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SIGN PATTERNS OF IDEMPOTENT MATRICES

FraANK J. HALL AND ZHONGSHAN L1

ABSTRACT. Sign patterns of idempotent matrices, especially sym-
metric idempotent matrices, are investigated. A number of funda-
mental results are given and various constructions are presented.
The sign patterns of symmetric idempotent matrices through order
5 are determined. Some open questions are also given.

0. Introduction

A matrix whose entries come from the set {+, —,0} is called a sign
pattern matriz (or sign pattern, or pattern). We denote the set of all
n X n sign pattern matrices by @,. For a real matrix B, by sgn B
we mean the sign pattern matrix in which each positive (respectively,
negative, zero) entry of B is replaced by + (respectively, —,0). If
A € @, then the sign pattern class of A is defined by

Q(A) = {B € M,(R) | sgn B = A}.

Suppose P is a property referring to a real matrix. Then A is said
to require P if every real matrix in Q(A) has property P, or to allow P
if some real matrix in Q(A) has property P.

A permutation sign pattern matrix P is obtained by replacing the
1’s in a real permutation matrix by + signs. Then PT AP gives a “per-
mutation similarity” of the pattern A. A signature pattern Sisannxn
diagonal pattern with nonzero diagonal entries. Hence, the product S?
is an n x n diagonal pattern with + diagonal entries (indicated sub-
sequently by I,, or I). Then SAS gives a “signature similarity” of the
pattern A.
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If A is an n x n sign pattern, then A is sign nonsingular if every
B € Q(A) is nonsingular. Sign nonsingular matrices have been heavily
studied (see [9] for example), and it is well known that they have un-
ambiguously signed determinants; that is, there is at least one nonzero
term in the determinant, and all nonzero terms have the same sign.

By the minimum rank of an n X n sign pattern matrix A we mean
mingeg(a){rank B}, and denote this by mrA.

If A is an n X n matrix, then A is permutation similar to a Frobenius
normal form matrix

A *

0 Amm

where the (square) diagonal blocks A;; are the irreducible components
of A. The one-by-one irreducible components can be zero blocks.

We introduce the symbol # to represent a qualitatively ambiguous
sum, that is, # = (+) + (—). We next recall [4] that a generalized
sign pattern matriz A = (@i;) is a matrix whose entries are in the
set {+,—,0,#}, and Q(A) = {B = (b;;) € M.(R)|bs; is arbitrary
if a;; = #; sgn by = a;; if a;; € {+,—,0}}. Two generalized sign
pattern matrices A; and A, are said to be compatible, denoted by
A1 & Aj, if there exists a matrix B € Q(4;) N Q(A;). Hence

m:(’f ;)H(; 3)=A2.

As in [3], ID is the class of all square patterns A for which there
exists B € Q(A) where B2 = B (A allows a real idempotent). We
further let STD denote the class of all symmetric patterns A for which
there exists symmetric B € Q(A) where B2 = B (A allows a real
symmetric idempotent). Clearly, SID C ID. Further, if A € ID,
then by necessity, 42 <& A must hold.

The nonnegative patterns in D were characterized in [3]. A square
sign pattern matrix A is said to be sign idempotent when A% = A4;
these patterns were originally discussed in [1). The sign idempotent
patterns in D were recently characterized in (7).
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In - this paper we more generally investigate the classes TD and STD.
In particular, a number of basic general results are given, various con-
structions are presented, and all patterns in SID through order 5 are
determined. A number of open questions are given.

1. General results

The proof of the following lemma should be clear.

LEMMA 1.1. Each of the classes TD and SID is closed under the
following operations:

(i) permutation similarity,
(ii) signature similarity,
(iii) transposition,

(iv) direct sum,

(v) Kronecker product.

THEOREM 1.2. Suppose that A € Q,, and mrA = 1. Then A € ID
if and only if A2 & A.

Proof. We have already observed that A € ID implies A2 & A.
Now let A = uvT. Then 42 & A < wTuv? & wT <« vTu S +.
With B = zy”, where sgn z = u, sgn ¥y = v, and yTz = 1, we have
B? = B € Q(A). O

It is clear that a symmetric pattern A is in SZD if and only if each
irreducible component of A is in SID. We let J,, denote the all +
pattern of order n.

COROLLARY 1.3. Suppose that A is an n x n irreducible symimetric
sign pattern matrix, and mrA = 1. Then A € SID if and only if A is
signature similar to J,,.

