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THE NEW ALGORITHM FOR LDLT DECOMPOSITION OF

BLOCK HANKEL MATRICES†

WENDI BAO∗, ZHONGQUAN LV

Abstract. In this paper, with use of the displacement matrix, two special
matrices are constructed. By these special matrices the block decomposi-
tions of the block symmetric Hankel matrix and the inverse of the Hankel
matrix are derived. Hence, the algorithms according to these decomposi-
tions are given. Furthermore, the numerical tests show that the algorithms
are feasible.
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1. Introduction

Hankel matrix is of special interest in view of various applications: commu-
nication, control engineering, filter design, identification, model reduction and
broadband matching, and in different fields of mathematics, e.g., in systems the-
ory, integral equations, and operator theory. In this paper, we will obtain the
new algorithm for the block LDLT decomposition of a block symmetric Hankel
matrix H by developing the idea in [5] to the block Hankel matrix. Furthermore,
by applying the similar techniques to the inverse of the block Hankel matrix, we
will get the UDUT decomposition of H−1. There is an extensive literature on
Hankel matrix; for some reference, see [1, 2, 3, 4].

This paper is organized as follows. Some elementary definitions and relative
theorems of Hankel matrices are discussed in Section 2. The decompositions
of symmetric Hankel matrix H and H−1 are derived in Section 3. Finally, we
present two numerical examples to test the algorithms in Section 4.
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2. Main theorems

We will use the following notations. Mn denotes the square matrix of order
n. Let Z = zn⊗Ip where zn is a displacement matrix and Ip ∈ Mp is an identity

matrix. Ei = ei ⊗ Ip where ei is a unit vector of order n. Ẽi = ẽi ⊗ Ip where ẽi
is a unit vector of order 2n.
Definition 1. A matrix H ∈ Mnp is called a block symmetric Hankel matrix, if
H satisfies H = (Γi+j−1)

n
i,j=1 where Γk ∈ Mp(k = 1, . . . , 2n− 1) is a symmetric

matrix.
Definition 2. A matrix H ∈ Mnp is called a block strong-nonsingular Hankel
matrix if

Hkp =




Γ1 Γ2 . . . Γk

Γ2 Γ3 . . . Γk+1

...
...

. . .
...

Γk Γk+1 . . . Γ2k−1




for every k = 1, . . . , n, Hkp is nonsingular.

Theorem 1. Let H ∈ Mnp be a block strong-nonsingular matrix. Introduce a
series of matrices:

H(0) = H = B0, H(i−1) = LiDiU
T
i +H(i), i = 1, . . . , n. (1)

where

Li = H(i−1)Ei, Ui = (H(i−1))TEi, Di = (Li(i))
−1, i = 1, . . . , n, (2)

and Li(i) ∈ Mp is the ith block of Li, then Li, Ui, H(i), i = 1, 2, . . . , n have
the following forms:

Li =




0
...
0

Li(i)
...

Li(n)




, Ui =




0
...
0

Ui(i)
...

Ui(n)




, Li(j) ∈ Mp, Ui(j) ∈ Mp,

H(i) =

(
0 0
0 Bi

)
, Bi ∈ M (n−i)p, i = 1, 2, . . . , n.

(3)

and
H = [L1, . . . , Ln]diag[D1, . . . , Dn][U

T
1 , . . . , UT

n ]T . (4)

Proof. Since H is a block strong-nonsingular matrix, the formulas (1), (2) are
reasonable. Under the assumptions of Theorem 1, it is simple to verify that (3)
is right. The proof of the block decomposition of H is following. Repeating the
process (4) n times and recognizing that H(n) = 0, we have

H = H(0) = L1D1U
T
1 +H(1) =

n∑

i=1

LiDiU
T
i +H(n)
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= [L1, . . . , Ln]diag[D1, . . . , Dn][U
T
1 , . . . , UT

n ]T .

