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ON NUMERICAL PROPERTIES OF COMPLEX SYMMETRIC
HOUSEHOLDER MATRICES

ALICJA SMOKTUNOWICZ, ADAM GRABARSKI

ABSTRACT. Analysis is given of construction and stability of complex symmetric
analogues of Householder matrices, with applications to the eigenproblem for such
matrices. We investigate numerical properties of the deflation of complex symmetric
matrices by using complex symmetric Householder transformations. The proposed
method is very similar to the well-known deflation technique for real symmetric ma-
trices (Cf. [16], pp. 586-595). In this paper we present an error analysis of one step
of the deflation of complex symmetric matrices.

1. INTRODUCTION

The set of all n-by-n matrices over C is denoted by M,,. We remind that A € M,,
is symmetric iff A = AT. A* € M,, stands for the matrix formed by conjugating each
element and taking the transpose. If A = A* then A is called Hermitian. We say that
A € M,, is complex orthogonal iff ATA = 1I.

Complex symmetric matrices occur frequently, particularly in algebraic eigenvalue
problem (Cf. [3], [4], [5]). However, the mathematical properties of complex symmetric
matrices are quite different from those of real symmetric matrices (Cf. [6], [11], [12]).
For example, a complex symmetric matrix may not be diagonalizable. A complex
symmetric matrix A € M, is diagonalizable if and only if its eigenvector matrix, Q,
can be chosen complex orthogonal, QTQ = I and QTAQ = diag(\, Xz, ..., \,) (CL.
[12], p. 233). It is known that any general complex matrix is similar to some complex

symmetric matrix (Gantmacher’s theorem, see [2]). Lately, the new algorithms for
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solving the eigenproblem of complex symmetric matrices that exploit the symmetry
were proposed (Cf. [2], [3], [4], [5]). However, the accuracy guarantee is not quite as
good as for real symmetric matrices. In order to improve the accuracy of the computed
eigenpairs of a complex symmetric matrices, like for real symmetric matrices, we can
apply Newton’s method as considered in [15]. The problem of evaluating an eigenpair
(A, z), where z is not an isotropic vector (i.e. 27z # 0 and ) is a single eigenvalue of

A), is equivalent to this of solving the nonlinear system F(z,)) = 0, where
Az — A
F(z,\) = S .
(1-2T2)/2

In this paper we present an error analysis of the deflation of complex symmetric
matrices using complex symmetric Householder transformations instead of Hermitian
Householder transformations. The algorithms given here are based upon Wilkinson’s
ideas from [16], pp. 586-595. We discuss the conditioning of complex symmetric
Householder matrices and give the detailed error analysis of the deflation.

To illustrate our results we present some numerical experiments. All tests were
carried out in MATLAB in double precision ey, ~ 2.2 - 10716,

2. COMPLEX SYMMETRIC HOUSEHOLDER TRANSFORMATIONS

A complex symmetric Householder matrix is a matrix of the form

2
(1) H=1- T’U,'U/T,
U u

where 0 # u'w and u € C".

A complex symmetric matrix H has the following properties (Cf. [1], [2]):
(1) H is symmetric: H = HT.
(2) H is orthogonal: HTH =1.
(3) The eigenvalues of H are equal to:

AM=—1, de=...= X = L.

(4) det(H) = —1.
This is because det(H) = A\{Ay... A\, = —1.
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(5) The singular values o > 09 > ... > 0, of H are equal to

0'2:...=0'n_1:1,

where

(2) c(u) = %

(6) The condition number of a matrix H equals

cond(H) = || H ||| H™" [l = {e(u) + V2 (u) — 1}2.
(7) The product of H with a given vector z € C™ can be computed as follows:
2ul'z
uTy
The main application of complex symmetric Householder transformations is reducing

Hz=2z—( Ju.

a given matrix to a special form to zero some elements.

Theorem 2.1. For a given vector z € C™ such that 27z # 0 there exists a symmetric
Householder transformation H = I — u%uuuT such that Hz = pey and p? = 27 2.

Moreover, it is possible to choose u such that 1 < c(u) < ¢(z).

Proof.
The first part of this theorem is known (Cf. [2]).

Notice that H is independent of the scaling of u (u := au where a # 0), so we can
take

@) u =z — pey.
Then
(4) ulu =202+ p? — 2p21 = 2p(p — 21).

