• Title/Summary/Keyword: Silicon Dioxide

Search Result 267, Processing Time 0.027 seconds

Characterization of an Oxidized Porous Silicon Layer by Complex Process Using RTO and the Fabrication of CPW-Type Stubs on an OPSL for RF Application

  • Park, Jeong-Yong;Lee, Jong-Hyun
    • ETRI Journal
    • /
    • v.26 no.4
    • /
    • pp.315-320
    • /
    • 2004
  • This paper proposes a 10-${\mu}m$ thick oxide layer structure that can be used as a substrate for RF circuits. The structure has been fabricated using an anodic reaction and complex oxidation, which is a combined process of low-temperature thermal oxidation (500 $^{\circ}C$ for 1 hr at $H_2O/O_2$) and a rapid thermal oxidation (RTO) process (1050 ${\circ}C$, for 1 min). The electrical characteristics of the oxidized porous silicon layer (OPSL) were almost the same as those of standard thermal silicon dioxide. The leakage current density through the OPSL of 10 ${\mu}m$ was about 10 to 50 $nA/cm^2$ in the range of 0 to 50 V. The average value of the breakdown field was about 3.9 MV/cm. From the X-ray photo-electron spectroscopy (XPS) analysis, surface and internal oxide films of OPSL prepared by a complex process were confirmed to be completely oxidized. The role of the RTO process was also important for the densification of the porous silicon layer (PSL) oxidized at a lower temperature. The measured working frequency of the coplanar waveguide (CPW) type short stub on an OPSL prepared by the complex oxidation process was 27.5 GHz, and the return loss was 4.2 dB, similar to that of the CPW-type short stub on an OPSL prepared at a temperature of 1050 $^{\circ}C$ (1 hr at $H_2O/O_2$). Also, the measured working frequency of the CPW-type open stub on an OPSL prepared by the complex oxidation process was 30.5 GHz, and the return was 15 dB at midband, similar to that of the CPW-type open stub on an OPSL prepared at a temperature of $1050^{\circ}C$ (1 hr at $H_2O/O_2$).

  • PDF

Process Modeling of Germanium Condensation and Application to Nanowire PMOSFET (게르마늄 응축 공정의 모델링과 나노와이어 PMOSFET 응용)

  • Yun, Mina;Cho, Seongjae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.39-45
    • /
    • 2016
  • In this paper, prcess modeling of germanium condensation has been performed and a germanium PMOSFET having nanowire channel implented by the condensation process has been designed and characterized by device simulations. Based on the previous experimental results, our modeling results demonstrate that the ratio of germanium concentration at the silicon germanium-silicon dioxide interface ($C_S$) to that in the bulk region ($C_B$) which are obtainable during the germanium condensation is approximately 4.03 and the effective diffusion coefficient ($D_{eff}$) of germanium atom is $3.16nm^2/s$. Furthermore, a germanium nanowire-channel PMOSFET having the ultra-thin germanium channel on the silicon core that can be fabricated by the germanium condensation has been designed and characterized. As the result, it is confirmed that the proposed device having the coaxial nanowire consisting of silicon core and germanium channel might have superior performances over the device with either all-silicon or all-germanium channel.

Fabrication Process of Single-walled Carbon Nanotube Sensors Aligned by a Simple Self-assembly Technique (간단한 자기 조립 기법으로 배열된 단일벽 탄소 나노 튜브 센서의 제작공정)

  • Kim, Kyeong-Heon;Kim, Sun-Ho;Byun, Young-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.28-34
    • /
    • 2011
  • In previous reports, we investigated a selective assembly method of fabricating single-walled carbon nanotubes (SWCNTs) on a silicon-dioxide ($SiO_2$) surface by using only a photolithographic process. In this paper, we have fabricated field effect transistors (FETs) with SWCNT channels by using the technique mentioned above. Also, we have electrically measured gating effects of these FETs under different source-drain voltages ($V_{SD}$). These FETs have been fabricated for sensor applications. Photoresist (PR) patterns have been made on a $SiO_2$-grown silicon (Si) substrate by using a photolithographic process. This PR-patterned substrate have been dipped into a SWCNT solution dispersed in dichlorobenzene (DCB). These PR patterns have been removed by using aceton. As a result, a selectively-assembled SWCNT channels in FET arrays have been obtained between source and drain electrodes. Finally, we have successfully fabricated 4 FET arrays based on SWCNT-channels by using our simple self-assembly technique.