, i.e., the formula (4) makes sense. ¤

Remark 1. Let H ∈ Mnp be a block symmetric strong-nonsingular matrix,
and L = [L1, . . . , Ln], D = diag(D1, . . . , Dn) in Theorem 1, then H = LDLT

just is a block LDLT decomposition of H.

Theorem 2. Under the assumptions of Theorem 1, and suppose that

∆H(i) = V H(i) −H(i)V T , (5)

where V is a low triangular matrix, then Bi (i = 0, . . . , n − 1) is nonsingular
and rank(∆H(i)) ≤ rank(∆H(i−1)) for every i = 1, 2, . . . , n.

Proof. From (1)-(4), we have

Bi−1 = (LT
i (i), . . . , L

T
i (n))

TDi(Ui(i), . . . , Ui(n)) +

(
0 0
0 Bi

)
.

Since Di = (Li(i))
−1 = [(Ui(i))

T ]−1, then

Bi−1 =

(
D−1

i Si

ti Bi + tiDiSi

)
.

where ti =




Li(i+ 1)
...

Li(n)


 , Si = (Ui(i+ 1), . . . , Ui(n)).

Recognizing that
(

I 0
−tiDi I

)(
D−1

i Si

ti Bi + tiDiSi

)(
I −DiSi

0 I

)
=

(
D−1

i 0
0 Bi

)
,

(6)
we obtain

det(Bi−1) = det(Bi)det(D
−1
i ), i = 1, 2, . . . , n− 1.

Since B0 = H is nonsingular and det(D−1
i ) 6= 0 (i = 1, . . . , n− 1), then

det(Bi) 6= 0 (i = 0, 1, . . . , n− 1).

Denote ∆iBi = Z3Bi − BiZ
T
3 , ∆̄iB

−1
i = B−1

i Z3 − ZT
3 B

−1
i , i = 1, 2, . . . , n,

then ∆H(i) = ∆iBi, and with the formula (6) we can get

∆̄i−1B
−1
i−1 =

( ∗ ∗
∗ ∆̄iB

−1
i

)
, i = 1, 2, . . . , n.

Since the rank of the matrix is greater than the rank of its submatrix, then

rank(∆H(i)) = rank(∆iB
(i)) = rank[(∆iBi)B

−1
i ] = rank[Bi(∆̄iB

−1
i )]

= rank(∆̄iB
−1
i ) ≤ rank(∆̄i−1B

−1
i−1) = rank(∆H(i−1)).

¤
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3. Two algorithms

3.1.The LDLT decomposition for the block symmetric Hankel matrix.
Let H ∈ Mnp be a block symmetric strong-nonsingular Hankel matrix. In order
to get the H = LDLT decomposition, we only need obtain Li, Di. It is easy to
verify that

ZH −HZT = mET
1 − E1m

T ,

where

m =




0
Γ1

...
Γn−1


 ,

then rank(∆H0) ≤ 2p. Moreover, from Theorem 2, we know that

rank(∆H(i−1)) ≤ 2p,

and note that ∆H(i−1) is a block antisymmetric matrix, thus there are two
matrices

Xi−1 =




0
...
0

Xi−1(i)
...

Xi−1(n)




, Yi−1 =




0
...
0

Yi−1(i)
...

Yi−1(n)




,

such that

∆H(i−1) = Xi−1Y
T
i−1 − Yi−1X

T
i−1. (7)

On one hand, right multiplying (5) and (7) by Ei respectively, and noting
that H(i−1)ZTEi = H(i−1)Ei−1 = 0, we can get

ZH(i−1)Ei −H(i−1)ZT
nEi = (Xi−1Y

T
i−1 − Yi−1X

T
i−1)Ei.

