THE NEW ALGORITHM FOR $L D L^{T}$ DECOMPOSITION OF BLOCK HANKEL MATRICES ${ }^{\dagger}$

WENDI BAO*, ZHONGQUAN LV

Abstract

In this paper, with use of the displacement matrix, two special matrices are constructed. By these special matrices the block decompositions of the block symmetric Hankel matrix and the inverse of the Hankel matrix are derived. Hence, the algorithms according to these decompositions are given. Furthermore, the numerical tests show that the algorithms are feasible.

AMS Mathematics Subject Classification : 15A15, 15A24, 65F30.
Key words and phrases : Hankel matrix, Block symmetric Hankel matrix decomposition, Displacement matrix.

1. Introduction

Hankel matrix is of special interest in view of various applications: communication, control engineering, filter design, identification, model reduction and broadband matching, and in different fields of mathematics, e.g., in systems theory, integral equations, and operator theory. In this paper, we will obtain the new algorithm for the block $L D L^{T}$ decomposition of a block symmetric Hankel matrix H by developing the idea in [5] to the block Hankel matrix. Furthermore, by applying the similar techniques to the inverse of the block Hankel matrix, we will get the $U D U^{T}$ decomposition of H^{-1}. There is an extensive literature on Hankel matrix; for some reference, see [1, 2, 3, 4].

This paper is organized as follows. Some elementary definitions and relative theorems of Hankel matrices are discussed in Section 2. The decompositions of symmetric Hankel matrix H and H^{-1} are derived in Section 3. Finally, we present two numerical examples to test the algorithms in Section 4.

[^0]
2. Main theorems

We will use the following notations. M^{n} denotes the square matrix of order n. Let $Z=z_{n} \otimes I_{p}$ where z_{n} is a displacement matrix and $I_{p} \in M^{p}$ is an identity matrix. $E_{i}=e_{i} \otimes I_{p}$ where e_{i} is a unit vector of order n. $\tilde{E}_{i}=\tilde{e}_{i} \otimes I_{p}$ where \tilde{e}_{i} is a unit vector of order 2 n .
Definition 1. A matrix $H \in M^{n p}$ is called a block symmetric Hankel matrix, if H satisfies $H=\left(\Gamma_{i+j-1}\right)_{i, j=1}^{n}$ where $\Gamma_{k} \in M^{p}(k=1, \ldots, 2 n-1)$ is a symmetric matrix.
Definition 2. A matrix $H \in M^{n p}$ is called a block strong-nonsingular Hankel matrix if

$$
H_{k p}=\left(\begin{array}{cccc}
\Gamma_{1} & \Gamma_{2} & \ldots & \Gamma_{k} \\
\Gamma_{2} & \Gamma_{3} & \ldots & \Gamma_{k+1} \\
\vdots & \vdots & \ddots & \vdots \\
\Gamma_{k} & \Gamma_{k+1} & \ldots & \Gamma_{2 k-1}
\end{array}\right)
$$

for every $k=1, \ldots, n, H_{k p}$ is nonsingular.
Theorem 1. Let $H \in M^{n p}$ be a block strong-nonsingular matrix. Introduce a series of matrices:

$$
\begin{equation*}
H^{(0)}=H=B_{0}, H^{(i-1)}=L_{i} D_{i} U_{i}^{T}+H^{(i)}, i=1, \ldots, n \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{i}=H^{(i-1)} E_{i}, U_{i}=\left(H^{(i-1)}\right)^{T} E_{i}, D_{i}=\left(L_{i}(i)\right)^{-1}, \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

and $L_{i}(i) \in M^{p}$ is the ith block of L_{i}, then $L_{i}, U_{i}, H^{(i)}, i=1,2, \ldots, n$ have the following forms:

$$
\begin{array}{rl}
L_{i}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
L_{i}(i) \\
\vdots \\
L_{i}(n)
\end{array}\right), \quad U_{i}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
U_{i}(i) \\
\vdots \\
U_{i}(n)
\end{array}\right), L_{i}(j) \in M^{p}, U_{i}(j) \in M^{p}, \\
H^{(i)}= & \left(\begin{array}{cc}
0 & 0 \\
0 & B_{i}
\end{array}\right), B_{i} \in M^{(n-i) p}, i=1,2, \ldots, n . \\
d & H=\left[L_{1}, \ldots, L_{n}\right] \operatorname{diag}\left[D_{1}, \ldots, D_{n}\right]\left[U_{1}^{T}, \ldots, U_{n}^{T}\right]^{T} . \tag{4}
\end{array}
$$