Since p = 6 with 8 = V2Tz and 6 = +1, we need to show that ulu # 0, that is that
ur = 21 —p # 0. We will choose the sign 6 as follows. If we let 8 = a+iband 2y = c+1id
where a,b,c,d € R, then |u; > = (fa—c)>+ (06— d)> = | B8 > +] 21 |* — 20(ac+ bd).
If ac + bd < 0 then we choose 0 =1 else § = —1.



54 ALICJA SMOKTUNOWICZ, ADAM GRABARSKI

If we let
21
9 =2
(5) p
then under this choice of a sign we have
(6) lur [P =1 o P{1+]¢]*+ 2| Re(t) |}.

Hence u; # 0 and, consequently, uTu # 0.
Now we prove that under this choice of sign the inequality c(u) < ¢(z) holds.

From (3) we get
(7) u*u = | p [*{1 = 2Re(t) + c(2)},
which together with (6) gives the formula
1 —2Re(t) + c(z
® olw) = s
2\/1+]t1?+2]| Re(t) |

It can be easily verified that
1+2| Re(t) | +c(z)

o WS R D
hence
ofw) < 21 < o),

because c¢(z) > 1. This finishes the proof. B
ALGORITHM L.

Given vector z € C" such that 27z # 0 this algorithm computes a vector 0 # u € C*
and R = -“:’21—“ such that Hz = pei, p? = 27z, where H = I — uul.

:,Bz\/E,
2 p1 =B, p2 =4,

:if | 21 — p1 |>| 21 — p2 | then p = p; else p = py,

Uy =21 —p,
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tuj =z forj=2,...,n,
: R=(uTu)/2. 0

3. DEFLATION USING COMPLEX SYMMETRIC HOUSEHOLDER TRANSFORMATIONS

We consider now a deflation which depends on similarity Householder transforma-
tions. We adopt the methods developed in [16], pp. 586-595.

Suppose that we find an eigenvalue A\; and a corresponding eigenvector z of a complex
symmetric matrix A(n x n). We are interested in computation of eigenvectors and
further eigenvalues of A. We use the reduction of A, where A is used to generate an
(n —1) x (n — 1) matrix with the eigenvalues Xo, ..., \s.

Suppose H =T — uz—rduuT is such that Hz = pe;, Az = A;z. We assume additionally
that z is not an isotropic vector, that is 27z # 0. Then HAHe; = Aje;.

We see that the first column of B = HAH is equal to A\je1, hence B is symmetric
and has the following form:

a0
" ol

We see that the deflated matrix is also complex symmetric. Here C is a symmetric
matrix of order (n — 1) which has the eigenvalues Xg,..., \,. If p € C*! is an eigen-
vector of C' corresponding to Ay then we can take [0;p”]7 as an eigenvector of B and
H[0;pT)T as an eigenvector of A.

In order to take advantage of symmetry in calculation B = HAH we write a matrix H

as

’U,T’U,

1
H:I“EU’UT, R=-2—

We remark that in the construction of u the special choice of sign can be used as
described in Algorithm I.
We have

1 1
B=(I—- EuuT) A(I - EuuT)
This equation may be written in the form

B=A-(p—Lu)ul —u(p— Lu)T,

where p = Au/R, L =u’p/(2R).
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ALGORITHM II.

Given vector z € C" such that 27z # 0 and Az = )12, where A(n x n) is complex

symmetric, this algorithm computes a symmetric matrix B defined in (10).

: Find v and R by Algorithm I,

= (Au)/R,
L= (u"p)/(2R),
=p— Lu,
tfori=1,...,n, j=1,...,1 compute

bij = aij — qiuj — wigj, bji =1bi;. W
We see that the number of arithmetic operations mvolved in the computation of B
is of order 0(n?).

4. ERROR ANALYSIS

We consider complex arithmetic (cfl) (Cf. [9]) implemented using real arithmetic

with machine unit €p,. We assume that for z,y € C we have

(11) cfllzOy)=(z0y)(1+d),]d[<H, ©=+—%/,
and

(12) cfl(vz) =vVa(1+96), |§|<H.

Here

(13) = M i = —M

’Y = ———--—
1—cepr” ™ 1—cnep’

where ¢ is a small constant whose exact value is unimportant in error analysis (Cf. [9]).