Furthermore, from Theorem 1, we have H(i−1)Ei = Li, then

ZLi = Xi−1(Yi−1(i))
T − Yi−1(Xi−1(i))

T . (8)

With use of the formula (8), Li(i), . . . , Li(n − 1) can be determined by the
following formulas:

Li(j) = Xi(j + 1)(Yi−1(i))
T − Yi−1(j + 1)(Xi−1(i))

T , j = i, . . . , n− 1.

and

Xi−1(i)(Yi−1(i))
T = Yi−1(i)(Xi−1(i))

T . (9)

On the other hand, from the last row block of H = LDLT , it holds

i∑

j=1

Lj(n)DjL
T
j (i) = Γn+i−1(i = 1, 2, . . . , n),
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then

Li(n) =





Γn, i = 1,

Γn+i−1 −
i−1∑
j=1

Lj(n)DjL
T
j (i), i ≥ 2.

Inserting ∆H((i)) = ZH(i)−H(i)ZT by H(i) = H(i−1)−LiDiL
T
i and using (7),

we can obtain

Xi(Yi)
T −Yi(Xi)

T = Xi−1(Yi−1)
T −Yi−1(Xi−1)

T −ZLiDi(Li)
T +LiDi(Li)

TZT .

with the formula (8), the above formula will become

Xi(Yi)
T − Yi(Xi)

T =Xi−1(Yi−1)
T − Yi−1(Xi−1)

T

− [Xi−1(Yi−1(i))
T − Yi−1(Xi−1(i))

T ]DiL
T
i

+ LiDi[Xi−1(Yi−1(i))
T − Yi−1(Xi−1(i))

T ]T .

(10)

Noting that the formula (8) and Di = DT
i (i = 1, . . . , n), we have the formula

(10) by denoting

Xi = Xi−1 − LiDiXi−1(i), Yi = Yi−1 − LiDiYi−1(i). (11)

Hence, with the formulas (8)-(10), the algorithm for the LDLT decomposition
of the block symmetric strong-nonsingular Hankel matrix is given by Algorithm
1.

3.2.The UDUT decomposition of H−1. Constructing the two matrices of
order 2np

Q =

(
H In ⊗ Ip

In ⊗ Ip 0n ⊗ Ip

)
, F =

(
Z 0
0 ZT

)
,

and applying Theorem 1 to the matrix Q, we have

Q(0) = R̃0 = Q, Q(i) =

(
0ip×ip 0

0 R̃i

)
,

where R̃i ∈ M (2n−i)p.
Let

L̃i = Q(i−1)Ẽi, D̃i = (L̃i(i))
−1 ∈ Mp,

thus

Q(i−1) = L̃iD̃iL̃
T
i +Q(i). (12)

Since Q is a band matrix, then L̃i has the following form

L̃i = [0, . . . , 0, (L̃i(i))
T , . . . , (L̃i(i+ n))T , 0, . . . , 0]T ,

Repeating the step (12) n times, we have the decomposition of Q

Q = (L̃1, L̃2, . . . , L̃n)




D̃1

D̃2

. . .

D̃n







L̃T
1

L̃T
2
...

L̃T
n


+

(
0 0

0 R̃n

)
. (13)
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Algorithm 1 H = LDLT

Require: A block symmetric strong-nonsingular Hankel matrix H.
Ensure: The matrices L,D.

1: X0(1) = 0⊗ Ip Y0(1) = 1⊗ Ip
2: for k = 2 to n do
3: X0(k) = Γk−1 Y0(k) = 0⊗ Ip
4: end for
5: for i = 1 to n do
6: for k = i to n− 1 do
7: Li(k) = Xi−1(k + 1)(Yi−1(i))

T − Yi−1(k + 1)(Xi+1(i))
T

8: end for
9: if i = 1 then

10: Li(n) = Γn

11: else

12: Li(n) = Γn+i−1 −
i−1∑
j=1

Lj(n)DjL
T
j (i)

13: end if
14: Di = [Li(i)]

−1

15: for k = i+ 1 to n do
16: Xi(k) = Xk−1(k)− Li(k)DiXi−1(i)
17: Yi(k) = Yk−1(k)− Li(k)DiYi−1(i)
18: end for
19: end for
20: return

L =




L1(1)
...

. . .