and

Proof. Since H is a block strong-nonsingular matrix, the formulas (1), (2) are reasonable. Under the assumptions of Theorem 1, it is simple to verify that (3) is right. The proof of the block decomposition of H is following. Repeating the process (4) n times and recognizing that $H^{(n)}=0$, we have

$$
H=H^{(0)}=L_{1} D_{1} U_{1}^{T}+H^{(1)}=\sum_{i=1}^{n} L_{i} D_{i} U_{i}^{T}+H^{(n)}
$$

$$
=\left[L_{1}, \ldots, L_{n}\right] \operatorname{diag}\left[D_{1}, \ldots, D_{n}\right]\left[U_{1}^{T}, \ldots, U_{n}^{T}\right]^{T} .
$$

, i.e., the formula (4) makes sense.
Remark 1. Let $H \in M^{n p}$ be a block symmetric strong-nonsingular matrix, and $L=\left[L_{1}, \ldots, L_{n}\right], D=\operatorname{diag}\left(D_{1}, \ldots, D_{n}\right)$ in Theorem 1 , then $H=L D L^{T}$ just is a block $L D L^{T}$ decomposition of H .

Theorem 2. Under the assumptions of Theorem 1, and suppose that

$$
\begin{equation*}
\Delta H^{(i)}=V H^{(i)}-H^{(i)} V^{T} \tag{5}
\end{equation*}
$$

where V is a low triangular matrix, then $B_{i}(i=0, \ldots, n-1)$ is nonsingular and $\operatorname{rank}\left(\Delta H^{(i)}\right) \leq \operatorname{rank}\left(\Delta H^{(i-1)}\right)$ for every $i=1,2, \ldots, n$.

Proof. From (1)-(4), we have

$$
B_{i-1}=\left(L_{i}^{T}(i), \ldots, L_{i}^{T}(n)\right)^{T} D_{i}\left(U_{i}(i), \ldots, U_{i}(n)\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & B_{i}
\end{array}\right)
$$

Since $D_{i}=\left(L_{i}(i)\right)^{-1}=\left[\left(U_{i}(i)\right)^{T}\right]^{-1}$, then

$$
B_{i-1}=\left(\begin{array}{cc}
D_{i}^{-1} & S_{i} \\
t_{i} & B_{i}+t_{i} D_{i} S_{i}
\end{array}\right)
$$

where $t_{i}=\left(\begin{array}{c}L_{i}(i+1) \\ \vdots \\ L_{i}(n)\end{array}\right), S_{i}=\left(U_{i}(i+1), \ldots, U_{i}(n)\right)$.
Recognizing that

$$
\left(\begin{array}{cc}
I & 0 \tag{6}\\
-t_{i} D_{i} & I
\end{array}\right)\left(\begin{array}{cc}
D_{i}^{-1} & S_{i} \\
t_{i} & B_{i}+t_{i} D_{i} S_{i}
\end{array}\right)\left(\begin{array}{cc}
I & -D_{i} S_{i} \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
D_{i}^{-1} & 0 \\
0 & B_{i}
\end{array}\right)
$$

we obtain

$$
\operatorname{det}\left(B_{i-1}\right)=\operatorname{det}\left(B_{i}\right) \operatorname{det}\left(D_{i}^{-1}\right), \quad i=1,2, \ldots, n-1
$$

Since $B_{0}=H$ is nonsingular and $\operatorname{det}\left(D_{i}^{-1}\right) \neq 0(i=1, \ldots, n-1)$, then

$$
\operatorname{det}\left(B_{i}\right) \neq 0(i=0,1, \ldots, n-1)
$$

Denote $\Delta_{i} B_{i}=Z_{3} B_{i}-B_{i} Z_{3}^{T}, \bar{\Delta}_{i} B_{i}^{-1}=B_{i}^{-1} Z_{3}-Z_{3}^{T} B_{i}^{-1}, i=1,2, \ldots, n$, then $\Delta H^{(i)}=\Delta_{i} B_{i}$, and with the formula (6) we can get

$$
\bar{\Delta}_{i-1} B_{i-1}^{-1}=\left(\begin{array}{cc}
* & * \\
* & \bar{\Delta}_{i} B_{i}^{-1}
\end{array}\right), i=1,2, \ldots, n
$$

