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THE STEEPEST DESCENT METHOD AND THE
CONJUGATE GRADIENT METHOD FOR SLIGHTLY
NON-SYMMETRIC, POSITIVE DEFINITE MATRICES

DonNG Ho SHIN, Do HYyuN KiM AND MAN SUK SONG

1. Introduction and preliminaries

It is known that the steepest descent(SD) method and the conjugate
gradient(CG) method [1, 2, 5, 6] converge when these methods are ap-
plied to solve linear systems of the form

Az = b,

where A is symmetric and positive definite. For some finite difference dis-
cretizations of elliptic problems, one gets positive definite matrices that
are almost symmetric. Practically, the SD method and the CG method
work for these matrices. However, the convergence of these methods is
not guaranteed theoretically. The SD method is also called Orthores(1)
in iterative method papers. Elman [4] states that the convergence proof
for Orthores(k), with k a positive integer, is not heard. In this paper,
we prove that the SD method and the CG method converge when the [?
matrix norm of the non-symmetric part of a positive definite matrix is
less than some value related to the smallest and the largest eigenvalues
of the symmetric part of the given matrix.

For non-symmetric matrices, many iterative methods [3, 4] have been
developed that come from the CG method by changing the number of
terms, the number of iterations, or the inner product and so forth. The
convergence of most of these CG-like methods were proven by the use
of Krylov space techniques. The convergence proofs that we do in this
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paper are done without the use of the Krylov space. Hence our setting
and proof are much different from those that are done so far about the
CG-like methods for non-symmetric matrices.

We begin with some notations. Let

(z,y) :=z'y

be the Euclidean inner product of two vectors z,y € R" and let

2]l := V/(z, )
be the induced Euclidean norm. The associated matrix norm is given by

sup ||Az||.
flzll=1

Let A be an n x n matrix. Note that A can be represented as
A=As+ Apn,

where

As=(A+AY/2 and Ay =(4-AY/2

are the symmetric and the non-symmetric parts of A respectively. Let A
be positive definite, then the symmetric part Ag is also positive definite.
Hence A and Ag are invertible and the eigenvalues of Ag are all positive
real numbers.

Let Aq,..., A, be the eigenvalues of Ag such that

0</\1S"'SATI)

then Ajl,... ;! are the eigenvalues of AY. The condition number of
Ag is defined to be

k= || As|| 45 |l
Since As is symmetric,

K= )\n/)\l 2 1.

The following lemmas will be used frequently in the proof of the main
theorems.
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LEMMA 1.1. For any vector z,

Mlel? < (2, Asz) < Anllz]|*.

Proof. The Rayleigh quotients of a symmetric matrix are bounded by
the smallest and the largest eigenvalues of the matrix. Thus, we have

A < (z,Asz) <A,

Tl T

for any x. Hence our claim follows.
Similarly, we get the next lemma.

LEMMA 1.2. For any vector z,

Azll? < (2, A5 ) < Al

LEMMA 1.3. For any vector z,

(z,Az) = (z,Asz) and (z,Anz)=0.

Proof. Since z'Apnz is a real number,
t'Anz = (z'Anz) = 2'Alyz = —z'Apnz.

Hence (z,Anz) = 0.

The Schwarz inequality for a positive definite matrix is stated in the
next lemma.

LEMMA 1.4. If P is a positive definite matrix, then

|(z, Py)| < V/(z, Pz)(y, Py)

for any z and y.
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2. Convergence proofs

The convergence proof for the SD method applied to the linear system
Az = b is shown in the next theorem.

THEOREM 2.1. If
lAN]| < M VET (—1 +V1+ /c"1> :

then the SD method, defined by

r’ =b— Au°
ftl = gt +akrk
rkt =k g Ark

N (rk,rk)
k= (rk, Ar¥),

converges.

Proof. By Lemma 1.2 and Lemma 1.3, for any k,

(2.1) N <op <Ak

We have
rFtL A rEtY) = (pF — q Ark AdrF — apAd ArF
S S S

= (r*, AZr¥) — 204 (Ar%, AZT5) + o2 (Ark, AL Ar)

= (Tk’ A—Slrk) - zak{(rk’ rk) + (ANrk, A_Slrk)
+ a2 {(ArF, r*) + (ArF, AL ANrR))

= (r¥, Adr*) — ar(r¥,r%) — 200 (AnrE, AZTF)
+ o2(Ark, AL AnrF)

= (rF, AZr%) — ap (0¥, rk) — 2a;(AnrF, AGTF)

+ ai{(rk, ANT‘k) + (ANrk, A'SIANrk)}.

(2.2)
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Let € := ||An|| and a* := (r¥, AZr*) for any k. By Lemma 1.2 and
(2.1), we have ‘

(2.3) ap(rk, r¥) > A;lz\lak = k1a*.
Applying Lemma 1.2 twice, we get

l(Anr*, AZ Anr®)| <P ANTHP < A5

24
(24) < Aile2/\n(rk,Af51rk) < ke2aF.