L1(n) . . . Ln(n)


 , D =




D1

. . .

Dn


 .

Partitioning

(L̃1, L̃2, . . . , L̃n) =

(
L1

U1

)
, D̃ = diag(D̃1, . . . , D̃n), (14)

where L1 ∈ Mnp is a block low triangular matrix, U1 ∈ Mnp is a block up
triangular matrix, substituting (13) by (14) and comparing the two sides of
(13), we have

H = L1D̃LT
1 , Inp = L1D̃UT

1 = U1D̃LT
1 .

Hence, H−1 = U1D̃UT
1 ,this just is the block triangular decomposition of H−1.

In the following process, L̃i, D̃i are derived.
Let ∆Q(i) = FQ(i) −Q(i)FT (i = 1, . . . , n), observe that

FQ−QFT = h̃ẼT
1 − Ẽ1h̃

T , h̃ = (0,ΓT
1 , . . . ,Γ

T
n−1, 0, . . . , 0)

T (15)
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we know rank(∆Q(i−1)) ≤ 2p (i = 1, 2, . . . , n + 1) from Theorem 2. Since
∆Q(i−1) is a block antisymmetric matrix, there are two matrices of order 2np×p

X̃i−1 = (0, . . . , 0, (X̃i−1(i))
T , . . . , (X̃i−1(2n))

T )T ,

Ỹi−1 = (0, . . . , 0, (Ỹi−1(i))
T , . . . , (Ỹi−1(2n))

T )T ,

such that

∆Q(i−1) = X̃i−1Ỹ
T
i−1 − Ỹi−1X̃

T
i−1. (16)

Multiplying (16) by Ẽi and noting that Q(i−1)FT Ẽi = Q(i−1)Ẽi−1 = 0, we can
obtain

FL̃i = X̃i−1(Ỹi−1(i))
T − Ỹi−1(X̃i−1(i))

T . (17)

Hence L̃i(i), . . . , L̃i(n−1), L̃i(n−2), . . . , L̃i(n+ i) can be determined by formula

(17), but L̃i(n), L̃i(n+ 1) can not.

Comparing the last row block of H = L1D̃LT
1 , we yield

L̃i(n) =





Γn, i = 1,

Γn+i−1 −
i−1∑
j=1

L̃j(n)D̃jL̃
T
j (i), i ≥ 2.

(18)

In the same way, with use of the first column block of I = L1D̃UT
1 , there are

L̃i(n+ 1) =





Ip, i = 1,

−
i−1∑
j=1

L̃j(n+ 1)D̃jL̃
T
j (i), i ≥ 2.

(19)

Inserting ∆Q(i) = FQ(i) − Q(i)FT by Q(i) = Q(i−1) − L̃iD̃iL̃
T
i and using (16),

(17), we have

X̃iỸ
T
i − ỸiX̃

T
i =X̃i−1Ỹ

T
i−1 − Ỹi−1X̃

T
i−1 − [X̃i−1(Ỹi−1(i))

T − Ỹi−1(X̃i−1(i))
T ]

D̃iL̃
T
i + L̃iD̃i[X̃i−1(Ỹi−1(i))

T − Ỹi−1(X̃i−1(i))
T ]T .

Assume that

X̃i = X̃i−1 − L̃iD̃iX̃i−1(i), Ỹi = Ỹi−1 − L̃iD̃iỸi−1(i). (20)

The algorithm for the UDUT decomposition of H−1 are obtained by (16)-(20)
and given in the Algorithm 2.



648 Wendi Bao, Zhongquan Lv

Algorithm 2 H−1 = UDUT

Require: A block symmetric strong-nonsingular Hankel matrix H.
Ensure: The matrices U,D.