Proof. Assume A € SID. Then A% & A. Since A is irreducible
and symmetric, it is then easily seen that all the diagonal entries of A
are +. With mrA = 1, we have A = uu?, where each entry in u is
nonzero. Hence A is signature similar to J,.

Conversely, suppose A is signature similar to J,,. If B is the n x n

matrix each of whose entries is 1/n, then B is a symmetric idempotent
in Q(J,). Thus, A € SID. ]
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Since the only nonsingular idempotent matrix is the identity matrix,
the following proposition is clear.

PROPOSITION 1.4. The only sign nonsingular sign pattern matrix
inIDislI,.

COROLLARY 1.5. The only 2 x 2 sign patterns in ID are 0, I3, or
the 2 x 2 sign patterns A wheremrA =1 and A2 & A,

Under equivalence (permutation similarity, signature similarity, and
transposition), we find six representatives of the 2 x 2 sign patterns in
ID.

o)) Go)Ei)bn) ()

Clearly, the first four patterns are in SID.
Every nxn matrix B is a principal submatrix of a 2n x 2n idempotent
matrix of rank n, as it is easily checked that

B B
I-B I-B

is idempotent and has trace n. We then have the following result.

PROPOSITION 1.6. Every n X n sign pattern matrix is a principal
submatrix of a 2n x 2n pattern in ID.

The following is an interesting related question. Is every n X n sym-
metric sign pattern matrix with positive diagonal a principal submatrix
of a 2n x 2n pattern in STD? At the end of the next section we will
show that this is indeed the case.

We now give a general necessary condition for bordering a square
real matrix into an idempotent matrix.

LEMMA 1.7. If lB) g) is idempotent, where B is square, then

C has at least min {rank(X? — X)|X € Q(sgn B)} columns.

Proof. The block matrix is idempotent implies B2 + CD = B, so
that rank (B2 — B) = rank (CD) < rank C < the number of columns
of C. The result then follows. O
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ExAMPLE 1.8. Consider the n x n sign pattern matrix

0 +
0 +
A = 0
+
- 0
o [ A1 A
Then, if A. A, ) E ID, A; must have at least n columns. To see
3 Ay

this, observe that for each B € Q(A;), the eigenvalues of B are the n-th
roots of a negative number, so that B has no nonnegative eigenvalue.
Hence, B(I — B) is invertible, that is, rank(B? — B) = n. That A,
must have at least n columns follows from lemma 1.7.

Proposition 1.6 and example 1.8 show that 2n is the smallest positive
integer k such that every n x n sign pattern matrix is a principal
submatrix of a k x k pattern in ZD.

“We now present an important bordering result, where we “stretch”
the last block row and column. A similar result was proved in (8] for
normal matrices. The following lemma can be proved by direct block
multiplication.

LEMMA 1.9. Let By and X be square matrices, and let k be any
positive integer. If the real matrix

_(B1 U
5=(V %)
is idempotent, then the matrix
1 1 1
B, —U -—=U —U)
(11 ot
-V = ud s
vk kX kX kX
B=|1y, 1y 1 1
\/EV kX kX kX
1: 1: % . 1:
\ﬁv EX EX EX)
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of block size (k + 1) x (k + 1) is idempotent.

We remark that rank B = tr(B) = tr(B) = rank B. Asa
consequence of lemma 1.9 we have the following.

THEOREM 1.10. If

A A
<A3 A4) € ID,

where A; is square, then the square pattern

A Ay ... A
As Ag ... A
Z3 :4 .. :4 € ID.
As Ag ... Ag

COROLLARY 1.11. If

A1 A
(Ag A4) € SID,

where A; is square, then the square pattern

Al Ay ... A
AT Ay ... Ay

.. e SID.
AT Ay ... A4

We will particularly apply this corollary in the next sections.

