Browse > Article
http://dx.doi.org/10.14317/jami.2011.29.5_6.1571

A META-SOFTWARE SYSTEM FOR ORTHOGONAL DESIGNS AND HADAMARD MATRICES  

Kotsireas, Ilias S. (Wilfrid Laurier University, Department of Physics and Computer Science)
Koukouvinos, Christos (Department of Mathematics, National Technical University of Athens)
Simos, Dimitris E. (Department of Mathematics, National Technical University of Athens)
Publication Information
Journal of applied mathematics & informatics / v.29, no.5_6, 2011 , pp. 1571-1581 More about this Journal
Abstract
In this paper, we construct inequivalent Hadamard matrices based on several new and old full orthogonal designs, using circulant and symmetric block matrices. Not all orthogonal designs produce inequivalent Hadamard matrices, because the corresponding systems of equations do not possess solutions. The systems of equations arising when we search for inequivalent Hadamard matrices from full orthogonal designs using circulant and symmetric block matrices, can be concisely described using the periodic autocorrelation function of the generators of the block matrices. We use Maple, Magma, C and Unix tools to find many new inequivalent Hadamard matrices.
Keywords
Hadamard matrices; meta-programming; orthogonal designs;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Bosma and J. Cannon, Handbook of Magma Functions, Version 2.9, Sydney, July, 2002.
2 R. Craigen, Hadamard Matrices and Designs, In: Colbourn, C.J., Dinitz, J.H., (eds.) The CRC Handbook of Combinatorial Designs. pp. 370-377. CRC Press, Boca Raton, Fla., 1996.
3 J. Day and B. Peterson, Growth in gaussian elimination, The American Mathematical Monthly 95 (1988), 489-513.   DOI   ScienceOn
4 C. Koukouvinos, Sequences with Zero Autocorrelation, In: Colbourn, C.J., Dinitz, J.H., (eds.) The CRC Handbook of Combinatorial Designs. pp. 452-456. CRC Press, Boca Raton, Fla., 1996.
5 C. Koukouvinos and D.E. Simos, Improving the lower bounds on inequivalent Hadamard matrices through orthogonal designs and meta-programming techniques, Appl. Numer. Math. 60 (2010), 370-377.   DOI   ScienceOn
6 C.W. Krueger, Software reuse, ACM computing surveys 24 (1992), 131-183.   DOI
7 C. Lam, S. Lam and V.D. Tonchev, Bounds on the number of affine, symmetric, and Hadamard designs and matrices, J. Combin. Theory Ser. A 92 (2000), 186-196.
8 C. Lam, S. Lam and V.D. Tonchev, Bounds on the number of Hadamard designs of even order, J. Combin. Designs 9 (2001), 363-378.   DOI   ScienceOn
9 F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, The Netherlands, North-Holland, Amsterdam, 1977.
10 B.D. McKay, Hadamard equivalence via graph isomorphism, Discrete Math. 27 (1979), 213-214.   DOI   ScienceOn
11 E. Merchant, Exponentially many Hadamard designs, Des. Codes. Crypt. 38 (2006), 297- 308.   DOI   ScienceOn
12 J. Seberry and R. Craigen, Orthogonal Designs, In: Colbourn, C.J., Dinitz, J.H., (eds.) The CRC Handbook of Combinatorial Designs, pp. 400-406. CRC Press, Boca Raton, Fla., 1996.
13 W.P. Orrick, Switching operations for Hadamard matrices, SIAM J. Discrete Math. 22 (2008), 31-50.   DOI   ScienceOn
14 L.R. Plackett and J.P. Burman, The design of optimum multifactorial experiments, Biometrika 33 (1946), 305-325.   DOI   ScienceOn
15 E.C. Posner, Combinatorial Structures in Planetary Reconnaissance, In: Mann, H.B., (eds) Error Correcting Codes, Wiley, N.Y., 1968.
16 J.H. Van Lint, Coding, decoding and Combinatorics, In: Wilson, R.J., (eds.) Applications of Combinatorics, Shiva, Cheshire, 1982.
17 R.K. Yarlagadda and J.E. Hershey, Hadamard Matrix Analysis and Synthesis: With Applications to Communications and Signal/Image Processing, Kluwer Acad. Pub., Boston, 1997.
18 S. Georgiou, I.S. Kotsireas and C. Koukouvinos, Inequivalent Hadamard matrices of order 2n constructed from Hadamard matrices of order n, J. Combin. Math. Combin. Comput. 63 (2007), 65-79.
19 A.V. Geramita and J. Seberry, Orthogonal Designs. Quadratic Forms and Hadamard Matrices. Lecture Notes in Pure and Applied Mathematics, 45. Marcel Dekker, Inc., New York, 1979.
20 M. Hall, Jr., Combinatorial Theory, Reprint of the 1986 second edition, Wiley Classics Library, Wiley, New York, 1998.
21 W.H. Holzmann and H. Kharaghani, On the Plotkin arrays, Australas. J. Combin. 22 (2000), 287-299.
22 I.S. Kotsireas and C. Koukouvinos, Inequivalent Hadamard matrices with buckets, J. Discrete Math. Sci. Cryptogr. 7 (2004), 307-317.
23 I.S. Kotsireas and C. Koukouvinos, Orthogonal designs via computational algebra, J. of Comb. Designs 14 (2006), 351-362.   DOI   ScienceOn
24 I.S. Kotsireas, C. Koukouvinos and J. Seberry, Hadamard ideals and Hadamard matrices with two circulant cores, European J. Combin. 27 (2006), 658-668.   DOI   ScienceOn
25 I.S. Kotsireas and C. Koukouvinos, Inequivalent Hadamard matrices from Orthogonal Designs. In: Proceedings of the 2007 International Workshop on Parallel Symbolic Com- putation, pp. 95-97. ACM, London, Ontario, Canada, 2007.
26 I.S. Kotsireas and C. Koukouvinos, New skew-Hadamard matrices via computational algebra, Australas. J. Combin. 41 (2008), 235-248.
27 I.S. Kotsireas, C. Koukouvinos, and G. Pinheiro, Metasoftware for Hadamard matrices, Int. J. Appl. Math. 18 (2005), 263-278.
28 I.S. Kotsireas, C. Koukouvinos and D.E. Simos, Large orthogonal designs via amicable sets of matrices, Int. J. Appl. Math. 12 (2006), 217-232.
29 I.S. Kotsireas, C. Koukouvinos and D.E. Simos, Inequivalent Hadamard matrices from base sequences, Util. Math. 78 (2009), 3-9.
30 I.S. Kotsireas, C. Koukouvinos and D.E. Simos, Inequivalent Hadamard matrices from near normal sequences, J. Combin. Math. Combin. Comput. 75 (2010), 105-115.