Programmed APTES and OTS Patterns for the Multi-Channel FET of Single-Walled Carbon Nanotubes (SWCNT 다중채널 FET용 표면 프로그램된 APTES와 OTS 패턴을 이용한 공정에 대한 연구)

  • Kim, Byung-Cheul;Kim, Joo-Yeon;An, Ho-Myoung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.1
    • /
    • pp.37-44
    • /
    • 2015
  • In this paper, we have investigated a selective assembly method of single-walled carbon nanotubes (SWCNTs) on a silicon substrate using only photolithographic process and then proposed a fabrication method of field effect transistors (FETs) using SWCNT-based patterns. The aminopropylethoxysilane (APTES) patterns, which are formed for positively charged surface molecular patterns, are utilized to assemble and align millions of SWCNTs and we can more effectively assemble on a silicon (Si) surface using this method than assembly processes using only the 1-octadecyltrichlorosilane (OTS). We investigated a selective assembly method of SWCNTs on a Si surface using surface-programmed APTES and OTS patterns and then a fabrication method of FETs. photoresist(PR) patterns were made using photolithographic process on the silicon dioxide (SiO2) grown Si substrate and the substrate was placed in the OTS solution (1:500 v/v in anhydrous hexane) to cover the bare SiO2 regions. After removing the PR, the substrate was placed in APTES solution to backfill the remaining SiO2 area. This surface-programmed substrate was placed into a SWCNT solution dispersed in dichlorobenzene. SWCNTs were attracted toward the positively charged molecular regions, and aligned along the APTES patterns. On the contrary, SWCNT were not assembled on the OTS patterns. In this process, positively charged surface molecular patterns are utilized to direct the assembly of negatively charged SWCNT on SiO2. As a result, the selectively assembled SWCNT channels can be obtained between two electrodes(source and drain electrodes). Finally, we can successfully fabricate SWCNT-based multi-channel FETs by using our self-assembled monolayer method.

The Removal of Si3N4 Particles from the Wafer Surface Using Supercritical Carbon Dioxide Cleaning (웨이퍼 표면의 Si3N4 파티클 제거를 위한 초임계 이산화탄소 세정)

  • Kim, Yong Hun;Choi, Hae Won;Kang, Ki Moon;Karakin, Anton;Lim, Kwon Teak
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.157-165
    • /
    • 2018
  • In this study, the removal of $Si_3N_4$ particles from the surface of a silicon wafer was investigated by using supercritical carbon dioxide, the IPA co-solvent and cleaning additive chemicals. First, the solubility of several surfactants and binders in supercritical carbon dioxide solubility and particle dispersibility in the binders were evaluated in order to confirm their suitability for the supercritical cleaning process. Particle removal experiments were carried out with adjusting various process parameters and reaction conditions. The surfactants used in the experiment showed little particle removal effect, producing secondary contamination on the surface of wafers. On the other hand, 5 wt% (with respect to $scCO_2$) of the cleaning additive mixture of trimethyl phosphate, IPA, and trace HF resulted in 85% of particle removal efficiency after $scCO_2$ flowing for 4 minutes at $50^{\circ}C$, 2000 psi, and the flow rate of $15mL\;min^{-1}$.

Titanium dioxide by spray deposition for buried contact silicon solar cells fabrication (전극함몰형 실리콘 태양전지의 제작시 스프레이 방법에 의한 타이타늄 옥사이드층의 적용에 관한 연구)

  • A.U. Ebong;S.H. Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.263-274
    • /
    • 1996
  • Titanium dioxide ($TiO_{2}$) film has been widely used as anti-reflection coating for solar cells but not as masking oxide for metallisation and diffusion of impurities. In this paper we have investigated the properties of $TiO_{2}$ for possible incorporation into solar cell processing sequence. Thus the use of a spray deposition system to form the $TiO_{2}$ film and the characterisation of this film to ascertain its suitability to solar cell processing. The spray-on $TiO_{2}$ film was found to be resistant to all the chemicals used in conjunction with solar cell processing. The high temperature anealing (in oxygen ambient) of the spray-on $TiO_{2}$ film resulted in an increased refractive index, which indicated the growth of an underlying thin film of $SiO_{2}$ film for the passivation of silicon surface which would reduce the recombination activities of the fabricated device. Most importantly, the successful incorporation of the $TiO{2}$ film will lead to the reduction of the many high temperature processing steps of solar cell to only one.