2. Special results on symmetric patterns

Idempotent matrices, particularly symmetric idempotents, play an
important role in a number of applications. In {5], a number of fun-
damental results on symmetric idempotents, as well as applications to
statistics, are given. In the following lemma, we also provide some
basic information on symmetric idempotents.
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LEMMA 2.1. Let B= (bi;) be a real symmetric idempotent matrix.
If b;j # 0 for some i and j, 1 # j, then 0 < by;,b;; < 1 and |b;;| <
1

min{i, \/b«,;,;bjj}.
Proof. Comparing the (i,7) entries of B = B2, we see that
bi; — biiz = bijz + Z bik2 > 0.
k#1
k3
It follows that 0 < b;; < 1. Similarly, we get 0 < b;; < 1. The

above equation also shows that b,-j2 < by ~ b,-l-2. Since the maximum

1 1
2 is 7 we see that |b;;| < 3

note that the matrix (Z" Z” ) is positive semidefinite, since it is a
ij  0j
principal submatrix of the positive semidefinite matrix B. Hence, det

(b:; b;J) = bi—ibjj - bij2 Z 0. Therefore, Ibljl S \/biibjj. O

THEOREM 2.2. If
A= (A1 Az) e SID,

of the quadratic function z — = Finally,

AT +
where Ag is a nonzero column, then
_ A1 Ay As
A= AT + — }esSID.
AT - +
Proof. If
_(B1 Y
B= (3 L) eow

is a real symmetric idempotent matrix, where 0 < o < 1 (by lemma
2.1), then it is easily verified that

1 1
p=| Lyr %(l-f-a) %(a—l) € Q(A)

1 1
YT 5(0—-1) -2—(1+a)
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O

is symmetric idempotent.

Note that rank B = tr(B) = tr(B;) + @ + 1 = rank B + 1.
Applying theorem 2.2 to A, and so forth, we obtain the following
more general result.

COROLLARY 2.3. If

Ay A
(A%" T ) € 8SID,

where A, is a nonzero column, then the square pattern

A1 A2 A2 e A2
AT + — .. =
AT - 4+ . | eSID
AT - -+

COROLLARY 2.4. Foreach1 < k < n, wheren > 3, then x n

pattern
Jn—k Jn—k,k
+ — oo —

Jemtk — + o 1 |esID

Proof. Apply corollary 2.3 to

Jn—k | eszD.
+
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Some comments concerning corollaries 2.3 and 2.4 are now in order.

(1) Although somewhat laborious, taking similarities of the matri-
ces of the form diag {0,---,0,1,--- ,1} via Householder trans-
formations, one can obtain the same patterns as in corollary 2.4.
Different symmetric idempotent matrices are obtained.

(2) We can also see the result in corollary 2.3 as follows. If

B=<5f} Z), 0<a<l

is real symmetric idempotent, then so is the matrix

1 1
B —y —y —Y
[ B % VE vk
N/ E k %
A 1 a—1 k—1+«
B=| Lyr
\/;Y P P ’
. a-—1
! PN
1 o a— a— - «@
\ Y A % )

where B has block size (k +1) x (k + 1). This symmetric
idempotent matrix is different from that obtained through the
proof of corollary 2.3. :

EXAMPLE 2.5. From corollary 2.4 and the use of a permutation
similarity, we see that

( 7

JIn - € SID
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where the — is in say the k-th position (1 < k < n + 1) of the last
row/column. Then, by the stretching corollary 1.11, we have that

Jrk-1,4
Jn -Jl,q
Jn—k,q
Jok-1 =g Jon-k  Jogq

€ SID

for any positive integer q.

In the next section we will give, up to equivalence, all the irreducible
patterns of orders 3, 4, and 5 in the SID class. The compatibility
condition A2 & A turns out to be sufficient for order < 5, except for
one particular 5 x 5 irreducible symmetric pattern (up to equivalence).
It is shown in section 3 that this particular 5 x 5 pattern does not even
allow idempotence. However, we now give another example in which a
different proof technique is used.

PROPOSITION 2.6. Let

+ 0 0 + + + +
0 + + 0 + + -
0 + + 0 + — +
A=}+ 0 0 + + - -
+ + + + + + +
+ + - - + + +
+ - + - + + +

Then A is irreducible and symmetric, A> & A, but A ¢ ID.

Proof. 1t is easy to check that A is irreducible and symmetric, and
A2 & A, Assume that A allows an idempotent matrix

a b

* *

B * *

* *

* ¢ —e * ok % *
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where Bj is 5 X 5 and the * entries are immaterial. Equating the (1,2),
(1,3), (4,2) and (4,3) entries in B2 = B, we get

s1+ac—bd=0
so—ae+bf=0
s3—cg+dh=0
s4t+eg—fh=0

for some s; > 0, 1< < 4. Hence,

bd>ac (1)
ae > bf (2)
cg > dh (3)
fh>eg 4)

Multiplying (1) and (2), and cancelling, we have de > ¢f. Similarly,

multiplying (3) and (4), and cancelling, we get cf > de, contradicting

de > cf. O
The following proposition is useful in finding patterns in STD.