Since the rank of the matrix is greater than the rank of its submatrix, then

$$
\begin{aligned}
\operatorname{rank}\left(\Delta H^{(i)}\right) & =\operatorname{rank}\left(\Delta_{i} B^{(i)}\right)=\operatorname{rank}\left[\left(\Delta_{i} B_{i}\right) B_{i}^{-1}\right]=\operatorname{rank}\left[B_{i}\left(\bar{\Delta}_{i} B_{i}^{-1}\right)\right] \\
& =\operatorname{rank}\left(\bar{\Delta}_{i} B_{i}^{-1}\right) \leq \operatorname{rank}\left(\bar{\Delta}_{i-1} B_{i-1}^{-1}\right)=\operatorname{rank}\left(\Delta H^{(i-1)}\right) .
\end{aligned}
$$

3. Two algorithms

3.1.The $L D L^{T}$ decomposition for the block symmetric Hankel matrix. Let $H \in M^{n p}$ be a block symmetric strong-nonsingular Hankel matrix. In order to get the $H=L D L^{T}$ decomposition, we only need obtain L_{i}, D_{i}. It is easy to verify that

$$
Z H-H Z^{T}=m E_{1}^{T}-E_{1} m^{T}
$$

where

$$
m=\left(\begin{array}{c}
0 \\
\Gamma_{1} \\
\vdots \\
\Gamma_{n-1}
\end{array}\right)
$$

then $\operatorname{rank}\left(\Delta H^{0}\right) \leq 2 p$. Moreover, from Theorem 2, we know that

$$
\operatorname{rank}\left(\Delta H^{(i-1)}\right) \leq 2 p
$$

and note that $\Delta H^{(i-1)}$ is a block antisymmetric matrix, thus there are two matrices

$$
X_{i-1}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
X_{i-1}(i) \\
\vdots \\
X_{i-1}(n)
\end{array}\right), \quad Y_{i-1}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
Y_{i-1}(i) \\
\vdots \\
Y_{i-1}(n)
\end{array}\right)
$$

such that

$$
\begin{equation*}
\Delta H^{(i-1)}=X_{i-1} Y_{i-1}^{T}-Y_{i-1} X_{i-1}^{T} . \tag{7}
\end{equation*}
$$

On one hand, right multiplying (5) and (7) by E_{i} respectively, and noting that $H^{(i-1)} Z^{T} E_{i}=H^{(i-1)} E_{i-1}=0$, we can get

$$
Z H^{(i-1)} E_{i}-H^{(i-1)} Z_{n}^{T} E_{i}=\left(X_{i-1} Y_{i-1}^{T}-Y_{i-1} X_{i-1}^{T}\right) E_{i} .
$$

Furthermore, from Theorem 1, we have $H^{(i-1)} E_{i}=L_{i}$, then

$$
\begin{equation*}
Z L_{i}=X_{i-1}\left(Y_{i-1}(i)\right)^{T}-Y_{i-1}\left(X_{i-1}(i)\right)^{T} . \tag{8}
\end{equation*}
$$

With use of the formula (8), $L_{i}(i), \ldots, L_{i}(n-1)$ can be determined by the following formulas:

$$
L_{i}(j)=X_{i}(j+1)\left(Y_{i-1}(i)\right)^{T}-Y_{i-1}(j+1)\left(X_{i-1}(i)\right)^{T}, j=i, \ldots, n-1 .
$$

and

$$
\begin{equation*}
X_{i-1}(i)\left(Y_{i-1}(i)\right)^{T}=Y_{i-1}(i)\left(X_{i-1}(i)\right)^{T} \tag{9}
\end{equation*}
$$

On the other hand, from the last row block of $H=L D L^{T}$, it holds

$$
\sum_{j=1}^{i} L_{j}(n) D_{j} L_{j}^{T}(i)=\Gamma_{n+i-1}(i=1,2, \ldots, n),
$$

then

$$
L_{i}(n)=\left\{\begin{array}{l}
\Gamma_{n}, \quad i=1 \\
\Gamma_{n+i-1}-\sum_{j=1}^{i-1} L_{j}(n) D_{j} L_{j}^{T}(i), \quad i \geq 2
\end{array}\right.
$$

