DOI QR코드

DOI QR Code

Carbon-Encapsulated Ni Catalysts for CO2 Methanation

탄소층으로 캡슐화된 Ni나노입자 촉매의 CO2 메탄화 반응

  • Kim, Hye Jeong (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Kim, Seung Bo (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Kim, Dong Hyun (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Youn, Jae-Rang (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Kim, Min-Jae (Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research) ;
  • Jeon, Sang Goo (Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research) ;
  • Lee, Gyoung-Ja (Smart Structural Safety and Prognosis Research Division, Korea Atomic Energy Research Institute) ;
  • Lee, Kyubock (Graduate School of Energy Science and Technology, Chungnam National University)
  • 김혜정 (충남대학교 에너지과학기술대학원) ;
  • 김승보 (충남대학교 에너지과학기술대학원) ;
  • 김동현 (충남대학교 에너지과학기술대학원) ;
  • 윤재랑 (충남대학교 에너지과학기술대학원) ;
  • 김민재 (한국에너지기술연구원 에너지자원순환연구실) ;
  • 전상구 (한국에너지기술연구원 에너지자원순환연구실) ;
  • 이경자 (한국원자력연구원 스마트안전진단연구부) ;
  • 이규복 (충남대학교 에너지과학기술대학원)
  • Received : 2021.08.13
  • Accepted : 2021.09.07
  • Published : 2021.09.27

Abstract

Carbon-encapsulated Ni catalysts are synthesized by an electrical explosion of wires (EEW) method and applied for CO2 methanation. We find that the presence of carbon shell on Ni nanoparticles as catalyst can positively affect CO2 methanation reaction. Ni@5C that is produced under 5 % CH4 partial pressure in Ar gas has highest conversions of 68 % at 350 ℃ and 70 % at 400 ℃, which are 73 and 75 % of the thermodynamic equilibrium conversion, respectively. The catalyst of Ni@10C with thicker carbon layer shows much reduced activity. The EEW-produced Ni catalysts with low specific surface area outperform Ni catalysts with high surface area synthesized by solution-based precipitation methods. Our finding in this study shows the possibility of utilizing carbon-encapsulated metal catalysts for heterogeneous catalysis reaction including CO2 methanation. Furthermore, EEW, which is a highly promising method for massive production of metal nanoparticles, can be applied for various catalysis system, requiring scaled-up synthesis of catalysts.

Keywords

Acknowledgement

This work was supported by research fund of Chungnam National University.

References

  1. N.-B. Park, J. Energy & Climate Change, 16, 51 (2021).
  2. M. Gotz, J. Lefebvre, F. Mors, A. McDaniel Koch, F. Graf, S. Bajohr, R. Reimert and T. Kolb, Renew. Energ., 85, 1371 (2016). https://doi.org/10.1016/j.renene.2015.07.066
  3. M. A. A. Aziz, A. A. Jalil, S. Triwahyono and A. Ahmad, Green Chem., 17, 2647 (2015). https://doi.org/10.1039/C5GC00119F
  4. G. Yeom, M. Seo and Y. Baek, Trans. Korean Hydrogen New Energy Soc., 30, 14 (2019). https://doi.org/10.7316/KHNES.2019.30.1.14
  5. J. Lin, C. Ma, Q. Wang, Y. Xu, G. Ma, J. Wang, H. Wang, C. Dong, C. Zhang and M. Ding, Appl. Catal., B, 243, 262 (2019). https://doi.org/10.1016/j.apcatb.2018.10.059
  6. X. Jia, X. Zhang, N. Rui, X. Hu and C.-J. Liu, Appl. Catal., B, 244, 159 (2019). https://doi.org/10.1016/j.apcatb.2018.11.024
  7. J. Ren, X. Qin, J.-Z. Yang, Z.-F. Qin, H.-L. Guo, J.-Y. Lin and Z. Li, Fuel Process. Technol., 137, 204 (2015). https://doi.org/10.1016/j.fuproc.2015.04.022
  8. C. Mebrahtu, S. Abate, S. Perathoner, S. Chen and G. Centi, Catal. Today, 304, 181 (2018). https://doi.org/10.1016/j.cattod.2017.08.060
  9. H. Takano, H. Shinomiya, K. Izumiya, N. Kumagai, H. Habazaki and K. Hashimoto, Int. J. Hydrogen Energy, 40, 8347 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.128
  10. C. Wang, P. Zhai, Z. Zhang, Y. Zhou, J. Zhang, H. Zhang, Z. Shi, R. P. S. Han, F. Huang and D. Ma, J. Catal., 334, 42 (2016). https://doi.org/10.1016/j.jcat.2015.10.004
  11. D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun and X. Bao, Angew. Chem. Int. Ed., 52, 371 (2013). https://doi.org/10.1002/anie.201204958
  12. J. Deng, P. Ren, D. Deng, L. Yu, F. Yang and X. Bao, Energ. Environ. Sci., 7, 1919 (2014). https://doi.org/10.1039/C4EE00370E
  13. M. Romero-Saez, A. B. Dongil, N. Benito, R. EspinozaGonzalez, N. Escalona and F. Gracia, Appl. Catal., B, 237, 817 (2018). https://doi.org/10.1016/j.apcatb.2018.06.045
  14. Y. Feng, W. Yang, S. Chen and W. Chu, Integrated Ferroelectrics, 151, 116 (2014). https://doi.org/10.1080/10584587.2014.901141
  15. W. Wang, C. Duong-Viet, H. Ba, W. Baaziz, G. Tuci, S. Caporali, L. Nguyen-Dinh, O. Ersen, G. Giambastiani and C. Pham-Huu, ACS Appl. Energy Mater., 2, 1111 (2019). https://doi.org/10.1021/acsaem.8b01681
  16. Y. Feng, W. Yang and W. Chu, Int. J. Chem. Eng., 2015, 795386 (2015).
  17. G. H. Lee, J. H. Park, C. K. Rhee and W. W. Kim, J. Ind. Eng. Chem., 9, 71 (2003).
  18. Y. R. Uhm, J. H. Park, W. W. Kim, C. H. Cho and C. K. Rhee, Mater. Sci. Eng., B, 106, 224 (2004). https://doi.org/10.1016/j.mseb.2003.08.057
  19. C. K. Kim, G.-J. Lee, M. K. Lee and C. K. Rhee, Powder Technol., 263, 1 (2014). https://doi.org/10.1016/j.powtec.2014.04.064
  20. I. V. Beketov, A. P. Safronov, A. I. Medvedev, A. M. Murzakaev, O. R. Timoshenkova and T. M. Demina, Nanosystems: Phys. Chem. Mathematics, 9, 513 (2018).
  21. N. Wang, K. Shen, L. Huang, X. Yu, W. Qian and W. Chu, ACS Catal., 3, 1638 (2013). https://doi.org/10.1021/cs4003113
  22. J.-C. Seo, H. Kim, Y.-L. Lee, S. Nam, H.-S. Roh, K. Lee and S. B. Park, ACS Sustainable Chem. Eng., 9, 894 (2021). https://doi.org/10.1021/acssuschemeng.0c07927
  23. D. J. Goodman, M. S. Thesis, p.21-26, UCLA, Los Angeles (2013).
  24. X.-H. Li and M. Antonietti, Chem. Soc. Rev., 42, 6593 (2013). https://doi.org/10.1039/c3cs60067j
  25. P. Frontera, A. Macario, M. Ferraro and P. Antonucci, Catalysts, 7, 59 (2017). https://doi.org/10.3390/catal7020059