J. Appl. Math. & Informatics Vol. 26(2008), No. 5 - 6, pp. 839 - 850
Website: http://www.kcam.biz

SAOR METHOD FOR FUZZY LINEAR SYSTEM

SHU-XIN MIAOC* AND BING ZHENG

ABSTRACT. Inthis paper, the symmetric accelerated overrelaxation (SAOR)
method for solving n X n fuzzy linear system is discussed, then the conver-
gence theorems in the special cases where matrix S in augmented system
SX =Y is H-matrices or consistently ordered matrices and or symmet-
ric positive definite matrices are also given out. Numerical examples are
presented to illustrate the theory.
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1. Introduction

Linear system have important applications to many branches of science and
engineering. However, in many applications such as many real-world engineering
problem, we usually can not be sure that the problems are perfect. Especially, if
they are known through some measurements they necessarily contain unknown
parameters. Therefore, these problems and operations-research algorithms are
designed for fuzzy data other than crisp data. The fuzzy system, which can
formulate uncertainty in actual environment, play an essential role in such cases
[1-5].

The fuzzy data have been applied to various fields more and more, such as
mathematics, physics, statistics, engineering and social science, and lots of mod-
eling techniques control problems and operations-research algorithms have been
designed for them since the concept of fuzzy number and arithmetic operations
with these numbers are first introduced and then investigated by Zadeh [1-3], it
is immensely important to establish mathematical models and numerical proce-
dures for fuzzy linear systems and solve them.

We can refer to [6-9] for looking through these applications. One of the major
applications using fuzzy numbers arithmetic is treating systems of simultane-
ous linear equations whose parameters are all or partially represented by fuzzy
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numbers. Friedman, Ma and Kandel [10] propose a general model for solving
n x n fuzzy linear system whose coefficient matrix is crisp and the right-hand
side column is an arbitrary fuzzy number vector, and present conditions for the
existence of a unique fuzzy solution to the system. In recent, the iteration meth-
ods, which are effective and then become more attractive than direct methods
because of storage requirements and preservation of sparsity, for solving such
fuzzy linear systems have been investigated in many papers [11,15-23].

In this paper, we consider the symmetric accelerated overrelazation (SAOR)
method for solving the FLS presented by Friedman et al. [10], and the conver-
gence theorem in the special cases where matrix S in SX =Y is H-matrices
or consistently ordered matrices and or symmetric positive definite matrices are
given out. The structure of this paper is organized as follows:

In Section 2 we recall the fuzzy linear systems and its solution. In Section 3
the SAOR method for FLS are proposed and give some convergence theorems
in the special cases. The procedure is illustrated with numerical examples in
Section 4 and conclusions are drawn in Section 5.

2. Fuzzy linear system and its solution

2.1. Fuzzy number and fuzzy linear system. Following [12] we represent
a fuzzy number by an ordered pair of functions (u(r),z(r)), 0 < r < 1, which
satisfy the following requirements:

1. u(r) is a bounded left continuous nondecreasing function over [0, 1],
2. u(r) is a bounded left continuous nonincreasing function over [0, 1], and
3. u(r) <u(r),0<r <1,

r

Figure 1. A fuzzy number

For example, the fuzzy number (r,3 — 2r) is shown in Figure 1. A crisp
number « is simply represented by u(r) =u(r) = a, 0 <r < 1.

By appropriate definitions the fuzzy number space {(u(r),%(r))} becomes a
convex cone E' which is then embedded isomorphically and isometrically into a
Banach space.

Definition 2.1. The n x n linear system
a11Z1 + G122 1+ -+ + 01nZn = Y1,

G211 + @22%2 + + -+ + Q2pTn = Y2,
(2.1)

n1X1 + Gn2Zo + o+ + ApnTn = Yn,
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where the coefficient matrix A = (a;), 1 € 4, § £ n is a crisp matrix and
yi € B, 1 << n,is called a fuzzy linear system (FLS).

2.2. The solution to FLS. To define a solution to the system (2.1) we should
recall the arithmetic operations of arbitrary fuzzy numbers z = (z(r),Z(r)),
y = (y(r),7(r)), 0 <r < 1, and real number £,

(1) £ =y if and only if z(r) = y(r) and Z(r) = g(r),
(2) z+y= (z(r() )Jrg(r), z(r) +%(r)), and

kz(r), kZ(r)), k>0,
(8) ke = { Ek;(:),k_@(:)), k<0,

Definition 2.2, A fuzzy number vector X = (21,22, -+ ,zn)T given by
i = (g;(r), Ti(r)), 1<i<n,0<r<],

is called a solution of the fuzzy linear system (2.1) if
E @i T5 = E ijTj =Y,»
(2.2)
Z AijTj = E 4i;T; =