By Lemma 1.4 and (2.4),

(25)  [(Anrk, 43r8)] < /(Anrt, A AnrH)ak = Ve,
Using Lemma 1.3 and combining the equations from (2.1) to (2.5),
a**l < a* — klak 4227 Vrea® + /\1_2K,62ak
< af(1 — & + 20 Ee + A 2ke?).

For convergence, we require

1— &+ 220 Ve + A\[%ke? < 1,
/\fznez + 2)\;1 \/Ee —rkl< 0,
€ + 20 Vkle— )\fn"z < Q.

This happens when

e< —-MVK!+ \/A%n'l + A2g—2 = M VET (—1 +14 n‘l) .

The main result for the CG method for solving the linear system
Az = b is the following.
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THEOREM 2.2. If
lAn] <X (-14 Vi),
then the CG method, defined by

0 =0 =p— Au°

oM = gk 4oagpt
PE+L kg Ak
prFl = pkF1 4 g ok
=
g, = AP
¢ (p*, Ap¥) ’
converges.
We will use the notations
€:= ||An]] and aj = (rk,Afs-lrk)

as we did in the proof of the SD method.

LEMMA 2.3. For any z and y,

(29| < /(2, Asz)(y, AZY).

Proof. By Lemma 1.4,

[(z,9)| = (=, As(A5 v))|

< /(2. Asz)( Ay, As(4v)) = \/(z, Ase)(4Fv,v).
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LEMMA 2.4. For any positive integer k,

k
a
op| LA ——5-
o V Adllpk 2

Proof. By Lemma 1.1, Lemma 1.3 and Lemma 2.3,

(P < V (PF, Asp)(rF, AdrF)
(pk, Ap*) — (p*, Ap*)

(p¥, AspF)aF . ak - ak
(p%, Asp*) (9, AspF) = | Aullp*(P
LEMMA 2.5. For any positive integer k,

(pk,rk) — (rk,rk)-

loug|

Proof. Note that for any k,
(p*,r*1) = (p%, %) ~ ax(p*, 4p*) = 0,
by the definition of aj. Thus,
®F, %) = (5,7 %) 4 Bea (P, 1) = (K, R,
LEMMA 2.6. For any positive integer k,
(P*, 4p%) = (p*, 4r").
Proof. By the definition of 3i, we have
(P, 4p%) = (7", Ap%) + Bi(p*, AP") = 0
for any k. Hence,

(p*, Ap*) = (%, Ar%) + Br_1(p%, Ap* 1) = (p*, ArF).

445
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LEMMA 2.7. For any positive integer k,

ax(p*,rF) > kla*.

Proof. By Lemma 1.4 and Lemma 2.6,

(0, 4p%) = (5%, Ar¥) < \/(2*, Aph)(r, Ark).

Thus, we get
(p*, 4p") < (rF, Ar%).

Using Lemma 1.1, Lemma 1.2, Lemma 1.3 and Lemma 2.5,

_ (rk,rk)2 (rkark)2 > (rkark) > i‘_lak.

T (%, ApF) T (R Ark) T T A

ak(pk, rk)

With the lemmas above, the convergence of our CG method can be
shown similarly to the way that the SD method was proven.

Proof of Theorem 2.2. We have

(rF 1 ALPFYY = (% — 0 Ap*, AGrF — ar AL ApY)

= (r*, Agr*) - 2ax(4p*, AGrF) + af(Ap*, A5 ApF)

= (r*, A7) = 20, {(@", ") + (AnP*, AGrF))
+ o} {(Ap", p*) + (A%, AS Anp"))

= (r¥, AZrF) — an(p*, r¥) — 2ax(Anp*, AZTF)
+ o} (Ap*, AG Anp®)

= (rk,A:glrk) - ak(pk,rk) — 2ak(ANpk,A:glrk)
+ai{(p*, Anp®) + (Anp*, AT Anp*)}.

(2.6)

By Lemma 1.2,

(2.7) [(Anp*, A Anp*)| < ATANDY(1? < AT EPHI2
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Using (2.7) and Lemma 1.4,

(28)  (Anp*, AZH)| < \/(Awp*, Ad Anph)ak < /X€2pH]2at.

By Lemma 1.3, Lemma 2.4, Lemma 2.7 and equations from (2.6) to

(2.8), one gets
_L, /3, e?||pk]|2ak +
M|V

k

a
———A1e?||p¥]|2 = aF (1 — kT 4+ 207 e + AT2ER).
Al“l’k”z 1 “P ” ( 1 1 )

For convergence, we require

aFtl < oF — k7l 4+ 2

+

1—-w1 422 e+ 722 < 1,
A2 + 20 e— kT <0,
€ +20e—x1A <.

Hence, the sufficient condition for convergence is
e< =AM+ /AN =) (—1 +vV1+ n"l) .
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