PROPOSITION 2.7. Suppose

_ Bl xT
b= (wT y)

is a real symmetric idempotent matrix, where x is a nonzero column.
Then B; has exactly one eigenvalue o different from 0 and 1, and
a(l — a) = z¥7z. Furthermore, y = 1 — o, and rank B; = rank B.

Proof. Since Bj is real symmetric, there exists an orthogonal matrix
Q1 that diagonalizes By, that is,

AL
A2
QTB1Q1 =D, =

Then

()2 (% ) - (Za &)
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which is also a real symmetric idempotent matrix. So, D; = D? +
T22TQ,, or

A — M2
= Q,IT.’I).’BTQI.
An — A2

The right hand side of this last equation has rank 1, and hence so does
the left hand side. Hence, there is exactly one A; such that A\; — A? #0
(that is, A; is different from 0 and 1), and A; — )\Jz- =tr(QTzTzQ,) =
zTx. Let o denote this eigenvalue of B;. We then have a — o? =
zTz > 0, so that 0 < a < 1. Comparison of the (2,2) blocks of B
and B? gives y — y2 = zTz. Since both o and y are solutions to the
equation t — %2 = 27z, it follows that y =aory=1—a.

We claim that y = 1 — a. If @ = 1 — a, we are done. Otherwise

a#%,0<a<1.1fy=a,then

rank B=tr(B) =tr(B1)+y=k+a+a,

where k is the algebraic multiplicity of 1 as an eigenvalue of B;. Since
2a is not an integer, we have a contradiction. Thus y = 1 — a. It is
now clear that

rank By = 1 + (algebraic multiplicity of 1 as an eigenvalue of B;)
=1+ (tr(B) — o)
=tr(B1)+ (1 - «a)
= tr(B)
=rank B.
O

Finally, in this section, we return to the question raised in section 2
on symmetric patterns.

LEMMA 2.8. Let B; be positive definite and p(By) < 1. Let U be
the positive definite square root of By — B%. Then the block matrix

B, U
Uu I-B

is a real symmetric idempotent matrix.
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Proof. Straightforward. Note that By and U commute. 0

PROPOSITION 2.9. Let A; be an n X n symmetric sign pattern ma-
trix with positive diagonal. Then there exist n x n symmetric sign
pattern matrices Ay and A4 such that

Ay A;
( Ay A4) € SID,

and where A1 + Ay & I,.

Proof. Fixing all the diagonal entries equal to say %, and de-empha-

sizing the off-diagonal entries, we can find a matrix B; € Q(A4;) that
satisfies the conditions in the above lemma. The rest is clear. a

REMARK. We may also use [6] to prove the above proposition, by
multiplying the second block row in (1.6.13) or (1.6.14) by -1 to get a

1
real symmetric orthogonal matrix Q first, and then 5([ + Q) gives a
real symmetric idempotent matrix.

3. Sign patterns in ID or SID of orders <5

The 2 x 2 sign patterns in ZD and SID are given in section 1. We
now consider 3 x 3 sign patterns in ID, and patterns of orders 4 and
5 in SID. '

Since the sign patterns of nonnegative idempotent matrices are known
(see [3]), it suffices to consider 3 x 3 sign patterns that are not signature
similar to nonnegative patterns.

PROPOSITION 3.1. Up to permutation similarity, signature similar-
ity, and transposition, there are 33 3 x 3 sign patterns A such that
A% S A, A has at least one “+” diagonal entry, and A is not signature

similar to a nonnegative pattern. Qut of these 33 patterns, 13 are in
ID, and 1 is in SID.

We obtain the 33 sign patterns mentioned above by using several
Matlab programs. In turn, for each of the 33 patterns, we either pro-
duce an idempotent matrix (using some basic observations and Maple)
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or show that the pattern does not allow idempotence. The following
idempotent matrices represent the 13 sign patterns in D (the last one
represents the one pattern in SID):

1 0 0 1 0 0 1 0 0 1 0 0
-1 -1 -1{,{-1 0 o,{-1 172 -1/2],{0 -1 -1],
1 2 2 -1 -1 1 -1 -1/2 1/2 0 2 2
2 2 0 2 2 0 3 3 3 3 3 3
-1 =1 0},| -1 =1 0]),{-1 -1 —1),|-43 -1 -2},
-1 -1 0 0 0 0 -1 -1 -1 ~2/3 -1 0

