DOI QR코드

DOI QR Code

Programmed APTES and OTS Patterns for the Multi-Channel FET of Single-Walled Carbon Nanotubes

SWCNT 다중채널 FET용 표면 프로그램된 APTES와 OTS 패턴을 이용한 공정에 대한 연구

  • Kim, Byung-Cheul (Department of Electronic Engineering, Gyeongnam National University of Science and Technology(GnTECH)) ;
  • Kim, Joo-Yeon (School of Electrical Electronics Engineering, Ulsan College) ;
  • An, Ho-Myoung (Department of Electronics, Osan University)
  • Received : 2015.01.08
  • Accepted : 2015.02.10
  • Published : 2015.02.28

Abstract

In this paper, we have investigated a selective assembly method of single-walled carbon nanotubes (SWCNTs) on a silicon substrate using only photolithographic process and then proposed a fabrication method of field effect transistors (FETs) using SWCNT-based patterns. The aminopropylethoxysilane (APTES) patterns, which are formed for positively charged surface molecular patterns, are utilized to assemble and align millions of SWCNTs and we can more effectively assemble on a silicon (Si) surface using this method than assembly processes using only the 1-octadecyltrichlorosilane (OTS). We investigated a selective assembly method of SWCNTs on a Si surface using surface-programmed APTES and OTS patterns and then a fabrication method of FETs. photoresist(PR) patterns were made using photolithographic process on the silicon dioxide (SiO2) grown Si substrate and the substrate was placed in the OTS solution (1:500 v/v in anhydrous hexane) to cover the bare SiO2 regions. After removing the PR, the substrate was placed in APTES solution to backfill the remaining SiO2 area. This surface-programmed substrate was placed into a SWCNT solution dispersed in dichlorobenzene. SWCNTs were attracted toward the positively charged molecular regions, and aligned along the APTES patterns. On the contrary, SWCNT were not assembled on the OTS patterns. In this process, positively charged surface molecular patterns are utilized to direct the assembly of negatively charged SWCNT on SiO2. As a result, the selectively assembled SWCNT channels can be obtained between two electrodes(source and drain electrodes). Finally, we can successfully fabricate SWCNT-based multi-channel FETs by using our self-assembled monolayer method.

본 논문에서 전계효과 트랜지스터 (field effect transistor; FET) 제작을 위한 표면 프로그램된 aminopropylethoxysilane(APTES)와 1-octadecyltrichlorosilane(OTS) 패턴을 이용하여 단일벽 탄소 나노튜브(single-walled carbon nanotube; SWCNT)를 실리콘 기판 위에 선택적으로 흡착시키는 공정방법을 제안하였다. 양성 표면 분자 패턴을 만들기 위해 형성된 APTES 패턴은 많은 양의 SWCNT의 흡착을 위해 제작되었고, OTS 만을 이용한 공정보다 효과적인 SWCNT 흡착이 가능하다. 산화막(silicon dioxide)이 형성된 실리콘 기판 위에 사진공정(photolithography process)을 이용하여 임의의 감광액(photoresist; PR) 패턴이 형성되었다. PR 패턴이 형성된 기판은 헥산 용매를 이용하여 1:500 (v/v)로 희석된 OTS 용액 속에 담가진다. OTS 박막이 표면 전체에 만들어지고, PR 패턴이 제거되는 과정에서 PR 위에 형성되었던 OTS 박막도 같이 제거되어, 선택적으로 형성된 OTS 박막 패턴을 얻을 수 있다. 이 기판은 다시 에탄올 용매를 이용하여 희석된 APTES 용액 속에 담가진다. APTES 박막은 OTS 박막 패턴이 없는 노출된 산화막 위에 형성된다. 마지막으로 이처럼 APTES와 OTS에 의해 표면 프로그램된 기판은 SWCNT가 분산된 다이클로로벤젠(dichlorobenzene) 용액 속에 담가진다. 결과적으로 SWCNT는 양 극성을 띠는(positive charged) APTES 박막 패턴 위에만 흡착된다. 반면 중성O TS 박막 패턴 위에는흡착되지 않는다. 이러한 표면 프로그램 방법을 사용하여 SWCNT는 원하는 영역에 자기 조립시킬 수 있다. 우리는 이 방법을 이용하여 소오스와 드레인 전극사이에 SWCNT가 멀티 채널로 구성된 다중채널 FET를 성공적으로 제작하였다.

Keywords

References

  1. M. Picher, P. A. Lin, J. L. Gomez-Ballesteros, P. B. Balbuena, and R. Sharma, "Nucleation of Graphene and Its Conversion to Single-Walled Carbon Nanotubes," Nano Letters, Vol. 14, No. 11, pp. 6104-6108, October, 2014. https://doi.org/10.1021/nl501977b
  2. S. Ghosh, A. K. Sood, and N. Kumar, "Carbon Nanotube Flow Sensors," Science, Vol. 299, No. 5609, pp. 1042-1044, February, 2003. https://doi.org/10.1126/science.1079080
  3. P. W. Barone, S. Baik, D. A. Heller, and M. S. Strano, "Near-infrared optical sensors based on single-walled carbon nanotubes," Nature Materials, Vol. 4, No. 1, pp. 86-92, January, 2005. https://doi.org/10.1038/nmat1276
  4. S. J. Tans, A. R. M. Verschueren, and C. Dekker, "Room-temperature transistor based on a single carbon nanotube," Nature, Vol. 393, No. 6680, pp. 49-52, May, 1998. https://doi.org/10.1038/29954
  5. R. Martel, T. Schmidt, H. R. Shea, T. Hertel and Ph. Avouris, "Single- and multi-wall carbon nanotube field-effect transistors," Applied Physics Letters, Vol. 73, No. 17, pp. 2447-2449, October, 1998. https://doi.org/10.1063/1.122477
  6. J. Gao, A. Yu, M. E. Itkis, E. Bekyarova, B Zhao, S. Niyogi, R. C. Haddon, "Large-Scale Fabrication of Aligned Single-Walled Carbon Nanotube Array and Hierarchical Single-Walled Carbon Nanotube Assembly," J. Am. Chem. Soc., Vol. 126, No. 51, pp. 16698-16699, December, 2004. https://doi.org/10.1021/ja044499z
  7. Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, and H. Dai "Electric-field-directed growth of aligned single-walled carbon nanotubes," Applied Physics Letters, Vol. 79, No. 19, pp. 3155-3157, November, 2001. https://doi.org/10.1063/1.1415412
  8. S. J. Oh, J. Zhang, Y. Cheng, H. Shimoda, and O. Zhou, "Liquid-phase fabrication of patterned carbon nanotube field emission cathodes," Applied Physics Letters, Vol. 84, No. 19, 3738-3740, April 2004. https://doi.org/10.1063/1.1737074
  9. L. Zeng, N. Pattyn, and A. R. Barron, "Attachment of Functionalized Single-Walled Carbon Nanotubes (SWNTs) to Silicon Surfaces," Journal of Nanoscience and Nanotechnology, Vol. 8, No. 3, pp. 1545-1550(6) March, 2008.
  10. R.A Synowicki, "Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants," Thin Solid Films, Vol. 313-314, pp. 394-397 February, 1998. https://doi.org/10.1016/S0040-6090(97)00853-5