• Title/Summary/Keyword: Structural Conversion

Search Result 323, Processing Time 0.025 seconds

Synthesis and Characterization of Group VI Metal Carbonyl Complexes Containing closo-1,2-$(PPh_2)_2$-1,2-$C_2B_1_0H_1_0$ and Their Conversion to Metal Carbene Complexes

  • 박영일;김세진;고재정;강상욱
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.10
    • /
    • pp.1061-1066
    • /
    • 1997
  • The complexes M(CO)4-1,2-(PPh2)2-1,2-C2B10H10 (M=Cr 2a, Mo 2b, W 2c) have been prepared in good yields from readily available bis-diphenylphosphino-o-carboranyl ligand, closo-1,2-(PPh2)2-1,2-C2B10H10 (1), by direct reaction with Group Ⅵ metal carbonyls. The infrared spectra of the complexes indicate that there is an octahedral disposition of chelate bis-diphenylphosphino-o-carboranyl ligand around the metal atom. The crystal structure of 2a was determined by X-ray diffraction. Complex 2a crystallizes in the monoclinic space group P21/n with cell parameters a = 12.2360(7), b = 17.156(1), c = 16.2040(6) Å, V = 3354.1(3) Å3, and Z =4. Of the reflections measured a total of 2514 unique reflections with F2 > 3σ(F2) was used during subsequent structure refinement. Refinement converged to R1 = 0.066 and R2 = 0.071. Structural studies showed that the chromium atom had a slightly distorted pseudo-octahedral configuration about the metal center with two phosphine groups of o-carborane occupying the equatorial plane cis-orientation to each other. These metal carbonyl complexes are rapidly converted to the corresponding metal carbene complexes, [(CO)3M=C(OCH3)(CH3)]-1,2-(PPh2)2-1,2-C2B10H10 (M= Cr 3a, Mo 3b, W 3c), via alkylation with methyllithium followed by O-methylation with CF3SO3CH3.

Transmission of ultrasonic guided wave for damage detection in welded steel plate structures

  • Liu, Xinpei;Uy, Brian;Mukherjee, Abhijit
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.445-461
    • /
    • 2019
  • The ultrasonic guided wave-based technique has become one of the most promising methods in non-destructive evaluation and structural health monitoring, because of its advantages of large area inspection, evaluating inaccessible areas on the structure and high sensitivity to small damage. To further advance the development of damage detection technologies using ultrasonic guided waves for the inspection of welded components in structures, the transmission characteristics of the ultrasonic guided waves propagating through welded joints with various types of defects or damage in steel plates are studied and presented in this paper. A three-dimensional (3D) finite element (FE) model considering the different material properties of the mild steel, high strength steel and austenitic stainless steel plates and their corresponding welded joints as well as the interaction condition of the steel plate and welded joint, is developed. The FE model is validated against analytical solutions and experimental results reported in the literature and is demonstrated to be capable of providing a reliable prediction on the features of ultrasonic guided wave propagating through steel plates with welded joints and interacting with defects. Mode conversion and scattering analysis of guided waves transmitted through the different types of weld defects in steel plates are performed by using the validated FE model. Parametric studies are undertaken to elucidate the effects of several basic parameters for various types of weld defects on the transmission performance of guided waves. The findings of this research can provide a better understanding of the transmission behaviour of ultrasonic guided waves propagating through welded joints with defects. The method could be used for improving the performance of guided wave damage detection methods.

Carbon-Encapsulated Ni Catalysts for CO2 Methanation (탄소층으로 캡슐화된 Ni나노입자 촉매의 CO2 메탄화 반응)

  • Kim, Hye Jeong;Kim, Seung Bo;Kim, Dong Hyun;Youn, Jae-Rang;Kim, Min-Jae;Jeon, Sang Goo;Lee, Gyoung-Ja;Lee, Kyubock
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.525-531
    • /
    • 2021
  • Carbon-encapsulated Ni catalysts are synthesized by an electrical explosion of wires (EEW) method and applied for CO2 methanation. We find that the presence of carbon shell on Ni nanoparticles as catalyst can positively affect CO2 methanation reaction. Ni@5C that is produced under 5 % CH4 partial pressure in Ar gas has highest conversions of 68 % at 350 ℃ and 70 % at 400 ℃, which are 73 and 75 % of the thermodynamic equilibrium conversion, respectively. The catalyst of Ni@10C with thicker carbon layer shows much reduced activity. The EEW-produced Ni catalysts with low specific surface area outperform Ni catalysts with high surface area synthesized by solution-based precipitation methods. Our finding in this study shows the possibility of utilizing carbon-encapsulated metal catalysts for heterogeneous catalysis reaction including CO2 methanation. Furthermore, EEW, which is a highly promising method for massive production of metal nanoparticles, can be applied for various catalysis system, requiring scaled-up synthesis of catalysts.