Inserting $\left.\Delta H^{(}(i)\right)=Z H^{(i)}-H^{(i)} Z^{T}$ by $H^{(i)}=H^{(i-1)}-L_{i} D_{i} L_{i}^{T}$ and using (7), we can obtain
$X_{i}\left(Y_{i}\right)^{T}-Y_{i}\left(X_{i}\right)^{T}=X_{i-1}\left(Y_{i-1}\right)^{T}-Y_{i-1}\left(X_{i-1}\right)^{T}-Z L_{i} D_{i}\left(L_{i}\right)^{T}+L_{i} D_{i}\left(L_{i}\right)^{T} Z^{T}$. with the formula (8), the above formula will become

$$
\begin{align*}
X_{i}\left(Y_{i}\right)^{T}-Y_{i}\left(X_{i}\right)^{T}= & X_{i-1}\left(Y_{i-1}\right)^{T}-Y_{i-1}\left(X_{i-1}\right)^{T} \\
& -\left[X_{i-1}\left(Y_{i-1}(i)\right)^{T}-Y_{i-1}\left(X_{i-1}(i)\right)^{T}\right] D_{i} L_{i}^{T} \tag{10}\\
& +L_{i} D_{i}\left[X_{i-1}\left(Y_{i-1}(i)\right)^{T}-Y_{i-1}\left(X_{i-1}(i)\right)^{T}\right]^{T}
\end{align*}
$$

Noting that the formula (8) and $D_{i}=D_{i}^{T}(i=1, \ldots, n)$, we have the formula (10) by denoting

$$
\begin{equation*}
X_{i}=X_{i-1}-L_{i} D_{i} X_{i-1}(i), Y_{i}=Y_{i-1}-L_{i} D_{i} Y_{i-1}(i) \tag{11}
\end{equation*}
$$

Hence, with the formulas (8)-(10), the algorithm for the $L D L^{T}$ decomposition of the block symmetric strong-nonsingular Hankel matrix is given by Algorithm 1.
3.2.The $U D U^{T}$ decomposition of H^{-1}. Constructing the two matrices of order 2 np

$$
Q=\left(\begin{array}{cc}
H & I_{n} \otimes I_{p} \\
I_{n} \otimes I_{p} & 0_{n} \otimes I_{p}
\end{array}\right), \quad F=\left(\begin{array}{cc}
Z & 0 \\
0 & Z^{T}
\end{array}\right),
$$

and applying Theorem 1 to the matrix Q , we have

$$
Q^{(0)}=\tilde{R}_{0}=Q, \quad Q^{(i)}=\left(\begin{array}{cc}
0_{i p \times i p} & 0 \\
0 & \tilde{R}_{i}
\end{array}\right),
$$

where $\tilde{R}_{i} \in M^{(2 n-i) p}$.
Let

$$
\tilde{L}_{i}=Q^{(i-1)} \tilde{E}_{i}, \quad \tilde{D}_{i}=\left(\tilde{L}_{i}(i)\right)^{-1} \in M^{p},
$$

thus

$$
\begin{equation*}
Q^{(i-1)}=\tilde{L}_{i} \tilde{D}_{i} \tilde{L}_{i}^{T}+Q^{(i)} \tag{12}
\end{equation*}
$$

Since Q is a band matrix, then \tilde{L}_{i} has the following form

$$
\tilde{L}_{i}=\left[0, \ldots, 0,\left(\tilde{L}_{i}(i)\right)^{T}, \ldots,\left(\tilde{L}_{i}(i+n)\right)^{T}, 0, \ldots, 0\right]^{T}
$$

