• Title/Summary/Keyword: Super-junction Trench MOSFET

Search Result 23, Processing Time 0.025 seconds

Thermal Characteristics according to Trench Etch angle of Super Junction MOSFET (Super Junction MOSFET의 트렌치 식각 각도에 따른 열 특성 분석에 관한 연구)

  • Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.532-535
    • /
    • 2014
  • This paper analyzed thermal characteristics of super junction MOSFET using process and design parameters. Trench process is very important to super junction MOSFET process. We analyzed the difference of temperature, thermal resistance, total power consumption according to trench etch angle. As a result we obtained minimum value of temperature difference and thermal resistance at $89.3^{\circ}$ of trench etch angle. The electrical characteristics distribution of super junction MOSFET is not showed tendency according to trench etch angle. We need iterative experiments and simulation for optimal value of electrical characteristics. The super junction power MOSFET that has superior thermal characteristics will use automobile and industry.

Analysis of Lattice Temperature in Super Junction Trench Gate Power MOSFET as Changing Degree of Trench Etching

  • Lee, Byeong-Il;Geum, Jong Min;Jung, Eun Sik;Kang, Ey Goo;Kim, Yong-Tae;Sung, Man Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.263-267
    • /
    • 2014
  • Super junction trench gate power MOSFETs have been receiving attention in terms of the trade-off between breakdown voltage and on-resistance. The vertical structure of super junction trench gate power MOSFETs allows the on-resistance to be reduced compared with conventional Trench Gate Power MOSFETs. The heat release of devices is also decreased with the reduction of on-resistance. In this paper, Lattice Temperature of two devices, Trench Gate Power MOSFET and Super junction trench gate power MOSFET, are compared in several temperature circumstance with the same Breakdown Voltage and Cell-pitch. The devices were designed by 100V Breakdown voltage and measured from 250K Lattice Temperature. We have tried to investigate how much temperature rise in the same condition. According as temperature gap between top of devices and bottom of devices, Super junction trench gate power MOSFET has a tendency to generate lower heat release than Trench Gate Power MOSFET. This means that Super junction trench gate power MOSFET is superior for wide-temperature range operation. When trench etching process is applied for making P-pillar region, trench angle factor is also important component. Depending on trench angle, characteristics of Super junction device are changed. In this paper, we focus temperature characteristic as changing trench angle factor. Consequently, Trench angle factor don't have a great effect on temperature change.

Study on Latch Up Characteristics of Super Junction MOSFET According to Trench Etch Angle (Trench 식각각도에 따른 Super Juction MOSFET의 래치 업 특성에 관한 연구)

  • Chung, Hun Suk;Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.551-554
    • /
    • 2014
  • This paper was showed latch up characteristics of super junction power MOSFET by parasitic thyristor according to trench etch angle. As a result of research, if trench etch angle of super junction MOSFET is larger, we obtained large latch up voltage. When trench etch angle was $90^{\circ}$, latch up voltage was more 50 V. and we got 700 V breakdown voltage. But we analyzed on resistance. if trench etch angle of super junction MOSFET is larger, we obtained high on resistance. Therefore, we need optimal point by simulation and experiment for solution of trade off.

A Study on 600 V Super Junction Power MOSFET Optimization and Characterization Using the Deep Trench Filling (Deep Trench Filling 기술을 적용한 600 V급 Super Junction Power MOSFET의 최적화 특성에 관한 연구)

  • Lee, Jung-Hoon;Jung, Eun-Sik;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.270-275
    • /
    • 2012
  • Power MOSFET(metal oxide silicon field effect transistor) operate voltage-driven devices, design to control the large power switching device for power supply, converter, motor control, etc. But on-resistance characteristics depending on the increasing breakdown voltage spikes is a problem. So 600 V planar power MOSFET compare to 1/3 low on-resistance characteristics of super junction MOSFET structure. In this paper design to 600 V planar MOSFET and super junction MOSFET, then improvement of comparative analysis breakdown voltage and resistance characteristics. As a result, super junction MOSFET improve on about 40% on-state voltage drop performance than planar MOSFET.

Design of 100-V Super-Junction Trench Power MOSFET with Low On-Resistance

  • Lho, Young-Hwan;Yang, Yil-Suk
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.134-137
    • /
    • 2012
  • Power metal-oxide semiconductor field-effect transistor (MOSFET) devices are widely used in power electronics applications, such as brushless direct current motors and power modules. For a conventional power MOSFET device such as trench double-diffused MOSFET (TDMOS), there is a tradeoff relationship between specific on-state resistance and breakdown voltage. To overcome the tradeoff relationship, a super-junction (SJ) trench MOSFET (TMOSFET) structure is studied and designed in this letter. The processing conditions are proposed, and studies on the unit cell are performed for optimal design. The structure modeling and the characteristic analyses for doping density, potential distribution, electric field, width, and depth of trench in an SJ TMOSFET are performed and simulated by using of the SILVACO TCAD 2D device simulator, Atlas. As a result, the specific on-state resistance of 1.2 $m{\Omega}-cm^2$ at the class of 100 V and 100 A is successfully optimized in the SJ TMOSFET, which has the better performance than TDMOS in design parameters.