4.1. Error analysis of Algorithm I.. From (12) we get
n
cfl(zT2) = Z (1+65), |65 1< An.

From this it follows that

(14) cfi(z"2) = (272) (14 m), | |< ¢(2) Fn.
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We see that ¢(z) may be interpreted as a condition number of evaluating 27 2.
From (13)—(14) we get

=VzTz (14 p2), | p2 |< e(2) Yn-

Then 4; = z; for j =2,...,n. From (6) it follows that | u; |>| p | and | uy |>] 21 |, so
without loss of generality we can assume that

dy = uy (1+ p3), | p3|< c(z) Fn-

Thus,

(15) @=(I+¢)u, ¢=diag(ys,0,...,0), | ¢llp < c(2) Yn.

Here, the computed R = cfI((u”w)/2) satisfies

E 1+45)/2, | A IS Fn-

Combining this with (15) we get

ul (I+ D) u

eyl
l

where D is diagonal such that

I+D = (I+¢) (I +diag(Ay,...,An)) (I+9¢).

This equation may be rewritten

N wl'u

R=— (L+ pa), | pa |< c(u) An

Since c(u) < c¢(z) and by Th. 2.1

N ulwy

(16) R=—- (1 + pa), | pa 1< c(2) Fne
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4.2. Error analysis of Algorithm II.. We prove the following theorem.
Theorem 4.1. Assume that c*(z) J, < % and

(17) cfl(AB) = (A+ Er)i, | Billp < Yn [l Allp-

Let B denote the computed deflated matriz B(n x n) in cfl. Then there exists matriz
AA such that

(18) B=H(A+ AA)H,
where H =1 — ﬁuuT, and

(19) | A4l <2 A | Allp-
Proof.

From (16)—(17) we get
1
R

Similarly, the computed quantity L in cfl can we written as

p=2 (A+ Eu, | B2 llp <c(2) dn || Allp-

- 1 =
L= SR? ul (A4 E3)u, | Es|lp <c(2) 3 | Allp

From (11) and (13) it follows that
B =A+Ey+git +ad",
where
I Esllp < A (N Al +11d 1y 112 ll)-
Using elementary calculations we get
1

52 u(u? (4 + Es)u),

G= (A + Boju—
where
| Bk llp < e(2) An | Allps k=5,6.
We see that
g=4q+dq,
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where

i = (A + B)u — —u(u” (A + Fs)u)

1= R Y P I
and

I wllsll 6 lly < (2)7n | Allp-
We have
B=E;+ (A+ Es) + guf +ug",

where

| Br g < 2(2) An || A llp-

This equation can be rewritten
B=H(A+ AA)H, AA=E;+ HE:H.
Thus,

| AA|lp < c(2) An | A g + cond(H)|| Ex |ip-
From this and Th. 2.1 it follows that

I AAllp <cH(2) Fn | Allp-

This completes the proof. &

We conclude that if ¢(z) is small, eg. c¢(z) < 5 then the computed matrix B is similar
to a slightly perturbed matrix A, and the deflation algorithm is numerically stable.
However, the real problem here is the possible exponential growth of the condition
number of the Householder matrix H and the algorithm may become unstable and the
spectrum of the deflated matrices may be completely unrelated to the original ones.
However, in practice, this exponential growth in the condition number of H is very
unlikely to happen.

5. NUMERICAL TESTS

To illustrate our results we give some numerical experiments. All computations were
carried out in MATLAB with unit roundoff €)s ~ 2.2 - 10716, The computed results
for a wide class of complex symmetric matrices A were very good. Here we present
special examples to show that the accuracy of Algorithm IT in floating point arithmetic

depends on conditioning of a Householder matrix H.
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In order to have an eigenpair of the matrix A we use MATLAB function ”eigs”. For
example, [X,D] = eigs(A,2) returns a diagonal matrix D of A’s 2 largest magnitude
eigenvalues and a matrix X whose columns are the corresponding eigenvectors.

A simple way to test the error bounds is to compute B = HAH and M = HBH by
Algorithm II, and to evaluate the error
|A-MY,

(20) err =
I Al

Example 5.1. The first example is the problem with a matriz
A=bbT, b=1,i,—i,—1]".