Using the embedding method given in [10], from (2.2), Friedman et al. extend
FLS (2.1) to a 2n X 2n crisp linear system
SX =Y (2.3)
where S = (si1), sk are determined as follows

a;; 20 = si5 = a4, Sitn, j4n = Qij,

1<4,5<n,
ij <O = 8i,jin = —Qijy Sitn,j = —8ij,
and any sy which is not determined by the abave items is zero, 1 < &, < 2n,

and )
[- z [y
X=| & Y = ~y—2
—I1 =

L. _fn yn J

In terms of {10], we know that S has the followmg structure
51 S
Sa 5
where S1, Sy > 0, A =51 — 52, and (2.3) can be rewritten as follows

S X-5X=Y,
S X -5 X=-Y,
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where
I T Y, U1
Iy - T2 ¥ — Yo
X=|_ |\ X=| . |\ x=|7| 7=

The following theorem implies that when FLS (2.1) has a unique solution.

Theorem 2.1 ([10]). The matriz S is nonsingular if and only if the matrices
A=81— Sy and S1 + Sz are both nonsingular.

Under the conditions of Theorem 2.1, the solution vector of (2.3)
X=81Y (2.4)

is thus unique but may still not be an appropriate fuzzy vector. By Theorem 2
of [10], we know that S~! has the same structure as S, i.e.

a1 I
s _[Tz Tl].

The following result provides a sufficient condition for the unique solution to be
a fuzzy vector.

Theorem 2.2 ([11]). The unique solution X of (2.4) is a fuzzy vector for
arbitrary fuzzy vector Y, if S™1 is nonnegative.

Restricting the discussion to triangular fuzzy numbers, ie. y.(r),7;(r) and
consequently z,(r), Z;(r) are all linear functions of r, and having calculated X
which solves (2.3), we can define the fuzzy solution to the original system given
by (2.1) as follows.

Definition 2.3. Let X = {(z,(r), —Zi(r)), 1 <1 < n} denote the unique solu-
tion of (2.3). The fuzzy number vector U = {(u;(r),%i(r)), 1 <4 < n} defined
by

u(r) = min{z;(r),zi(r), z;(1), Z(1)},

ui(r) = max{z;(r),Zi(r), z,(1), T(1)}
is called the fuzzy solution of SX =Y. If (z,(r), ZTi(r)), 1 <i < n are all fuzzy

numbers then w,(r) = z;(r), %W(r) =Z;(r), 1 <i < nand U is called a strong
fuzzy solution, otherwise, U is called a weak fuzzy solution.

3. The SAOR iterative method for FLS

In this section we first present the point SAOR iterative method for FLS (2.3),
then the convergence of SAOR iterative for FLS are discussed in some special
cases.
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3.1. Point splitting and the SAOR iterative scheme. For the case S is
nonsingular, without loss of generality, assume that s;; > 0,¢=1,2,---2n, then
we have the following point proper splitting of §: S = D — L — U, where
| Dy O | Li O U =5

D—[ ) Dl],L_[_SZ ? ],U—[ Al CE)
D, = diag(si;), i = 1,2,---n, Dy — Ly ~ Uy = 81, and L; and U; are strictly
lower and upper triangular matrices.

For SX =Y, the SAOR iterative scheme defined as :

(D-rl) Xy = [(1-w)D+(w-r)L+wU]Xk+wY,
(D=rU)Xpr1 = [(1-w)D+ (w-—nU+wl]Xy, s +uY,
that is
Xk+1 = Hr,ka + Ba (32)
where Xi = [ _KY’“’G ], k=0,1,---. 7, w are the real relaxation parameter,

Hyp = (D—1U)7N1~w)D+ (w—nU +wl]
X(D —rL)" (1 - w)D + (w ~7)L + wU]
is the iterative matrix and
B = w{(D-rU) 1 -w)D+ (w—-r)U+wL)(D~rL)™?
+(D - rU)1}Y.

3.2. Convergence analysis of SAOR for FLS. In what follows we shall try
to find, when matrix S in (2.3) be H-matrices, consistently ordered matrices and
symmetric positive definite matrices, the restriction imposed on the parameters
r and w such that the SAOR method converges. In terms of the classical conver-
gence theorems about SAOR concerned in [13,14,24], we can easily obtain the
following convergence.

3.2.1. S be H-matrices. Definition 3.1. A matrix A is said to be H-
matrices if there exist a nonnegative matrix P such that m(A) is a nonsingular
M-matrix and have the form: m(A) = al — P with a > p(P), where m(A) is
the comparison matrix of A, p(P) denotes the spectral radius of matrix P.

