• Title/Summary/Keyword: Silicon controlled rectifier(SCR)

Search Result 41, Processing Time 0.024 seconds

Characteristics of N-Type Extended Drain Silicon Controlled Rectifier ESD Protection Device (NED-SCR 정전기보호소자의 특성)

  • Seo, Y.J.;Kim, K.H.;Lee, W.S.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1370-1371
    • /
    • 2006
  • An electrostatic discharge (ESD) protection device, so called, N-type extended drain silicon controlled rectifier (NEDSCR) device, was analyzed for high voltage I/O applications. A conventional NEDSCR device shows typical SCR-like characteristics with extremely low snapback holding voltage. This may cause latchup problem during normal operation. However, a modified NEDSCR device with proper junction / channel engineering demonstrates itself with both the excellent ESD protection performance and the high latchup immunity.

  • PDF

The Development of Surge Protection Circuit Applying SCR for Improving Reliability (신뢰도 향상을 위해 SCR을 응용한 서지 보호회로 개발)

  • NamKoong, Up;Chu, Kwang-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.96-101
    • /
    • 2012
  • A surge protection device of the metal oxide varistor(MOV) has been commonly used for preventing electrical damage in many electronic equipments. The MOV has a property that leakage current is increased and might be permanently damaged when it is exposed continuously to the electrical stresses such as lightening surges. In this paper, we propose a novel surge protection circuit adopting a silicon controlled rectifier(SCR) in the traditional protection circuits using the MOV device simultaneously. When lightning surges are injected to the proposed circuit, the MOV lets the surge pulses bypassing through the ground at first up to the level that SCR begins to operate. Above the threshold level of turning on the SCR, the SCR operates bypasses large surge currents to the ground. Proposed circuit was verified with a leakage current experiment and PSpice circuit simulations under the repeated surge injection environment.

A Study on SCR-Based ESD Protection Circuit with PMOS (PMOS가 삽입된 SCR 기반의 ESD 보호 회로에 관한 연구)

  • Kwak, Jae-Chang
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1309-1313
    • /
    • 2019
  • In this paper, the electrical characteristics of Gate grounded NMOS(GGNMOS), Lateral insulated gate bipolar transistor(LIGBT), Silicon Controlled Rectifier(SCR), and Proposed ESD protection device were compared and analyzed. First, the trigger voltage and holding voltage were verified by simulating the I-V characteristic curve for each device. After that, the robustness was confirmed by HBM 4k simulation for each device. As a result of HBM 4k simulation, the maximum temperature of the proposed ESD protection device is lower than that of GGNMOS and GGLIGBT and SCR, which means that the robustness is improved, which means that the ESD protection device is excellent in terms of reliability.

Effects on the ESD Protection Performance of PPS(PMOS Pass Structure) Embedded N-type Silicon Controlled Rectifier Device with different Partial P-Well Structure (PPS 소자가 삽입된 N형 SCR 소자에서 부분웰 구조가 정전기 보호 성능에 미치는 영향)

  • Yang, Jun-Won;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.63-68
    • /
    • 2014
  • Electrostatic Discharge(ESD) protection performance of PPS(PMOS pass structure) embedded N-type silicon controlled rectifier(NSCR_PPS) device with different partial p-well(PPW) structure was discussed for high voltage I/O applications. A conventional NSCR_PPS standard device shows typical SCR-like characteristics with low on-resistance, low snapback holding voltage and low thermal breakdown voltage, which may cause latch-up problem during normal operation. However, our proposed NSCR_PPS devices with modified PPW demonstrate the stable ESD protection performance with high latch-up immunity.

Optimal P-Well Design for ESD Protection Performance Improvement of NESCR (N-type Embedded SCR) device (NESCR 소자에서 정전기 보호 성능 향상을 위한 최적의 P-Well 구조 설계)

  • Yang, Jun-Won;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.15-21
    • /
    • 2014
  • An electrostatic discharge (ESD) protection device, so called, N-type embedded silicon controlled rectifier (NESCR), was analyzed for high voltage operating I/O applications. A conventional NESCR standard device shows typical SCR-like characteristics with extremely low snapback holding voltage, which may cause latch-up problem during normal operation. However, our modified NESCR_CPS_PPW device with proper junction/channel engineering such as counter pocket source (CPS) and partial P-well structure demonstrates highly latch-up immune current-voltage characteristics with high snapback holding voltage and on-resistance.