Repeating the step (12) n times, we have the decomposition of Q

$$
Q=\left(\tilde{L}_{1}, \tilde{L}_{2}, \ldots, \tilde{L}_{n}\right)\left(\begin{array}{cccc}
\tilde{D}_{1} & & & \tag{13}\\
& \tilde{D}_{2} & & \\
& & \ddots & \\
& & & \tilde{D}_{n}
\end{array}\right)\left(\begin{array}{c}
\tilde{L}_{1}^{T} \\
\tilde{L}_{2}^{T} \\
\vdots \\
\tilde{L}_{n}^{T}
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & \tilde{R}_{n}
\end{array}\right) .
$$

```
Algorithm \(1 H=L D L^{T}\)
Require: A block symmetric strong-nonsingular Hankel matrix \(H\).
Ensure: The matrices \(L, D\).
    \(X_{0}(1)=0 \otimes I_{p} Y_{0}(1)=1 \otimes I_{p}\)
    for \(k=2\) to \(n\) do
        \(X_{0}(k)=\Gamma_{k-1} Y_{0}(k)=0 \otimes I_{p}\)
    end for
    for \(i=1\) to \(n\) do
        for \(k=i\) to \(n-1\) do
            \(L_{i}(k)=X_{i-1}(k+1)\left(Y_{i-1}(i)\right)^{T}-Y_{i-1}(k+1)\left(X_{i+1}(i)\right)^{T}\)
        end for
        if \(i=1\) then
            \(L_{i}(n)=\Gamma_{n}\)
        else
            \(L_{i}(n)=\Gamma_{n+i-1}-\sum_{j=1}^{i-1} L_{j}(n) D_{j} L_{j}^{T}(i)\)
        end if
        \(D_{i}=\left[L_{i}(i)\right]^{-1}\)
        for \(k=i+1\) to \(n\) do
            \(X_{i}(k)=X_{k-1}(k)-L_{i}(k) D_{i} X_{i-1}(i)\)
            \(Y_{i}(k)=Y_{k-1}(k)-L_{i}(k) D_{i} Y_{i-1}(i)\)
        end for
    end for
    return
\[
L=\left(\begin{array}{ccc}
L_{1}(1) & & \\
\vdots & \ddots & \\
L_{1}(n) & \ldots & L_{n}(n)
\end{array}\right), \quad D=\left(\begin{array}{ccc}
D_{1} & & \\
& \ddots & \\
& & D_{n}
\end{array}\right)
\]
```

Partitioning

$$
\begin{equation*}
\left(\tilde{L}_{1}, \tilde{L}_{2}, \ldots, \tilde{L}_{n}\right)=\binom{L_{1}}{U_{1}}, \quad \tilde{D}=\operatorname{diag}\left(\tilde{D}_{1}, \ldots, \tilde{D}_{n}\right) \tag{14}
\end{equation*}
$$

where $L_{1} \in M^{n p}$ is a block low triangular matrix, $U_{1} \in M^{n p}$ is a block up triangular matrix, substituting (13) by (14) and comparing the two sides of (13), we have

$$
H=L_{1} \tilde{D} L_{1}^{T}, \quad I_{n p}=L_{1} \tilde{D} U_{1}^{T}=U_{1} \tilde{D} L_{1}^{T}
$$

Hence, $H^{-1}=U_{1} \tilde{D} U_{1}^{T}$, this just is the block triangular decomposition of H^{-1}.
In the following process, $\tilde{L}_{i}, \tilde{D}_{i}$ are derived.
Let $\Delta Q^{(i)}=F Q^{(i)}-Q^{(i)} F^{T}(i=1, \ldots, n)$, observe that

$$
\begin{equation*}
F Q-Q F^{T}=\tilde{h} \tilde{E}_{1}^{T}-\tilde{E}_{1} \tilde{h}^{T}, \tilde{h}=\left(0, \Gamma_{1}^{T}, \ldots, \Gamma_{n-1}^{T}, 0, \ldots, 0\right)^{T} \tag{15}
\end{equation*}
$$

we know $\operatorname{rank}\left(\Delta Q^{(i-1)}\right) \leq 2 p(i=1,2, \ldots, n+1)$ from Theorem 2. Since $\Delta Q^{(i-1)}$ is a block antisymmetric matrix, there are two matrices of order $2 n p \times p$

$$
\begin{aligned}
& \tilde{X}_{i-1}=\left(0, \ldots, 0,\left(\tilde{X}_{i-1}(i)\right)^{T}, \ldots,\left(\tilde{X}_{i-1}(2 n)\right)^{T}\right)^{T} \\
& \tilde{Y}_{i-1}=\left(0, \ldots, 0,\left(\tilde{Y}_{i-1}(i)\right)^{T}, \ldots,\left(\tilde{Y}_{i-1}(2 n)\right)^{T}\right)^{T}
\end{aligned}
$$

such that

$$
\begin{equation*}
\Delta Q^{(i-1)}=\tilde{X}_{i-1} \tilde{Y}_{i-1}^{T}-\tilde{Y}_{i-1} \tilde{X}_{i-1}^{T} \tag{16}
\end{equation*}
$$