2 2 2 11 1 2 2 2

-3/4 -1/2 -3/2},| -1 -1 -1 },{-12 0o -1],

-1/4 -1/2 1/2 1 1 1 ~1/2 =1 0

3/2  3/2 3/2 2/3 1/3  1/3
(-1/3 0 —1) , (1/3 2/3 —1/3> .
-1/6 -1/2 1/2 1/3 -1/3 2/3

In constructing several of the above matrices, the following two facts
were used: '

1 1s idempotent 1 1s idempotent an u = 0;
) (1 D) isid iff B is idempotent and Bu = 0
1 1s idempotent 1 1s idempotent an -1y’ =0.
ii f g is id iff B is id d(BT-NHvT =0

As an illustration of the 20 patterns not in ZD mentioned in propo-
sition 3.1, consider

A=

+ 1+
++ 4
+ 1+

Suppose B € Q(A) is idempotent. Then it can be seen that rank
B = 2=tr(B). Therefore, rank(B — I)=rank(] — B)=1, so that we

must have
+ o+ o+

sgn(B-I=1|- — -
+ o+ 4+
Hence, b1; > 1,b33 > 1. Since by > 0, we then get tr(B) > 2, a
contradiction.
Due to the large number of 4 x4 and 5 x 5 sign patterns A such that
A% %5 A, we restrict our attention to irreducible symmetric patterns.
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PRrROPOSITION 3.2. Up to permutation similarft:y and signature sim-
ilarity, there are 5 4 x 4 irreducible symmetric sign patterns A such that
A? <=5 A. All of these 5 patterns are in STD.

As in the 3 x 3 case, we obtain the 5 patterns mentioned above by
using several Matlab programs. Using specific theory from section 2,
along with Maple, we find the following idempotent matrices repre-
senting the 5 sign patterns in STD:

1 1 1 1 1 1 1 1 3 1 1 1
1 1 111 l 1 3 =11 1 1 3 -1 -1
411 11 1})'4y1 -1 3 11’411 -1 3 -1}
1 111 1 1 1 1 1 -1 -1 3
4-s 1 1 0
1 1 s 0 -1
1 1 0 s 1 ,Wheres—2:t\/§,
0 -1 1 4-s
2412 1 1 0

1 1 3-v2 -1 —t ]
i 1 _1 3_v3 ¢ |’ where t = 1/2v2 — 1.
0 ~t t. V2

PROPOSITION 3.3. Up to permutation similarity and signature sim-
ilarity, there are 20 5 x 5 irreducible symmetric sign patterns A such
that A2 < A. All of these 20 patterns, except one, are in SID.

The following are the 20 sign patterns mentioned in proposition 3.3:

+ + + 0 0 + + 4+ 0 0 + + + 0 0
+ + - - - + 4+ - - - + + 0 - -
+ -+ + + L]+ -+ + +L]+ 0 + + +]
0 — + 4+ - 0 - + + + 0 - + + -
0 — + — + 0 — + + + 0 - + - +
+ + + 0 0 + + 4+ 0 0 + + 4+ 0 0
+ + 0 - - + + + - - + + + - -
+ 0 + + + L+ 4+ + + +L|+ + + + +1]
0 — + + + 0 — + + - 0 — + + +
0 — + + + 0 - + - + 0 - + + +
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<
o0
<

o+ + I+
L+
+ 1+ +
+ 4+ 1+ +
++++0

ol I ++
+ 1o+ +
+ | +< |
++ 1 1|

++++e

o1 | ++
+ 1+ +
o s O
+ + 1

++++o

o+ | ++
+++ ++
+ 1+ +
++ I+ +
++++0

o I+ +
+o + 4+ +
+ 4+ + + |
++ 4+ |

++++o

|

|+ + +
|+ + +
|+ + +
+ 00
++++0

+ 4+ 4+ 0

+ 1+ ++
+ 0+ +
+ 1+ 1+
400
++ 4+ + +

+ 1+t
+ 1+ +
0+
4
+ 4+ ++

oo+
+ 1
0+
0
+++++

I+

++ 1+ +
+ 1+ 4+
+ 1+ 4
++ 1
+ 4+ + 4+

I+

++ 11+
+ 1+ +
+ 1+ A+
4+
++ + 4+ +

4+ 4+
+ 1+ 4+
+ 1+ ++
++ 00
+++ 4+

o1+ |+
+o + + |
+ 1+ ++
++ 1o |
++++0o

++ 4+ +
+++ 4+ +
++ + 4+ +
++ 4+ +
+++ + +

We number these patterns by rows. By corollary 1.11 and proposi-

tion 3.2 (possibly together with a permutation similarity), each of the
patterns 2, 4, 6, 10, 14, 16 and 17 is in SID. Notice for example that

