Browse > Article
http://dx.doi.org/10.7464/ksct.2018.24.3.157

The Removal of Si3N4 Particles from the Wafer Surface Using Supercritical Carbon Dioxide Cleaning  

Kim, Yong Hun (Department of Image Science & Engineering, Pukyong National University)
Choi, Hae Won (SEMES Co., Ltd.)
Kang, Ki Moon (SEMES Co., Ltd.)
Karakin, Anton (SEMES Co., Ltd.)
Lim, Kwon Teak (Department of Image Science & Engineering, Pukyong National University)
Publication Information
Clean Technology / v.24, no.3, 2018 , pp. 157-165 More about this Journal
Abstract
In this study, the removal of $Si_3N_4$ particles from the surface of a silicon wafer was investigated by using supercritical carbon dioxide, the IPA co-solvent and cleaning additive chemicals. First, the solubility of several surfactants and binders in supercritical carbon dioxide solubility and particle dispersibility in the binders were evaluated in order to confirm their suitability for the supercritical cleaning process. Particle removal experiments were carried out with adjusting various process parameters and reaction conditions. The surfactants used in the experiment showed little particle removal effect, producing secondary contamination on the surface of wafers. On the other hand, 5 wt% (with respect to $scCO_2$) of the cleaning additive mixture of trimethyl phosphate, IPA, and trace HF resulted in 85% of particle removal efficiency after $scCO_2$ flowing for 4 minutes at $50^{\circ}C$, 2000 psi, and the flow rate of $15mL\;min^{-1}$.
Keywords
Supercritical carbon dioxide; Particle remove; Dry cleaning;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Cooper, A. I., Wood, C. D., and Holmess, A. B., "Synthesis of Well-defined Macroporous Polymer Monoliths by Sol-gel Polymerization in Supercritical $CO_2$," Ind. Eng. Chem. Res., 39, 4741-4744 (2000).   DOI
2 DeSimone, J. M., Romack, T. J., Betts, D. E., and Mcclain, J. B., "Cleaning Process Using Carbon Dioxide as a Solvent and Employing Molecularly Engineered Surfactants," U. S. Patent No. 5,866,005 (1999).
3 Campbell, M. L., Apodaca, D. L., Yates, M. Z., McCleskey, T. M., and Birnbaum, E. R., "Metal Extractionfrom Heterogeneous Surfaces Using Carbon Dioxide Microemulsions," Langmuir, 17, 5458-5463 (2001).   DOI
4 Hwang, H. S., Yuvaraj, H., Kim, W. K., Lee, W. K., Gal, Y. S., and Lim, K. T., "Dispersion Polymerization of MMA in Supercritical $CO_2$ Stabilized by Random Copolymers of 1H, 1H-Perfluorooctyl Methacrylate and 2-(Dimethylaminoethyl Methacrylate)," J. Polym. Sci. : Part A: Polym. Chem., 46, 1365-1375 (2007).
5 Ganapathy, H. S., Park, S. Y., Lee, W. K., Park, J. M., and Lim, K. T., "Polymeric Nanoparticles from Macroscopic Crystalline Monomers by Facile Solid-state Polymerization in Supercritical $CO_2$," 51, 264-269 (2009).   DOI
6 Kim, D. H., Lim, E. S., and Lim, K. T., "Efficient Stripping of High-Dose Ion-Implanted Photoresist in Supercritical Carbon Dioxide," Clean Technol., 17, 300-305 (2011).
7 O'Shea, K. E., Kirmse, K. M., Fox, M. A., and Johnston, K. P., "Polar and Hydrogen-bonding Interactions in Supercritical Fluids. Effects on the Tautomeric Equilibrium of 4-(phenylazo)-1-naphthol," J. Phys. Chem., 95, 7863-7867 (1991).   DOI
8 Jones, C. A., Zweber, A., Deyoung, J. P., McClain, J. B., Carbonell, R., and DeSimone, J. M., "Applications of "Dry" Processing in the Microelectronics Industry Using Carbon Dioxide," Crit. Rev. Solid. State, 29, 97-109 (2004).   DOI
9 Weibel, G. L., and Ober, C. K., "An Overview of Supercritical $CO_2$ Applications in Microelectronics Processing," Microelectron. Eng., 65, 145-152 (2003).   DOI
10 Kim, D. H., Lim, E. S., and Lim, K. T., "Efficient Stripping of High-dose Ion-implanted Photoresist in Supercritical Carbon Dioxide," Clean Technol., 17(4), 300-305 (2011).   DOI
11 Kim, D. W., Heo, H., and Lim, K. T., "Study of Supercritical Carbon Dioxide/n-Butyl Acetate Co-solvent System with High Selectivity in Photoresist Removal Process," Clean Technol., 23, 357-363 (2017).
12 Kim, D. W., Kim, Y. H., and Lim, K. T., "Supercritical Carbon Dioxide Drying for MEMS Structures," J. Korean Soc. Imaging Sci. & Technol., 20(4), 16-21 (2014).   DOI
13 Bae, J. H, Md., Alam, Jung, J. M., Gal, Y.-S., Lee, H. S., Kim, H. G., and Lim, K. T., "Improved Etching Method for Microelectronic Devices with Supercritical Carbon Dioxide," Microelectron. Eng., 86, 128-131 (2009).   DOI
14 Jung, J. M., Kwon, H. S., Lee, W.-K., Choi, B.-C., Kim, H. G., and Lim, K. T., "Repair of Plasma-Damaged p-SiOCH Dielectric Films in Supercritical $CO_2$," Microelectron. Eng., 87, 1680-1684 (2010).   DOI
15 Hwang, H. S., Bae, J. H., Jung, J. M., and Lim, K. T., "He Sacrificial Oxide Etching of Poly-Si Cantilevers Having High Aspect Atios Using Supercritical $CO_2$," Microelectron. Eng., 87, 1696-1700 (2010).   DOI
16 Jung, J. M., Yoon, E. J., Lim, E. S., Choi, B. C., Kim, S.-Y., and Lim, K. T., "The Dry Etching of TEOS Oxide for Poly-Si Cantilevers in Supercritical $CO_2$," Microelectron. Eng., 88, 3448-3451 (2011).   DOI
17 Lee, M. Y., Do, K. M., Ganapathy, H. S., Lo, Y. S., Kim, J. J., Choi, S. J., and Lim, K. T., "Surfactant-Aided Supercritical Carbon Dioxide Drying for Photoresists to Prevent Pattern Collapse," J. Supercrit. Fluids, 42, 150-156 (2007).   DOI
18 Tanaka, T., et al., "Mechanism of Resist Pattern Collapse during Development Process," 32 Issue 12 (1993).
19 Yuvaraj, H., Johnston, K. P., and Lim, K. T., "Removal of HF/$CO_2$ Post-Etch Residues from Pattern Wafers Using Water-in-Carbon Dioxide Microemulsions, Jae Mok Jung, Hullathy Subban Ganapathy," Microelectron. Eng., 86, 165-170 (2009).   DOI
20 Kim, S. H., Yuvaraj, H., Jeong, Y. T., Park, C., Kim, S. W., and Lim, K. T., "The Effect of Ultrasonic Agitation on the Stripping of Photoresist Using Supercritical $CO_2$ and Co-Solvent Formulation," Microelectron. Eng., 86, 171-175 (2009).   DOI