Design and Analysis of SCR on the SOI structure for ESD Protection (ESD 보호를 위한 SOI 구조에서의 SCR의 제작 및 그 전기적 특성 분석)

  • Bae, Young-Seok;Chun, Dae-Hwan;Kwon, Oh-Sung;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.10-10
    • /
    • 2010
  • ESD (Electrostatic Discharge) phenomenon occurs in everywhere and especially it damages to semiconductor devices. For ESD protection, there are some devices such as diode, GGNMOS (Gate-Grounded NMOS), SCR (Silicon-Controlled Rectifier), etc. Among them, diode and GGNMOS are usually chosen because of their small size, even though SCR has greater current capability than GGNMOS. In this paper, a novel SCR is proposed on the SOI (Silicon-On-Insulator) structure which has $1{\mu}m$ film thickness. In order to design and confirm the proposed SCR, TSUPREM4 and MEDICI simulators are used, respectively. According to the simulation result, although the proposed SCR has more compact size, it's electrical performance is better than electrical characteristics of conventional GGNMOS.

  • PDF

Simulation-based P-well design for improvement of ESD protection performance of P-type embedded SCR device

  • Seo, Yong-Jin
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.196-204
    • /
    • 2022
  • Electrostatic discharge (ESD) protection devices of P-type embedded silicon-controlled rectifier (PESCR) structure were analyzed for high-voltage operating input/output (I/O) applications. Conventional PESCR standard device exhibits typical SCR characteristics with very low-snapback holding voltages, resulting in latch-up problems during normal operation. However, the modified device with the counter pocket source (CPS) surrounding N+ source region and partially formed P-well (PPW) structures proposed in this study could improve latch-up immunity by indicating high on-resistance and snapback holding voltage.

Improvement of Electrostatic Discharge (ESD) Protection Performance through Structure Modification of N-Type Silicon Controlled Rectifier Device (N형 실리콘 제어 정류기 소자의 구조 변형을 통한 정전기 보호성능의 향상에 대한 연구)

  • Yang, Jun-Won;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.124-129
    • /
    • 2013
  • An electrostatic discharge (ESD) protection device, so called, N-type SCR with P-type MOSFET pass structure (NSCR_PPS), was analyzed for high voltage I/O applications. A conventional NSCR_PPS device shows typical SCR-like characteristics with extremely low snapback holding voltage, which may cause latch-up problem during normal operation. However, a modified NSCR_PPS device with counter pocket source(CPS) and partial p-type well(PPW) structure demonstrates highly latch-up immune current-voltage characteristics.

Operational Reliability Improvement of Power Converter by Improving the Inrush Current Limiter (돌입전류 제한회로 개선을 통한 전원변환장치 운용신뢰성 향상)

  • Yoon, Jae-Bok;Ryu, Seo-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.719-724
    • /
    • 2016
  • This paper describes the performance improvement of an inrush current limiter to prevent damage or malfunctions in power converters due to the inrush current. When the power converter of military radar is operated, the circuit breaker of the power converter is often activated because the overcurrent flows through the circuit breaker of the power converter. Therefore, this study performed a cause analysis of the problem, which is a larger current flow than the intended current(250A). The operation principle of an inrush current limiter and SCR (Silicon Controlled Rectifier) used in the inrush current limiter was analyzed. As a result, the overcurrent flow through the circuit breaker was found to be due to dv/dt triggering of SCR. Based on cause analysis, this paper proposes a technique by adding the resistor in front of the SCR to prevent an unnecessary inrush current. Finally, the effectiveness of the improvement was verified by measuring the output current in the inrush current limiter. The power converter equipped with the improved inrush current limiter operated for more than 1 year without the circuit breaker of the power converter being activated.

The novel SCR-based ESD Protection Device with High Holding Voltage (높은 홀딩전압을 갖는 사이리스터 기반 새로운 구조의 ESD 보호소자)

  • Won, Jong-Il;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.87-93
    • /
    • 2009
  • The paper introduces a silicon controlled rectifier (SCR)-based device with high holding voltage for ESD power clamp. The holding voltage can be increased by extending a p+ cathode to the first n-well and adding second n-well wrapping around n+ cathode. The increase of the holding voltage above the supply voltage enables latch-up immune normal operation. In this study, the proposed device has been simulated using synopsys TCAD simulator for electrical characteristic, temperature characteristic, and ESD robustness. In the simulation result, the proposed device has holding voltage of 3.6V and trigger voltage of 10.5V. And it is confirmed that the device could have holding voltage of above 4V with the size variation of extended p+ cathode and additional n-well.

  • PDF