Multiplying (16) by \tilde{E}_{i} and noting that $Q^{(i-1)} F^{T} \tilde{E}_{i}=Q^{(i-1)} \tilde{E}_{i-1}=0$, we can obtain

$$
\begin{equation*}
F \tilde{L}_{i}=\tilde{X}_{i-1}\left(\tilde{Y}_{i-1}(i)\right)^{T}-\tilde{Y}_{i-1}\left(\tilde{X}_{i-1}(i)\right)^{T} \tag{17}
\end{equation*}
$$

Hence $\tilde{L}_{i}(i), \ldots, \tilde{L}_{i}(n-1), \tilde{L}_{i}(n-2), \ldots, \tilde{L}_{i}(n+i)$ can be determined by formula (17), but $\tilde{L}_{i}(n), \tilde{L}_{i}(n+1)$ can not.

Comparing the last row block of $H=L_{1} \tilde{D} L_{1}^{T}$, we yield

$$
\tilde{L}_{i}(n)=\left\{\begin{array}{l}
\Gamma_{n}, \quad i=1 \tag{18}\\
\Gamma_{n+i-1}-\sum_{j=1}^{i-1} \tilde{L}_{j}(n) \tilde{D}_{j} \tilde{L}_{j}^{T}(i), \quad i \geq 2
\end{array}\right.
$$

In the same way, with use of the first column block of $I=L_{1} \tilde{D} U_{1}^{T}$, there are

$$
\tilde{L}_{i}(n+1)=\left\{\begin{array}{l}
I_{p}, \quad i=1 \tag{19}\\
-\sum_{j=1}^{i-1} \tilde{L}_{j}(n+1) \tilde{D}_{j} \tilde{L}_{j}^{T}(i), \quad i \geq 2
\end{array}\right.
$$

Inserting $\Delta Q^{(i)}=F Q^{(i)}-Q^{(i)} F^{T}$ by $Q^{(i)}=Q^{(i-1)}-\tilde{L}_{i} \tilde{D}_{i} \tilde{L}_{i}^{T}$ and using (16), (17), we have

$$
\begin{aligned}
\tilde{X}_{i} \tilde{Y}_{i}^{T}-\tilde{Y}_{i} \tilde{X}_{i}^{T}= & \tilde{X}_{i-1} \tilde{Y}_{i-1}^{T}-\tilde{Y}_{i-1} \tilde{X}_{i-1}^{T}-\left[\tilde{X}_{i-1}\left(\tilde{Y}_{i-1}(i)\right)^{T}-\tilde{Y}_{i-1}\left(\tilde{X}_{i-1}(i)\right)^{T}\right] \\
& \tilde{D}_{i} \tilde{L}_{i}^{T}+\tilde{L}_{i} \tilde{D}_{i}\left[\tilde{X}_{i-1}\left(\tilde{Y}_{i-1}(i)\right)^{T}-\tilde{Y}_{i-1}\left(\tilde{X}_{i-1}(i)\right)^{T}\right]^{T} .
\end{aligned}
$$

Assume that

$$
\begin{equation*}
\tilde{X}_{i}=\tilde{X}_{i-1}-\tilde{L}_{i} \tilde{D}_{i} \tilde{X}_{i-1}(i), \quad \tilde{Y}_{i}=\tilde{Y}_{i-1}-\tilde{L}_{i} \tilde{D}_{i} \tilde{Y}_{i-1}(i) \tag{20}
\end{equation*}
$$

