Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.9.525

Carbon-Encapsulated Ni Catalysts for CO2 Methanation  

Kim, Hye Jeong (Graduate School of Energy Science and Technology, Chungnam National University)
Kim, Seung Bo (Graduate School of Energy Science and Technology, Chungnam National University)
Kim, Dong Hyun (Graduate School of Energy Science and Technology, Chungnam National University)
Youn, Jae-Rang (Graduate School of Energy Science and Technology, Chungnam National University)
Kim, Min-Jae (Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research)
Jeon, Sang Goo (Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research)
Lee, Gyoung-Ja (Smart Structural Safety and Prognosis Research Division, Korea Atomic Energy Research Institute)
Lee, Kyubock (Graduate School of Energy Science and Technology, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.31, no.9, 2021 , pp. 525-531 More about this Journal
Abstract
Carbon-encapsulated Ni catalysts are synthesized by an electrical explosion of wires (EEW) method and applied for CO2 methanation. We find that the presence of carbon shell on Ni nanoparticles as catalyst can positively affect CO2 methanation reaction. Ni@5C that is produced under 5 % CH4 partial pressure in Ar gas has highest conversions of 68 % at 350 ℃ and 70 % at 400 ℃, which are 73 and 75 % of the thermodynamic equilibrium conversion, respectively. The catalyst of Ni@10C with thicker carbon layer shows much reduced activity. The EEW-produced Ni catalysts with low specific surface area outperform Ni catalysts with high surface area synthesized by solution-based precipitation methods. Our finding in this study shows the possibility of utilizing carbon-encapsulated metal catalysts for heterogeneous catalysis reaction including CO2 methanation. Furthermore, EEW, which is a highly promising method for massive production of metal nanoparticles, can be applied for various catalysis system, requiring scaled-up synthesis of catalysts.
Keywords
electrical explosion of wires; $CO_2$ methanation; core-shell; catalyst; metal nanoparticle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. R. Uhm, J. H. Park, W. W. Kim, C. H. Cho and C. K. Rhee, Mater. Sci. Eng., B, 106, 224 (2004).   DOI
2 C. K. Kim, G.-J. Lee, M. K. Lee and C. K. Rhee, Powder Technol., 263, 1 (2014).   DOI
3 I. V. Beketov, A. P. Safronov, A. I. Medvedev, A. M. Murzakaev, O. R. Timoshenkova and T. M. Demina, Nanosystems: Phys. Chem. Mathematics, 9, 513 (2018).
4 N. Wang, K. Shen, L. Huang, X. Yu, W. Qian and W. Chu, ACS Catal., 3, 1638 (2013).   DOI
5 J.-C. Seo, H. Kim, Y.-L. Lee, S. Nam, H.-S. Roh, K. Lee and S. B. Park, ACS Sustainable Chem. Eng., 9, 894 (2021).   DOI
6 D. J. Goodman, M. S. Thesis, p.21-26, UCLA, Los Angeles (2013).
7 X.-H. Li and M. Antonietti, Chem. Soc. Rev., 42, 6593 (2013).   DOI
8 P. Frontera, A. Macario, M. Ferraro and P. Antonucci, Catalysts, 7, 59 (2017).   DOI
9 M. Gotz, J. Lefebvre, F. Mors, A. McDaniel Koch, F. Graf, S. Bajohr, R. Reimert and T. Kolb, Renew. Energ., 85, 1371 (2016).   DOI
10 N.-B. Park, J. Energy & Climate Change, 16, 51 (2021).
11 X. Jia, X. Zhang, N. Rui, X. Hu and C.-J. Liu, Appl. Catal., B, 244, 159 (2019).   DOI
12 M. A. A. Aziz, A. A. Jalil, S. Triwahyono and A. Ahmad, Green Chem., 17, 2647 (2015).   DOI
13 G. Yeom, M. Seo and Y. Baek, Trans. Korean Hydrogen New Energy Soc., 30, 14 (2019).   DOI
14 J. Lin, C. Ma, Q. Wang, Y. Xu, G. Ma, J. Wang, H. Wang, C. Dong, C. Zhang and M. Ding, Appl. Catal., B, 243, 262 (2019).   DOI
15 J. Ren, X. Qin, J.-Z. Yang, Z.-F. Qin, H.-L. Guo, J.-Y. Lin and Z. Li, Fuel Process. Technol., 137, 204 (2015).   DOI
16 D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun and X. Bao, Angew. Chem. Int. Ed., 52, 371 (2013).   DOI
17 M. Romero-Saez, A. B. Dongil, N. Benito, R. EspinozaGonzalez, N. Escalona and F. Gracia, Appl. Catal., B, 237, 817 (2018).   DOI
18 C. Mebrahtu, S. Abate, S. Perathoner, S. Chen and G. Centi, Catal. Today, 304, 181 (2018).   DOI
19 H. Takano, H. Shinomiya, K. Izumiya, N. Kumagai, H. Habazaki and K. Hashimoto, Int. J. Hydrogen Energy, 40, 8347 (2015).   DOI
20 J. Deng, P. Ren, D. Deng, L. Yu, F. Yang and X. Bao, Energ. Environ. Sci., 7, 1919 (2014).   DOI
21 C. Wang, P. Zhai, Z. Zhang, Y. Zhou, J. Zhang, H. Zhang, Z. Shi, R. P. S. Han, F. Huang and D. Ma, J. Catal., 334, 42 (2016).   DOI
22 Y. Feng, W. Yang, S. Chen and W. Chu, Integrated Ferroelectrics, 151, 116 (2014).   DOI
23 W. Wang, C. Duong-Viet, H. Ba, W. Baaziz, G. Tuci, S. Caporali, L. Nguyen-Dinh, O. Ersen, G. Giambastiani and C. Pham-Huu, ACS Appl. Energy Mater., 2, 1111 (2019).   DOI
24 Y. Feng, W. Yang and W. Chu, Int. J. Chem. Eng., 2015, 795386 (2015).
25 G. H. Lee, J. H. Park, C. K. Rhee and W. W. Kim, J. Ind. Eng. Chem., 9, 71 (2003).