A Study on Redox Properties of CaSnO3 Oxygen Carrier for Chemical Looping Combustion Process (매체순환연소공정용 CaSnO3 산소전달입자의 산화·환원 특성 연구)

  • Son, Eun Nam;Baek, Seung Hun;Lee, Roosse;Sohn, Jung Min
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.43-48
    • /
    • 2019
  • This study investigated the feasibility of $CaSnO_3$ particles as an oxygen carrier in chemical looping combustion (CLC). $CaSnO_3$ particles had a perovskite crystal structure and showed the structural stability after repeated reduction-oxidation reactions. The oxygen transfer capacity was 15.4 wt% almost the same as the calculated theoretical value from the crystal structure transformation during reduction. After $10^{th}$ cycles of reduction and oxidation, the oxygen transfer capacity and rate were still maintained constantly at an operating temperature. In conclusion, $CaSnO_3$ particles could be a good alternative material as an oxygen carrier in CLC.

Outage Rate Calculating Method of Energy Storage System for the Application on Power System Operation (전력계통 운영적용을 위한 전기저장장치 고장률 산정방안)

  • Song, Seung-Heon;Choi, Woo-Yeong;Kook, Kyung-Soo
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.188-192
    • /
    • 2019
  • As the contribution of the Energy Storage System (ESS) on the power system operations has increased, it is required to secure the reliability on the capacity of ESS and this needs to consider the outage rate in calculating the available capacity of ESS. However, the existing method of calculating the outage rate does not consider the configuration of ESS and this does not accurately calculate the available capacity of ESS. For this, this paper analyzes the structural characteristics of ESS in Korean power system and proposes a method to calculate the outage rate of ESS. Through the study cases adopting the Korea Electric Power Corporation (KEPCO) ESS for providing the frequency response service, the effectiveness of the proposed method verified.

Modern reinterpretation and succession of Balenciaga design by Demna Gvasalia (뎀나 바잘리아에 의한 발렌시아가 디자인의 현대적 계승과 재해석)

  • Kim, Jiyoung;An, Hyosun
    • The Research Journal of the Costume Culture
    • /
    • v.29 no.2
    • /
    • pp.185-203
    • /
    • 2021
  • The aim of this study was to reveal the modern succession and reinterpretation of brand identity through the case of Balenciaga design presented by Demna Gvasalia through a review of the literature, design collection, and design review analysis. The design collection analysis was conducted from 2016 F/W to 2020 F/W, when Demna Gvasalia commenced responsibility for the Balenciaga collection. A total of 12 articles from overseas fashion magazines and newspapers were analyzed. A modern reinterpretation of Demna Gvasalia's Balenciaga design is as follows. First, he introduced luxury mode to reflect a sense of the times and introduced luxury street looks based on street and sports sensibilities, showing various styles without specific concepts. Second, by sharing universal sensibilities based on pragmatism, he proposed an easy-to-wear outfit for daily life to demonstrate the everydayness of fashion. Third, as a new exploration of traditional structural beauty, the design of Cristobal Balenciaga was reinterpreted through the conversion of items, overlapping outfits, and the introduction of high-tech technologies. Fourth, by taking a conceptual approach to fashion, he has renewed the spirit of experimentation and modernity shown by Cristobal Balenciaga. Fifth, with the presentation of a new icon, new styles of sneakers such as Triple S and Speed Runner are presented as new icons. He inherited the original mindset and creative approach of the house's founder, Cristobal Balenciaga, and reinterpreted it from a contemporary street sensibility and pragmatic perspective.

Assessing the adoption potential of a smart greenhouse farming system for tomatoes and strawberries using the TOA-MD model

  • Lee, Won Seok;Kim, Hyun Seok
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.743-752
    • /
    • 2020
  • The purpose of this study was to estimate the economic evaluation of a smart farm investment for tomatoes and strawberries. In addition, the potential adoption rate of the smart farm was derived for different scenarios. This study analyzed the economic evaluation with the net present value (NPV) method and estimated the adoption potential of the smart farm with the trade-off analysis, minimum data (TOA-MD) model. The results were as follows: The analysis of the net present value shows that the smart farm investment for the two crops are economically feasible, and the minimum prices for the tomatoes and strawberries should be 1,179 and 3,797 won/kg to secure a sufficient economic feasibility for the smart farm investment. Next, the analysis of the potential adoption rates for smart farms through the TOA-MD model showed that when the support ratio for the adoption of a smart farm system was 50% and the price increase rates were, respectively, - 5, 2.5, 0, 2.5, and 5%, the conversion rates for tomato farms to switch to smart farms were 0.97, 1.78, 3.05, 4.91, and 7.47%, while the ratios of the strawberry farms to switch to smart farms were 0.12, 0.29, 0.65, 1.33, and 2.53%, respectively. This study has some known limitations, but it provides useful information on decision making about smart farm adoption and can contribute to government policies on smart farms.