The algorithm for the $U D U^{T}$ decomposition of H^{-1} are obtained by (16)-(20) and given in the Algorithm 2.

```
Algorithm \(2 H^{-1}=U D U^{T}\)
Require: A block symmetric strong-nonsingular Hankel matrix \(H\).
Ensure: The matrices \(U, D\).
    \(X_{0}(1)=0 \otimes I_{p} \quad Y_{0}(1)=1 \otimes I_{p}\)
    for \(k=2\) to \(n\) do
        \(X_{0}(k)=\Gamma_{k-1}\)
    end for
    for \(k=n+1\) to \(2 n\) do
        \(X_{0}(k)=0 \otimes I_{p}\)
    end for
    for \(k=2\) to \(2 n\) do
        \(Y_{0}(k)=0 \otimes I_{p}\)
    end for
    for \(i=1\) to \(n\) do
        for \(k=i\) to \(n-1\) do
            \(L_{i}(k)=X_{i-1}(k+1)\left(Y_{i-1}(i)\right)^{T}-Y_{i-1}(k+1)\left(X_{i+1}(i)\right)^{T}\)
        end for
        if \(i=1\) then
            \(L_{i}(n)=\Gamma_{n}\)
        else
            \(L_{i}(n)=\Gamma_{n+i-1}-\sum_{j=1}^{i-1} L_{j}(n) D_{j} L_{j}^{T}(i)\)
        end if
        if \(i=1\) then
            \(L_{i}(n+1)=I_{p}\)
        else
            \(L_{i}(n+1)=-\sum_{j=1}^{i-1} L_{j}(n+1) D_{j} L_{j}^{T}(i)\)
        end if
        \(D_{i}=\left[L_{i}(i)\right]^{-1}\)
        for \(k=i+1\) to \(n+i\) do
            \(L_{i}(k)=X_{i-1}(k-1)\left(Y_{i-1}(k)\right)^{T}-Y_{i-1}(k-1)\left(X_{i-1}(i)\right)^{T}\)
            \(X_{i}(k)=X_{k-1}(k)-L_{i}(k) D_{i} X_{i-1}(i)\)
            \(Y_{i}(k)=Y_{k-1}(k)-L_{i}(k) D_{i} Y_{i-1}(i)\)
        end for
    end for
    return
    \(U=\left(\begin{array}{ccc}L_{1}(n+1) & \ldots & L_{n}(n+1) \\ & \ddots & \vdots \\ & & L_{n}(2 n)\end{array}\right), \quad D=\left(\begin{array}{ccc}D_{1} & & \\ & \ddots & \\ & & D_{n}\end{array}\right)\).
```


4. Numerical examples

Example 1. Consider the block symmetric strong-nonsingular Hankel matrix:

$$
H=\left(\begin{array}{cccccccc}
10 & 0 & 10 & 12 & 5 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
10 & 0 & 10 & 11 & 0 & 1 & 6 & 1 \\
12 & 0 & 11 & 12 & 1 & 0 & 1 & 1 \\
5 & 1 & 0 & 1 & 10 & 0 & 10 & 12 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 6 & 1 & 10 & 0 & 10 & 11 \\
1 & 0 & 1 & 1 & 12 & 0 & 11 & 12
\end{array}\right)
$$

By Algorithm 1, we yield the matrices D, L such that $H=L D L^{T}$

$$
\begin{gathered}
D=\left(\begin{array}{cccccccc}
0.1 & 0 & -1.2 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1.2 & 0 & 2.4 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 5.7049 & -4.7295 & 3.2951 & -8.7459 \\
0 & 0 & 0 & 0 & -4.7295 & 5.1770 & -2.8705 & 7.3754 \\
0 & 0 & 0 & 0 & 3.2951 & -2.8705 & 1.9049 & -5.0541 \\
0 & 0 & 0 & 0 & -8.7459 & 7.3754 & -5.0541 & 13.4951
\end{array}\right), \\
L=\left(\begin{array}{cccccccc}
10 & 0 & 10 & 12 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
10 & 0 & 10 & 11 & 0 & 0 & 0 & 0 \\
12 & 0 & 11 & 12 & 0 & 0 & 0 & 0 \\
5 & 1 & 0 & 1 & -3.50 & 4.50 & 46.00 & 12.50 \\
1 & 1 & 1 & 0 & 4.50 & -0.10 & -8.20 & -0.10 \\
0 & 1 & 6 & 1 & 46.00 & -8.20 & -65.40 & 9.80 \\
1 & 0 & 1.0 & 1 & 12.50 & -0.10 & 9.80 & 11.90
\end{array}\right)
\end{gathered}
$$