  • PDF

Rheological Characteristics of Nitromethane Gel Fuel with Nano/Micro Size of SiO2 Gellant (SiO2계열 젤화제 입자크기에 따른 니트로메탄 젤 추진제의 유변학적 특성 연구)

  • Jang, Jinwu;Kim, Sijin;Han, Seongjoo;Kim, Jinkon;Moon, Heejang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.456-461
    • /
    • 2017
  • In this study, the rheological properties of nitromethane gel propellants on nano/micron sized gelling agent are investigated. Silicon dioxide is used as the gellant with 5 wt%, 6.5 wt% and 8 wt% concentration, respectively, where the measurements are conducted under steady-state shear flow conditions using a rotational rheometer. The nitromethane/silicon dioxide gel showed non-Newtonian flow behavior for the entire experimental shear rate ranges. The gel fuels with nano-sized gellant had a slightly higher viscosity than the gel fuels with micron-sized one for low shear rate range. Additionally, it was found that Herschel-Bulkley model can hardly describe the rheological behavior of nitromethane gel propellant, but the NM model(by Teipel and Forter-Barth) is better suited to explain the rheological behavior of nitromethane gel propellant.

  • PDF

Novel Fabrication and Testing of a Bubble-Powered Micropump (새로운 기포동력 마이크로펌프 제작 및 실험)

  • Jung, Jung-Yeul;Kwak, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1196-1200
    • /
    • 2004
  • Micropump is very useful component in micro/nano fluidics and bioMEMS applications. In this study, a bubble-powered micropump was fabricated and tested. The micropump consists of two-parallel micro line heaters, a pair of nozzle-diffuser flow controller and a 1 mm in diameter, 400 ${\mu}m$ in depth pumping chamber. The two-parallel micro line heaters with 20 ${\mu}m-width$ and 200 ${\mu}m-length$ were fabricated to be embedded in the silicon dioxide layer of a wafer which serves as a base plate for the micropump. The pumping chamber, the pair of nozzle-diffuser unit and microchannels including the liquid inlet and outlet port were fabricated by etching through another silicon wafer. A glass wafer (thickness of $525{\pm}15$ ${\mu}m$) having two holes of inlet and outlet ports of liquid serve as upper plate of the pump. Finally the silicon wafer of the base plate, the silicon wafer of pumping chamber and the glass wafer were aligned and bonded (Si-Si bonding and anodic bonding). A sequential photograph of bubble nucleation, growth and collapse was visualized by CCD camera. Clearly liquid flow through the nozzle during the period of bubble growth and slight back flow of liquid at the end of collapsing period can be seen. The mass flow rate was found to be dependent on the duty ratio and the operation frequency. As duty ratio increases, flow rate decreases gradually when the duty ratio exceeds 60%. Also as the operation frequency increases, the flow rate of the micropump decreases slightly.

  • PDF

Silicon Oxidation in Inductively-Coupled N2O Plasma and its Effect on Polycrystalline-Silicon Thin Film Transistors (유도결합 N2O 플라즈마를 이용한 실리콘 산화막의 저온성장과 다결정 실리콘 박막 트랜지스터에의 영향)

  • Won, Man-Ho;Kim, Sung-Chul;Ahn, Jin-Hyung;Kim, Bo-Hyun;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.724-728
    • /
    • 2002
  • Inductively-coupled $N_2$O plasma was utilized to grow silicon dioxide at low temperature and applied to fabricate polycrystalline-silicon thin film transistors. At $400^{\circ}C$, the thickness of oxide was limited to 5nm and the oxide contained Si≡N and ≡Si-N-Si≡ bonds. The nitrogen incorporation improved breakdown field to 10MV/cm and reduced the interface charge density to $1.52$\times$10^{11}$ $cm^2$ with negative charge. The $N_2$O plasma gate oxide enhanced the field effect mobility of polycrystalline thin film transistor, compared to $O_2$ plasma gate oxide, due to the reduced interface charge at the $Si/SiO_2$ interface and also due to the reduced trap density at Si grain boundaries by nitrogen passivation.

Preparation of Ultrafine Silica Particle by Pyrolysis in the Gas Phase (기상열분해법에 의한 초미립 실리카분말 제조)

  • Jang, Hee Dong;Yoon, Ho Sung
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.901-906
    • /
    • 1997
  • Ultrafine silicon dioxide($SiO_2$) powder was prepared from tetraethylorthosilicate(TEOS) by the gas-phase reaction. The effects of reaction temperature, flow rate of gas, TEOS concentration, and preheating temperature of reactants on the particle size were investigated. As the reaction temperature increased, average particle size of the silicone dioxide powder became smaller. Smaller particles were also obtained with decreasing the residence time of reactants in the reaction zone. Larger particles having narrow size distribution were produced with the high concentrations of the reactants. The effect of the preheating temperature was not considerable on the average particle size. The range of average particle size was from 30 nm to 58 nm depending on experimental conditions.

  • PDF