Assessment of Historical Earthquake Magnitudes and Epicenters Using Ground Motion Simulations (지진동 모사를 통한 역사지진 규모와 진앙 평가)

  • Kim, Seongryong;Lee, Sang-Jun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.59-69
    • /
    • 2021
  • Historical records of earthquakes are generally used as a basis to extrapolate the instrumental earthquake catalog in time and space during the probabilistic seismic hazard analysis (PSHA). However, the historical catalogs' input parameters determined through historical descriptions rather than any quantitative measurements are accompanied by considerable uncertainty in PSHA. Therefore, quantitative assessment to verify the historical earthquake parameters is essential for refining the reliability of PSHA. This study presents an approach and its application to constrain reliable ranges of the magnitude and corresponding epicenter of historical earthquakes. First, ranges rather than specific values of ground motion intensities are estimated at multiple locations with distances between each other for selected historical earthquakes by reviewing observed co-seismic natural phenomena, structural damage levels, or felt areas described in their historical records. Based on specific objective criteria, this study selects only one earthquake (July 24, 1643), which is potentially one of the largest historical earthquakes. Then, ground motion simulations are performed for sufficiently broadly distributed epicenters, with a regular grid to prevent one from relying on strong assumptions. Calculated peak ground accelerations and velocities in areas with the historical descriptions on corresponding earthquakes are converted to intensities with an empirical ground motion-intensity conversion equation to compare them with historical descriptions. For the ground motion simulation, ground motion prediction equations and a frequency-wavenumber method are used to consider the effects of possible source mechanisms and stress drop. From these quantitative calculations, reliable ranges of epicenters and magnitudes and the trade-off between them are inferred for the earthquake that can conservatively match the upper and lower boundaries of intensity values from historical descriptions.

Fabrication of Ni-Cr-Al Metal Foam-Supported Catalysts for the Steam Methane Reforming (SMR), and its Mechanical Stability and Hydrogen Yield Efficiency (수증기 메탄 개질 반응을 이용한 수소 생산용 Ni-Cr-Al 다공체 지지 촉매의 제조, 기계적 안정성 및 수소 환원 효율)

  • Kim, Kyu-Sik;Kang, Tae-Hoon;Kong, Man Sik;Park, Man-Ho;Yun, Jung-Yeul;Ahn, Ji Hye;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.201-207
    • /
    • 2021
  • Ni-Cr-Al metal-foam-supported catalysts for steam methane reforming (SMR) are manufactured by applying a catalytic Ni/Al2O3 sol-gel coating to powder alloyed metallic foam. The structure, microstructure, mechanical stability, and hydrogen yield efficiency of the obtained catalysts are evaluated. The structural and microstructural characteristics show that the catalyst is well coated on the open-pore Ni-Cr-Al foam without cracks or spallation. The measured compressive yield strengths are 2-3 MPa at room temperature and 1.5-2.2 MPa at 750℃ regardless of sample size. The specimens exhibit a weight loss of up to 9-10% at elevated temperature owing to the spallation of the Ni/Al2O3 catalyst. However, the metal-foam-supported catalyst appears to have higher mechanical stability than ceramic pellet catalysts. In SMR simulations tests, a methane conversion ratio of up to 96% is obtained with a high hydrogen yield efficiency of 82%.

Problems of Decentralization in Korea and Its Development Direction (한국 지방분권의 문제점과 발전방향)

  • Park, Jong Gwan
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.126-135
    • /
    • 2022
  • Decentralization is a structural characteristic surrounding the allocation of power within an organization and is discussed at the organizational, national and local levels. This study examined the evaluation and decentralization direction of decentralization of public officials to derive problems and development directions of decentralization in Korea. We also derive our decentralization task. The decentralization task is, first, the expansion of autonomy in organization composition. The organization of local governments shall be determined according to the details and amount of local affairs. Second, it is to secure autonomy in personnel management. It is desirable for local governments to handle local gardens and manpower management autonomously rather than central uniform control. However, it is necessary to leave the checks and supervision to the local council, civic groups, and local residents. Third, the expansion of fiscal decentralization. First of all, the tax rate should be determined by ordinance within the scope prescribed by law to expand the autonomous financial authority. Next, it is necessary to expand local finances through the conversion of national taxes to local taxes. Next, it is necessary to expand local income taxes and local consumption taxes. Decentralization requires cooperation between the central and local governments and participation of local residents and stakeholders, breaking away from central unilateral and short-term thinking.