DOI QR코드

DOI QR Code

Fabrication of Ni-Cr-Al Metal Foam-Supported Catalysts for the Steam Methane Reforming (SMR), and its Mechanical Stability and Hydrogen Yield Efficiency

수증기 메탄 개질 반응을 이용한 수소 생산용 Ni-Cr-Al 다공체 지지 촉매의 제조, 기계적 안정성 및 수소 환원 효율

  • Received : 2021.06.18
  • Accepted : 2021.06.19
  • Published : 2021.06.28

Abstract

Ni-Cr-Al metal-foam-supported catalysts for steam methane reforming (SMR) are manufactured by applying a catalytic Ni/Al2O3 sol-gel coating to powder alloyed metallic foam. The structure, microstructure, mechanical stability, and hydrogen yield efficiency of the obtained catalysts are evaluated. The structural and microstructural characteristics show that the catalyst is well coated on the open-pore Ni-Cr-Al foam without cracks or spallation. The measured compressive yield strengths are 2-3 MPa at room temperature and 1.5-2.2 MPa at 750℃ regardless of sample size. The specimens exhibit a weight loss of up to 9-10% at elevated temperature owing to the spallation of the Ni/Al2O3 catalyst. However, the metal-foam-supported catalyst appears to have higher mechanical stability than ceramic pellet catalysts. In SMR simulations tests, a methane conversion ratio of up to 96% is obtained with a high hydrogen yield efficiency of 82%.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 혁신성장 선도 고급연구인재 육성(KIURI) 사업의 지원으로 수행되었으며 이에 감사드립니다.

References

  1. B. Gaudernack: Hydrogen production from fossil fuels, Kluwer Academic Publishers, Netherlands (1998).
  2. M. Kramer, M. McKelvie and M. Watson: J. Mater. Eng. Perform., 27 (2018) 21. https://doi.org/10.1007/s11665-017-2859-4
  3. S. A. Bhat and J. Sadhikhan: Am. Inst. Chem. Eng., 55 (2009) 408. https://doi.org/10.1002/aic.11687
  4. L. J. Gibson and M. F. Ashby: Cellular solids: Structure and Properties, 2nd Ed., Cambridge University Press, (1997).
  5. M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson and H. N. G. Wadley: Metal Foams: A design Guide, Oxford, (2000).
  6. H. N. G. Wadley: Cellular metals and metal foaming technology, Verlag MIT, (2001).
  7. B.-Y. Hur, B.-K. Kim, S.-E. Kim and S.-K. Hyun: Porous Metals and Metallic Foams, Metfoam 2011 Proceedings, (2011).
  8. T. J. Lu, H. A. Stone and M. F. Ashby: Acta Mater., 46 (1998) 3619. https://doi.org/10.1016/S1359-6454(98)00031-7
  9. T. J. Lu: Int. J. Heat Mass Transfer., 42 (1999) 2031. https://doi.org/10.1016/S0017-9310(98)00306-8
  10. J. Banhart: Pro. Mater. Sci., 46 (2001) 559. https://doi.org/10.1016/S0079-6425(00)00002-5
  11. G. J. Davies and S. Zhen: J. Mater. Sci., 18 (1983) 1899. https://doi.org/10.1007/BF00554981
  12. G. Walther, B. Kloden, T. Buttner, T. Weissgarber, B. Kieback, A. Bohm, D. Naumann, S. Saberi and L. Timberg: Adv. Eng. Mater. 10 (2008) 803. https://doi.org/10.1002/adem.200800088
  13. K.-S. Kim, T.-H. Kang, M.-H. Park and K.-A. Lee: Metal. Mater. Int., 27 (2020) 1138.
  14. Q. Pang, G. H. Wu, Z. Y. Xiu, G. Q. Chen and D. L. Sun: Mater. Sci. Eng. A, 534 (2012) 699. https://doi.org/10.1016/j.msea.2011.12.034
  15. S. A. Mcdonald, P. M. Mummery, G. Johnson and P. J. Withers: J. Microsc., 233 (2006) 150.