in pattern 10, the third and fourth rows/columns can be permuted to
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~

the fourth and fifth rows/columns; hence, it follows from corollary 1.11
that this pattern is in SID. Similarly, by theorem 2.2 and proposition
3.2 (possibly together with a permutation similarity), each of the pat-
terns 1, 3, 5, 7 and 15 is in SID. Pattern 19 is in SID by corollary
1.3, while pattern 13 is in SZD by corollary 2.4.

It is well known that every real symmetric idempotent matrix B of
order n and rank r can be written as B = C(CTC)~1C7 for some n x r
real matrix C of rank r. In particular, we used this idea to show that

. . 4 0 1 3 4\
patterns 12 and 18 are in SID. With C = (_2 9 —4 _3 _1)
and B = C(CTC)~1C7, then sgn B is pattern 18. Clearly, rank B = 2.
Note that I — B is also a symmetric idempotent matrix, and rank
(I = B) = 3. It can be seen that sgn (I — B) is equivalent to pattern
18 (up to permutation similarity and signature similarity). Therefore,
pattern 18 allows symmetric idempotents of ranks 2 and 3. Hence, in
general, if A € ID, there may exist idempotent matrices B; and B, in
Q(A) such that rank B; # rank Bs.

We found that the remaining patterns, except pattern 20, are in SID
by somewhat complicated Maple constructions. Indeed, the following
real symmetric idempotent matrices have sign patterns 8, 9 and 11,
respectively:

5+t 2 t—-4 1 0
2 2 =2 -2 =2

Ilﬁ t—4 -2 5+t 0 -1 |, wheret=2+ 6,
1 -2 °0 9—t ¢
0 -2 -1 ¢t 9—¢
145 —5s  30s—2 25s+19 31 0
; | 30s—2 105-25s -150s-21 31 1555
— | 255 +19 —150s—21 91-125s —31 31 ,
1651 5 31 —31 31 -31
0 155s 31 —31 93+ 155s
V33-1
where s =

20
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3 1 2 4 0
L[ 3 2 0 -4
212 2 2 2 -2
01y 0 2 6 2

0 -4 -2 2 6

Finally, we show that pattern 20, denoted by A, is not in SID. We
have

+ + + 4+ 0
+ + - 0 -
A=+ - + + +
+ 0 + + -
0 — + — +

We in fact show that A ¢ ID. Assume, to the contrary, that there is an
idempotent matrix B € Q(A). Notice that the submatrix B({1,2,5},

{1,4,5}) has sign pattern
0
+

which is sign nonsingular. Therefore, rank B > 3. It follows that /- B
is idempotent and rank (I — B) < 2. However, since A is symmetric,
each diagonal entry b;; of B satisfies 0 < b;; < 1, just as in the proof of
lemma 2.1. Hence, the submatrix (I — B)({1,2,5},{1,4,5}) has sign
pattern

o+ +
| ©+

+ -0
-0 +],
0 + +

which is also sign nonsingular, contradicting the fact that rank (I —
B)<2.

4. Concluding remarks

Complete characterizations of the classes ID and SID still remain
open, as well as a number of other open questions involving these
classes. For example, if A € ID, does there always exist an idem-
potent B € Q(A) such that rank B = mrA? For an n X n nonnegative
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pattern A € ID, rank B = mrA for all idempotents B € Q(A), and
furthermore, for each 1 < r < n, there exists an r x r principal sub-
matrix of A which is in ZD. These facts follow from Theorem 3.1 in
(3]

Let B be a real square matrix. Then, B is idempotent if and only if
(2B—1)? = I, and, B is symmetric idempotent if and only if 2B—1 is a
symmetric orthogonal matrix. Hence, B is idempotent = sgn (2B—1)
allows an inverse pair (see [4]), and, B is symmetric idempotent =>
sgn (2B — I) allows a symmetric orthogonal matrix. Note that sgn
B and sgn (2B — I) can differ only on the diagonal. The patterns
that allow an orthogonal matrix have recently been investigated (see
[2] where a number of references are given).
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