• Title/Summary/Keyword: Statistical Control Chart

Search Result 220, Processing Time 0.027 seconds

Evaluation of Demerit-CUSUM Control Chart Performance Using Fast Initial Response (FIR을 이용한 Demerit-CUSUM 관리도의 수행도 평가)

  • Kang, Hae-Woon;Kang, Chang-Wook;Baik, Jae-Won;Nam, Sung-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.1
    • /
    • pp.94-101
    • /
    • 2009
  • Complex Products may present more than one type of defects and these defects are not always of equal severity. These defects are classified according to their seriousness and effect on product quality and performance. Demerit systems are very effective systems to monitoring the different types of defects. So, classical demerit control chart used to monitor counts of several different types of defects simultaneously in complex products. S.M. Na et al.(2003) proposed the Demerit-CUSUM for the improvement of the demerit control chart performance and Nembhard, D. A. et al.(2001) and G.Y Cho et al.(2004) developed a Demerit control chart using the EWMA technique and evaluated the performance of the control chart. In this paper, we present an effective method for process control using the Demerit-CUSUM with fast initial response. Moreover, we evaluate exact performance of the Demerit-CUSUM control chart with fast initial response, Demerit-CUSUM and Demerit-EWMA according to changing sample size or parameters.

A Study of Demerit-DEWMA Control Chart (Demerit-DEWMA 관리도)

  • Kang, Hae-Woon;Baik, Jae-Won;Kang, Chang-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.2
    • /
    • pp.9-17
    • /
    • 2010
  • Complex products may present more than one type of defects and these defects are not always of equal severity. These defects are classified according to their seriousness and effect on product quality and performance. So, demerit systems are very effective systems to monitor the different types of defects. Recently, Kang et al.(2009) proposed the revised Demerit-CUSUM for the evaluation of the Demerit-CUSUM control chart performance exactly. In this paper, we present an advanced Demerit control chart using the double EWMA technique. The double EWMA technique is very efficient and strong method for process control where defects and nonconformities occur with various defect types. Moreover, we compare exact performance of Demerit-CUSUM, Demerit-EWMA and Demerit-DEWMA control chart according to changing sample size or mean shifts magnitude. By the result, we confirm that the performance of Demerit-DEWMA control chart is more than the performance of the Demerit-CUSUM and Demerit-EWMA control chart.

An Adaptive Moving Average (A-MA) Control Chart with Variable Sampling Intervals (VSI) (가변 샘플링 간격(VSI)을 갖는 적응형 이동평균 (A-MA) 관리도)

  • Lim, Tae-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.4
    • /
    • pp.457-468
    • /
    • 2007
  • This paper proposes an adaptive moving average (A-MA) control chart with variable sampling intervals (VSI) for detecting shifts in the process mean. The basic idea of the VSI A-MA chart is to adjust sampling intervals as well as to accumulate previous samples selectively in order to increase the sensitivity. The VSI A-MA chart employs a threshold limit to determine whether or not to increase sampling rate as well as to accumulate previous samples. If a standardized control statistic falls outside the threshold limit, the next sample is taken with higher sampling rate and is accumulated to calculate the next control statistic. If the control statistic falls within the threshold limit, the next sample is taken with lower sampling rate and only the sample is used to get the control statistic. The VSI A-MA chart produces an 'out-of-control' signal either when any control statistic falls outside the control limit or when L-consecutive control statistics fall outside the threshold limit. The control length L is introduced to prevent small mean shifts from being undetected for a long period. A Markov chain model is employed to investigate the VSI A-MA sampling process. Formulae related to the steady state average time-to signal (ATS) for an in-control state and out-of-control state are derived in closed forms. A statistical design procedure for the VSI A-MA chart is proposed. Comparative studies show that the proposed VSI A-MA chart is uniformly superior to the adaptive Cumulative sum (CUSUM) chart and to the Exponentially Weighted Moving Average (EWMA) chart, and is comparable to the variable sampling size (VSS) VSI EWMA chart with respect to the ATS performance.

Design of the GLR Chart in Integrated Process Control (통합공정관리에서 일반화가능도비 관리도의 설계)

  • Chun, Ga-Young;Lee, Jae-Heon
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.3
    • /
    • pp.357-365
    • /
    • 2010
  • This paper considers the integrated process control procedure for detecting special causes in an IMA(1,1) noise process that is being adjusted using a minimum mean squared error adjustment. As a SPC procedure, we use a GLR chart for detecting special causes whose effects are the sustained shift or the sustained drift in the process mean, and the sustained shift in the process variance. For the design of the GLR chart, we derive expressions for the control limit which accurately satisfies the given in-control ARL.

Recognition of Control Chart Pattern using Bi-Directional Kohonen Network and Artificial Neural Network (Bi-Directional Kohonen Network와 인공신경망을 사용한 관리도 패턴 인식)

  • Yun, Jae-Jun;Park, Cheong-Sool;Kim, Jun-Seok;Baek, Jun-Geol
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.115-125
    • /
    • 2011
  • Manufacturing companies usually manage the process to achieve high quality using various types of control chart in statistical process control. When an assignable cause occurs in a process, the data in the control chart changes with different patterns by the specific causes. It is important in process control to classify the CCP (Control Chart Pattern) recognition for fast decision making. In former research, gathered data from process used to apply as raw data, leads to degrade the performance of recognizer and to decrease the learning speed. Therefore, feature based recognizer, employing feature extraction method, has been studied to enhance the classification accuracy and to reduce the dimension of data. We propose the method to extract features that take the distances between CCP data and reference vector generated from BDK (Bi-Directional Kohonen Network). We utilize those features as the input vectors in ANN (Artificial Neural Network) and compare with raw data applied ANN to evaluate the performance.