Design of Main Body and Edge Termination of 100 V Class Super-junction Trench MOSFET

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.565-569
    • /
    • 2018
  • For the conventional power MOSFET (metal-oxide semiconductor field-effect transistor) device structure, there exists a tradeoff relationship between specific on-state resistance (Ron,sp) and breakdown voltage (BV). In order to overcome this tradeoff, a super-junction (SJ) trench MOSFET (TMOSFET) structure with uniform or non-uniform doping concentration, which decreases linearly in the vertical direction from the N drift region at the bottom to the channel at the top, for an optimal design is suggested in this paper. The on-state resistance of $0.96m{\Omega}-cm2$ at the SJ TMOSFET is much less than that at the conventional power MOSFET under the same breakdown voltage of 100V. A design methodology for the edge termination is proposed to achieve the same breakdown voltage and on-state resistance as the main body of the super-junction TMOSFET by using of the SILVACO TCAD 2D device simulator, Atlas.

Design and Fabrication of Super Junction MOSFET Based on Trench Filling and Bottom Implantation Process

  • Jung, Eun Sik;Kyoung, Sin Su;Kang, Ey Goo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.964-969
    • /
    • 2014
  • In Super Junction MOSFET, Charge Balance is the most important issue of the trench filling Super Junction fabrication process. In order to achieve the best electrical characteristics, the N type and P type drift regions must be fully depleted when the drain bias approaches the breakdown voltage, called Charge Balance Condition. In this paper, two methods from the fabrication process were used at the Charge Balance condition: Trench angle decreasing process and Bottom implantation process. A lower on-resistance could be achieved using a lower trench angle. And a higher breakdown voltage could be achieved using the bottom implantation process. The electrical characteristics of manufactured discrete device chips are compared with those of the devices which are designed of TCAD simulation.

A Study on the Charge Balance Characteristics of Super Junction MOSFET with Deep-Trench Technology (Deep-Trench 기술을 적용한 Super Junction MOSFET의 Charge Balance 특성에 관한 연구)

  • Choi, Jong-Mun;Huh, Yoon-Young;Cheong, Heon-Seok;Kang, Ey-Goo
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.356-361
    • /
    • 2021
  • Super Junction structure is the proposed structure to minimize the Trade-off phenomenon of power devices. Super Junction can have On-resistance(Ron) characteristics as less as five times than conventional structure. There are process methods that Multi-Epi and Deep-Trench of Super Junction structure. The reason for this is that Deep-Trench process is known to be a relatively difficult manufacturing method because it is easy to form a P-Pillar by burying impurities on top of a silicon substrate through a Deep-Trench process. However, the structure created by the Deep-Trench process has low On-resistance and high breakdown voltage, showing better efficiency. In this paper, we suggested a novel method in the process and designed structure with Charge Balance theory.

Optimal Process Design of Super Junction MOSFET (Super Juction MOSFET의 공정 설계 최적화에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.501-504
    • /
    • 2014
  • This paper was developed and described core-process to implement low on resistance which was the most important characteristics of SJ (super junction) MOSFET. Firstly, using process-simulation, SJ MOSFET optimal structure was set and developed its process flow chart by repeated simulation. Following process flow, gate level process was performed. And source and drain level process was similar to genral planar MOSFET, so the process was the same as the general planar MOSFET. And then to develop deep trench process which was main process of the whole process, after finishing photo mask process, we developed deep trench process. We expected that developed process was necessary to develop SJ MOSFET for automobile semiconductor.

Electrical Characteristics of Super Junction MOSFET According to Trench Etch Angle of P-pillar (P-pillar 식각 각도에 따른 Super Junction MOSFET의 전기적 특성 분석에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.497-500
    • /
    • 2014
  • In this paper, we analyze electrical characteristics of n/p-pillar layer according to trench angle which is the most important characteristics of SJ MOSFET and core process. Because research target is 600 V class SJ MOSFET, so conclusively trench angle deduced 89.5 degree to implement the breakdown voltage 750 V with 30% margin rate. we found that on resistance is $22mohm{\cdot}cm^2$ and threshold voltage is 3.5 V. Moreover, depletion layer of electric field distribution also uniformly distributes.