Note that A has an isotropic vector z = b as an eigenvector, that is, Az = 0 and
2Tz = 0. The Algorithm II fails.

Example 5.2. The second example is the problem with a slightly perturbed matriz from
Ezample 5.1.
The following code finds the error defined in (20).
i=sqrt(-1);
A=bxb.’+rand(4)*(2*i-1)*1.1e-10
[X,Dl=eigs(A,2);
d=D(1,1)
z=X(:,1)
c=(z’*z)/abs(z.’*z)

We performed Algorithm II for the matrizx A = A; + 1Az, where

[ 1.0000e +000 —9.8043¢ — 011 —9.0355¢ — 011 —1.0000¢ + 000 ]
4y | 25425e =011 ~1.0000e+000  1.0000¢+000  —8.1203¢ — 011
—6.6753¢ — 011  1.0000e + 000 —1.0000¢ + 000 —1.9389¢ — 011
| —1.0000e + 000 —2.0354¢ — 012 —8.7113¢ — 011  1.0000e + 000
[ 2.0903¢ — 010 1.0000e + 000 —1.0000e + 000 2.0280e — 010 ]
4, | 1-0000e+000  1.6766c—010  9.7835¢ — 011  —1.0000e +000
—1.0000e + 000 1.0042¢ — 010  1.3540e — 010  1.0000e + 000
1.0692¢ — 010  —1.0000e + 000 1.0000e + 000  8.9255¢ — 011 |
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The results are given by

¢ = 1.7408e + 005,

err = 1.0612e — 005.

We see that the accuracy guarantee is not quite as good as the deflation for real sym-

metric matrices and depends on condition number of a complex symmetric Householder
matriz H.

Remark 5.1. In practice, we should apply one step of the deflation for an approximate
eigenpair (X, ) such that the backward error

n = I 4% - Xz |l
ARl 2 il
is small (of order epr). It is well-known (Cf. [16]) that then the computed eigenpair

(5\, Z) is an exzact eigenpair of a slightly perturbed matriz, i.e.

(A+E)z =73 E|lp<nll Allp

6. PRESERVING SYMMETRY IN PERTURBATIONS

In some numerical applications it is important that the perturbed matrix A + E
has the same structure as A. This property helps to guarantee that one has solved a
problem with the same physical connectivity as the original problem.

First, we adopt a result of a J.R.Bunch, J.W.Demmel and C.V.Loan (Cf. [8], [9],
[10]).

Theorem 6.1. Assume that A € M,, is symmetric. If (A+ E)z = Az, where 27z # 0,
then there exists a matriz F = FT € M, such that (A+F)z= Xz and || F || <3 ¢(2)
| E ||, where c(z) = ﬁ;‘zﬂ

Proof.

Let 7 = Az — Az. Then r = Ez, so it is sufficient to prove that there exists a complex
symmetric matrix F such that Ez = Fz.

If we let
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then Fz = r, and
20l 7 llall 2 o+ | 72 |
| 27z | '

By the Cauchy-Schwartz inequality we have

F ;<

|z < ol 2 Il

and
7l < TE ol 2 lls-

Therefore we obtain the desired inequality. B
We see that if c(z) is small enough then the symmetry in perturbations is preserved.

However, we can prove the following theorem using the similar idea as in [13], [14].

Theorem 6.2. Assume that A € My, is symmetric. If (A+ E)z = Az, where 2 # 0,
then there ezists a matrizx F = FT € M, such that (A+ F)z = Xz and || F ||, <
2n—1)n || E ||,

Proof.
It is sufficient to prove that there exists a complex symmetric matrix F' such that

Ez = Fz. We can assume, without loss of generality, that

|21 €|z |€ ... K| 20 |-

Let fii=e1and fi;j=fiji=ejfori=1,...,nand j=14+1,...,n. We need to

determine f;; for 2 = 2,...,n so that

i—1

fiiz =iz + Y _(eij — €5)7.
=1

If z; =0, set f;; = 0. Otherwise, set

i—1
.
fii=eii+ Y (eij— )L,
j=1 “
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Since | e; ; |< || E ||, for all ¢, j, we have

i—1
| fig ISTE N+ Y@l E [l < (26—l Bl
j=1

It is well-known that || F' ||, <n max; ;| fi; |, so
[Fll;<@n—-1)n | E|, =
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