Theorem 3.1. The matriz S in (2.3) is H-matriz if and only if the coefficient
matriz A in (2.1) is H-matriz.
For proof this theorem, we should first proof the following theorem.

Theorem 3.2. The coefficient matriz A in (2.1) is H-matriz if and only if it is
strictly diagonally dominant.
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Proof. Assume A is H — matriz, from the definition, then there exist a matrix
P >0 and a > p(P) such that m(A) = ol — P is a nonsingular M — matriz.
Without loss of generality, we can let o > minj <;<p, |@;,|, then P = al—m(A4) >
0. From the Gerschgorin theorem, we have:

n n
p(P) <la—lagll+ > laigl=a— (el = Y laig)- (3.3)
J=L g J=L g

Since a > p(P), it follows from (3.3) that:
n
laidl = > laisl >0,
=l
this is imply A is strictly diagonally dominant.
Reversing the process, then we obtained the result and completed the proof. [l

Allahviranloo provides a necessary and sufficient condition for S being a
strictly diagonally dominant matriz in [11] as the following theorem.

Theorem 3.3. The matrix S in (2.3) is strictly diagonally dominant if and
only if the coefficient matriz A of equations (2.1) is strictly diagonally dominant.

Proof Theorem 3.1. Follows by the results Allahviranloo provided and Theorem
3.2, we can easily obtain the result of this theorem. O

Now we give the convergence of the SAOR method in this case, it is the
following theorem.

Theorem 3.4. Assume that matriz S = (s; ;) € R"*" be H-matriz and satisfy
Sii #Oai: L,2,--,n,0<rLw, then for

0 <w < 2/[L+p(lT])],

where w is the relazation parameter, J is Jacobi iteration matriz, and |J| denotes
the nonnegative matriz whose entries are the module of those of J and p(|J|) is
the spectral radius of |J|, the SAOR method (3.2) is convergent.

By the results concerned in [13], the proof can be easily completed.

3.2.2. S be consistently ordered matrices. Definition 3.2. The matrix A
is consistently one, if for 1,2, ..., M, there exist Wy, Wa, ..., W,, with ;_, Wy, =
W, W;nW; = @ (i # j) and for all non-diagonal elements of matrix Aarxn
aig # 06 # ), (i,5) satisty :

(i). If i € W, then j € Wy_1, when j <7

(ii). If ¢ € Wy, then j € Wi4q, when j > 4.

Theorem 3.5. If coefficient matriz A in (2.1) is a consistently ordered matriz
with nonvanishing elements, then S in (2.3) is also a consistently ordered one.
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Proof. If A is a consistently ordered matrix, follows definition 3.2 for all a; ; € A
with a; ; #0 (i # j), when ¢ € Wy, then:
(i). j € Wg—1, when j < ¢;
(ii). j € Wi41, when j > .
See that the entries relations between A and S is:
aij 20 = 85 = aqy, Sitn, j4n = Gij,

1<i,j<n.
aij <0 = 8 jyn = —0Cij, Sitn,j = —0ij,

So s; ; and a; ; have the same properties (where s; ; are the entries of matrix
S), it is: 8;; # 0 (i # j), when i € Wy, then:

(i). j € Wg—1, when j < ¢;

(ii). j € W1, when j > .

This implies that S is a consistent ordered matrix. a

Due to our above works, the following convergence theorem can obtain easily.

Theorem 3.6. If S in (2.3) is a consistently ordered matriz with nonvanishing
elements, all the eigenvalue of Jocobi iterative matriz Ly 1 are nonnegative real,
and & = p(Lo1) < 1, then the eigenvalues of H,, are nonnegative real number
for allr,w. If r,w satisfy

0<r<2,
O<w<14 4

and 7, w is not equal to 2 at the same time, then SAOR method is convergent.

The proof we references to [14].

3.2.3. S be symmetric positive definite matrix. Furthermore when S is
a symmetric positive definite matrix, then the convergence theorem of SAOR
method concerned in [24] as below.

Theorem 3.7. Suppose that S in (2.3) is a symmetric positive definite matriz,
fw and T satisfy:
{O<w<z
w— z—ﬁ—“—’ <r<w-+ 2—%’-
then the SAOR method is convergent, where i = p(Lg 1) is the spectral radius of
the Jacobi iterative matriz.

K. Wang and B. Zheng provides a necessary and sufficient condition for S

being a symmetric positive definite matric in [20] as the following theorem.