Example 2. Consider the block symmetric strong-nonsingular Hankel matrix:

$$
H=\left(\begin{array}{cccccc}
110 & 1 & 0 & 0 & 100 & 0 \\
1 & 19 & 0 & 0 & 0 & 110 \\
0 & 0 & 100 & 0 & 110 & 1 \\
0 & 0 & 0 & 110 & 1 & 19 \\
100 & 0 & 110 & 1 & 0 & 0 \\
0 & 110 & 1 & 19 & 0 & 0
\end{array}\right)
$$

By Algorithm 2, we can get the matrices D, U such that $H^{-1}=U D U^{T}$

$$
\begin{aligned}
D & =\left(\begin{array}{cccccc}
0.0091 & -0.0005 & 0 & 0 & 0 & 0 \\
-0.0005 & 0.0527 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.0100 & 0 & 0 & 0 \\
0 & 0 & 0.0000 & 0.0091 & 0 & 0 \\
0 & 0 & 0 & 0 & -0.0047 & 0 \\
0 & 0 & 0 & 0 & 0 & -0.0016
\end{array}\right), \\
U & =\left(\begin{array}{cccccc}
1.0000 & 0 & 0 & 0 & -0.9095 & 0.0527 \\
0 & 1.0000 & 0 & 0 & 0.0479 & -5.7922 \\
0 & 0 & 1.0000 & 0 & -1.1000 & -0.0100 \\
0 & 0 & 0 & 1.0000 & -0.0091 & -0.1727 \\
0 & 0 & 0 & 0 & 1.0000 & 0 \\
0 & 0 & 0 & 0 & 0 & 1.0000
\end{array}\right) .
\end{aligned}
$$

The numerical examples show that Algorithm 1 and Algorithm 2 work well. Thus, the algorithms are available for block symmetric strong-nonsingular Hankel matrices and easy to realize. In future, we will consider the algorithms for block Hankel matrices under less limiting conditions.

References

1. N. B. Atti, G. M. Toca, lock diagonalization and LU-equivalence of Hankel matrices, Linear Algebra Appl. 412 (2006), 247-269.
2. S. Belhaj, Computing the block factorization of complex Hankel matrices, Computing 87 (2010), 169-186.
3. K. Browne, S. Z. Qiao, Y. M. Wei, A Lanczos bidiagonalization algorithm for Hankel matrices. Linear Algebra Appl. 430 (2009), 1531-1543.
4. J. Chun, T. Kailath, Displacement structure for Hankel, Vandermonde, and related(derived) matrices, Linear Algebra Appl. 151(1991), 199-277.
5. Z. J. Yuan, Z. Xu, Q. Lu, Improvement on the fast algorithm for triangular decomposition of Hankel matrix and its inverse matrix, Chinese Journal of Engineering Mathematics 23(2006), 685-690.

Wendi Bao received her M.Sc. from China University of Petroleum in 2005. She is currently a doctoral student at Nanjing Normal University since 2009. She has been at China University of Petroleum since 2005. Her research interests include matrix computation and numerical methods for DAEs.

School of Mathematical Sciences, Nanjing Normal University, Nanjing 210046, P.R. China School of Mathematic and Computational science, China University of Petroleum, Qingdao 266555, P.R. China.
e-mail: baowd@hdpu.edu.cn; baowendi@sina.com
Zhongquan Lv received his Master from Nanjing Forestry University in 2007. He is currently a doctoral student at Nanjing Normal University since 2008. He has been at Nanjing Forestry University since 2000 . His research interests include matrix computation, parallel algorithm and numerical methods for DAEs .

School of Mathematical Sciences, Nanjing Normal University, Nanjing 210046, Nanjing, P.R. China

College of Science ,Nanjing Forestry University, Nanjing 210037, Nanjing, P.R. China.
e-mail: zhqlv@njfu.edu.cn

[^0]: Received July 10, 2010. Revised September 13, 2010. Accepted October 18, 2010. ${ }^{*}$ Corresponding author. ${ }^{\dagger}$ This work was supported by the Foundation for the Excellent Doctoral Thesis Project of Nanjing Normal University under grant 2010bs0028
 (c) 2011 Korean SIGCAM and KSCAM.