Statistical Design of CV-CUSUM Control Chart Using Fast Initial Response (FIR을 이용한 CV-CUSUM 관리도의 통계적 설계)

  • Lee, Jung-Hoon;Kang, Hae-Woon;Hong, Eui-Pyo;Kang, Chang-Wook
    • Journal of Korean Society for Quality Management
    • /
    • v.38 no.3
    • /
    • pp.313-321
    • /
    • 2010
  • The coefficient of variation represents the ratio of the standard deviation to the mean, and it is a useful statistic for comparing the degree of variation from one data series to another, even if the means are drastically different from each other. Recently, the CV control chart is developed for monitoring processes in such situations. However, the CV control chart has low performance in detecting small shift. Due to the development of equipment and technique, currently, small shift of process occurs more frequently than large shift. In this paper, we proposes the CV-CUSUM control chart using CUSUM scheme which is cumulative sum of the deviations between each data point and a target value to detect a small shift in the process. We also found that the FIR(fast initial response) CUSUM control chart is especially valuable at start-up or after a CV-CUSUM control chart has signaled out-of-control.

The Design of Median and Range Control Charts for Skewed Distribution Processes (비대칭분석 공정을 위한 중앙치와 범위 관리단의 설계)

  • 김우열;김동묵;정화식;최진섭
    • Journal of the military operations research society of Korea
    • /
    • v.22 no.2
    • /
    • pp.126-138
    • /
    • 1996
  • The statistical control chart has been proven to be the effective tool most widely used in the manufacturing industry for monitoring and controlling the manufacturing processes. However, the Shewhart chart sometimes gives us false information when the distribution of quality characteristics is skewed. Therefore, it cannot serve as the universal quality control chart if there exist odd events in the manufacturing process. The objective of this study is thus to develop the new technique for constructing the limits of quality control chart based on a sample median and range when the distribution of the underlying population is skewed. This new control chart can effectively solve and manage the processes which have the non-normally distributed quality characteristics frequently occurring in the practical situation.

  • PDF

Procedures for Monitoring the Process Mean and Variance with One Control Chart (하나의 관리도로 공정 평균과 분산의 변화를 탐지하는 절차)

  • Jung, Sang-Hyun;Lee, Jae-Heon
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.3
    • /
    • pp.509-521
    • /
    • 2008
  • Two control charts are usually required to monitor both the process mean and variance. In this paper, we introduce control procedures for jointly monitoring the process mean and variance with one control chart, and investigate efficiency of the introduced charts by comparing with the combined two EWMA charts. Our numerical results show that the GLR chart, the Omnibus EWMA chart, and the Interval chart have good ARL properties for simultaneous changes in the process mean and variance.

A Selectively Cumulative Sum (S-CUSUM) Control Chart with Variable Sampling Intervals (VSI) (가변 샘플링 간격(VSI)을 갖는 선택적 누적합 (S-CUSUM) 관리도)

  • Im, Tae-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.560-570
    • /
    • 2006
  • This paper proposes a selectively cumulative sum (S-CUSUM) control chart with variable sampling intervals (VSI) for detecting shifts in the process mean. The basic idea of the VSI S-CUSUM chart is to adjust sampling intervals and to accumulate previous samples selectively in order to increase the sensitivity. The VSI S-CUSUM chart employs a threshold limit to determine whether to increase sampling rate as well as to accumulate previous samples or not. If a standardized control statistic falls outside the threshold limit, the next sample is taken with higher sampling rate and is accumulated to calculate the next control statistic. If the control statistic falls within the threshold limit, the next sample is taken with lower sampling rate and only the sample is used to get the control statistic. The VSI S-CUSUM chart produces an 'out-of-control' signal either when any control statistic falls outside the control limit or when L-consecutive control statistics fall outside the threshold limit. The number L is a decision variable and is called a 'control length'. A Markov chain model is employed to describe the VSI S-CUSUM sampling process. Some useful formulae related to the steady state average time-to signal (ATS) for an in-control state and out-of-control state are derived in closed forms. A statistical design procedure for the VSI S-CUSUM chart is proposed. Comparative studies show that the proposed VSI S-CUSUM chart is uniformly superior to the VSI CUSUM chart or to the Exponentially Weighted Moving Average (EWMA) chart with respect to the ATS performance.

  • PDF

Economic-Statistical Design of VSSI Cause-Selecting Charts Considering Two Assignable Causes (두 개의 이상원인을 고려한 VSSI 원인선별 관리도의 경제적-통계적 설계)

  • Jung, Min-Su;Lim, Tae-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.37 no.1
    • /
    • pp.29-39
    • /
    • 2009
  • This article investigates economic-statistical design of VSSI(variable sampling size and interval) cause-selecting charts considering two assignable causes. We consider a process which is composed of two dependent sub-processes. In each sub-process, two kinds of assignable cause may exist. We propose a procedure for designing VSSI cause-selecting charts, based on Lorenzen and Vance model. Computational experiments show that the VSSI cause-selecting chart is superior to the FSSI cause-selecting chart in the economic-statistical characteristics, even under two assignable causes.