Theorem 3.8. The matriz S in (2.3) is positive definite if and only if the
coefficient matriz A of Egs. (2.1) and the matriz Sy + Sy are positive definite.
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4. Examples

In this section we will give some numerical examples for illustrating the meth-
ods in this paper. All examples runs by MATLAB, and we present a stopping
criterion with tolerance € > 0 as follows:

[ Xk+1 = Xl <e.

Since the fuzzy number we will use is trapezoidal fuzzy number, the norm of

[z, ]
: Zig + T1sT
X:[ X_}: z, | _ Zag + T2pT
-X —T1 !
: Zong + TonbT
L —Tn J
where z;, and z;;, are crisp numbers, i = 1,--+,2n, 0 < r < 1, can be defined as
1 X[l = max {|zial , [2is]} . (%)

Example 4.1. Consider the 2 x 2 fuzzy linear system

&y — T2 = (r,2—1),
2:1—|—3$E2=(4+’I",7—27‘).

The extended 4 x 4 matrix is

1001
1300
=10 11 0
0013
and the solution of the extended system is
'- zy(7)
X = §2(T) :S—1Y
—Z1(r)
L —To(r)
[ 1.1250 —0.1250 0.3750 —0.3750 r
—0.3750  0.3750 —0.1250 0.1250 447

0.3750 —0.3750 1.1250 —0.1250 r—2
| —0.1250  0.1250 -0.3750 0.3750 2r—7

1.375 +0.6257
0.875+0.125r
—~2.875 + 0.8757
| —1.375+0.375r
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The exact solution is
z1 = (z4(r), T1(r)) = (1.3754 0.625r, 2.875 — 0.8757),
T2 = (&4(7), ZT2(r)) = (0.87540.1257, 1.375— 0.3757),

which is a strong fuzzy solution.
For the SAOR method, by (3.1), we have

1 0 00 0 0 0 0 0 0 0 -1
g = 6300} (-1 0 0 0} 1000 0
10010 0 -1 0 0 0 00 O ’
0 0 0 3 0 0 -1 0 000 O
1 0 0 0 00 0 1
thenDl-—_[O 3],L1:[_1 0],[]1:[0 0]152:[0 O]'APPIY‘

ing on the iterative scheme (3.2), with taking r = 1.2, w = 1.5 and the initial
valueXp = [0,0,0,0]7 we obtain the approximate solution

0.6250r + 1.3750
Xsooron _ | 0.1250r +0.8750
pprozimate —~0.8750r 4+ 2.8750 |’
1.3750 — 0.3750r
ie.
z1 = (1.3750 + 0.6250r, 2.8750 — 0.8750r),
{ x5 = (0.8750 + 0.1250r, 1.3750 — 0.3750r).

The exact and approximate solutions are compared in Figure 2.

Figure 2. The exact and approximate solutions
The norm of vector X defined as (x), £ = 107%

Example 4.2. Consider the 2 x 2 fuzzy linear system

3(21 - 2(82 = (1,2 - 7'),
~2x1 + 3z = (24 7,5 -~ 2r).

The extended 4 x 4 matrix is

300 2
0 3 20
5= 0 2 3 0|’
2 00 3
thus S1+.5; = 3 2 . Both A and 57 + 92 are positive definite. By Theorem
2 3

3.8, S is positive definite, therefore, the SAOR method is convergent.
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The exact and approximate solutions are

21 = (2,(r), Z1(r)) = (2.6 — 0.8r, 2.0 - 0.27),
{ T2 = (z4(7), Za(r)) = (2.0 + 0.2r, 3.4 — 1.27),
and

z1 = (2.6000 — 0.8000r, 2.0000 — 0.2000r),
zg = (2.0000 + 0.20007, 3.4000 — 1.20007),

and z; is not a fuzzy number, so the fuzzy solution is a weak fuzzy solution
given by

uy = (uy(r),T1(r)) = (1.8, 2.6 — 0.8r),
ug = (uy(7), U(r)) = (2.0+0.2r, 3.4—1.27).
The exact and approximate solutions are compared in Figure 3.

T Exact
(Y ® © Approximasion
LU AL Y > g

(%43
osf
ask

o}

oz}

oif

Ex) E 33 ) EX

Figure 3. The exact and approximate solutions
The norm of vector X defined as (*), ¢ = 107°

5. Conclusion

We present the SAOR methods for the n x n fuzzy linear system and obtain
the convergence theorems of the iterative schemes in some special cases. If the
proposed matrix S by Friedman et al. [10] is nonsingular, then for any initial

vector Xy, the SAOR iteration will converge to X =

x| the unique solu-

tion of SX =Y. The numerical examples show that the methods are effective
and applicable for solving the fuzzy linear system.
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