices are constructed. By these special matrices the block decompositions of the block symmetric Hankel matrix and the inverse of the Hankel matrix are derived. Hence, the algorithms according to these decompositions are given. Furthermore, the numerical tests show that the algorithms are feasible.

ON THE CONSTRUCTION OF SELF-DUAL CODES OVER GF(2m) USING SYMMETRIC GENERATOR MATRICES

  • HAN, SUNGHYU
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.703-715
    • /
    • 2021
  • There are several methods for constructing self-dual codes. Among them, the building-up construction is a powerful method. Recently, Kim and Choi proposed special building-up constructions which use symmetric generator matrices for self-dual codes over GF(q), where q is odd. In this paper, we study the same method when q is even.