1: X0(1) = 0⊗ Ip Y0(1) = 1⊗ Ip
2: for k = 2 to n do
3: X0(k) = Γk−1

4: end for
5: for k = n+ 1 to 2n do
6: X0(k) = 0⊗ Ip
7: end for
8: for k = 2 to 2n do
9: Y0(k) = 0⊗ Ip

10: end for
11: for i = 1 to n do
12: for k = i to n− 1 do
13: Li(k) = Xi−1(k + 1)(Yi−1(i))

T − Yi−1(k + 1)(Xi+1(i))
T

14: end for
15: if i = 1 then
16: Li(n) = Γn

17: else

18: Li(n) = Γn+i−1 −
i−1∑
j=1

Lj(n)DjL
T
j (i)

19: end if
20: if i = 1 then
21: Li(n+ 1) = Ip
22: else

23: Li(n+ 1) = −
i−1∑
j=1

Lj(n+ 1)DjL
T
j (i)

24: end if
25: Di = [Li(i)]

−1

26: for k = i+ 1 to n+ i do
27: Li(k) = Xi−1(k − 1)(Yi−1(k))

T − Yi−1(k − 1)(Xi−1(i))
T

28: Xi(k) = Xk−1(k)− Li(k)DiXi−1(i)
29: Yi(k) = Yk−1(k)− Li(k)DiYi−1(i)
30: end for
31: end for
32: return

U =




L1(n+ 1) . . . Ln(n+ 1)
. . .

...
Ln(2n)


 , D =




D1

. . .

Dn


 .
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4. Numerical examples

Example 1. Consider the block symmetric strong-nonsingular Hankel matrix:

H =




10 0 10 12 5 1 0 1
0 1 0 0 1 1 1 0
10 0 10 11 0 1 6 1
12 0 11 12 1 0 1 1
5 1 0 1 10 0 10 12
1 1 1 0 0 1 0 0
0 1 6 1 10 0 10 11
1 0 1 1 12 0 11 12




,

By Algorithm 1, we yield the matrices D, L such that H = LDLT

D =




0.1 0 −1.2 1 0 0 0 0
0 1 0 0 0 0 0 0

−1.2 0 2.4 −1 0 0 0 0
1 0 −1 0 0 0 0 0
0 0 0 0 5.7049 −4.7295 3.2951 −8.7459
0 0 0 0 −4.7295 5.1770 −2.8705 7.3754
0 0 0 0 3.2951 −2.8705 1.9049 −5.0541
0 0 0 0 −8.7459 7.3754 −5.0541 13.4951




,

L =




10 0 10 12 0 0 0 0
0 1 0 0 0 0 0 0
10 0 10 11 0 0 0 0
12 0 11 12 0 0 0 0
5 1 0 1 −3.50 4.50 46.00 12.50
1 1 1 0 4.50 −0.10 −8.20 −0.10
0 1 6 1 46.00 −8.20 −65.40 9.80
1 0 1.0 1 12.50 −0.10 9.80 11.90




.

Example 2. Consider the block symmetric strong-nonsingular Hankel matrix:

H =




110 1 0 0 100 0
1 19 0 0 0 110
0 0 100 0 110 1
0 0 0 110 1 19

100 0 110 1 0 0
0 110 1 19 0 0




,
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By Algorithm 2, we can get the matrices D, U such that H−1 = UDUT

D =




0.0091 −0.0005 0 0 0 0
−0.0005 0.0527 0 0 0 0

0 0 0.0100 0 0 0
0 0 0.0000 0.0091 0 0
0 0 0 0 −0.0047 0
0 0 0 0 0 −0.0016




,

U =




1.0000 0 0 0 −0.9095 0.0527
0 1.0000 0 0 0.0479 −5.7922
0 0 1.0000 0 −1.1000 −0.0100
0 0 0 1.0000 −0.0091 −0.1727
0 0 0 0 1.0000 0
0 0 0 0 0 1.0000




.

The numerical examples show that Algorithm 1 and Algorithm 2 work well.
Thus, the algorithms are available for block symmetric strong-nonsingular Han-
kel matrices and easy to realize. In future, we will consider the algorithms for
block Hankel matrices under less limiting conditions.
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