• 제목/요약/키워드: Silicidation

Search Result 91, Processing Time 0.027 seconds

Formation of Nickel Silicide from Atomic Layer Deposited Ni film with Ti Capping layer

  • Yun, Sang-Won;Lee, U-Yeong;Yang, Chung-Mo;Na, Gyeong-Il;Jo, Hyeon-Ik;Ha, Jong-Bong;Seo, Hwa-Il;Lee, Jeong-Hui
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.193-198
    • /
    • 2007
  • The NiSi is very promising candidate for the metallization in 60nm CMOS process such as FUSI(fully silicided) gate and source/drain contact because it exhibits non-size dependent resistance, low silicon consumption and mid-gap workfunction. Ni film was first deposited by using ALD (atomic layer deposition) technique with Bis-Ni precursor and $H_2$ reactant gas at $220^{\circ}C$ with deposition rate of $1.25{\AA}/cycle$. The as-deposited Ni film exhibited a sheet resistance of $5{\Omega}/{\square}$. RTP (repaid thermal process) was then performed by varying temperature from $400^{\circ}C$ to $900^{\circ}C$ in $N_2$ ambient for the formation of NiSi. The process window temperature for the formation of low-resistance NiSi was estimated from $600^{\circ}C$ to $800^{\circ}C$ and from $700^{\circ}C$ to $800^{\circ}C$ with and without Ti capping layer. The respective sheet resistance of the films was changed to $2.5{\Omega}/{\square}$ and $3{\Omega}/{\square}$ after silicidation. This is because Ti capping layer increases reaction between Ni and Si and suppresses the oxidation and impurity incorporation into Ni film during silicidation process. The NiSi films were treated by additional thermal stress in a resistively heated furnace for test of thermal stability, showing that the film heat-treated at $800^{\circ}C$ was more stable than that at $700^{\circ}C$ due to better crystallinity.

  • PDF

Silicidation of the Co/Ti Bilayer on the Doped Polycrystalline Si Substrate (다결정 Si기판 위에서의 Co/Ti 이중층의 실리사이드화)

  • Kwon, Young-Jae;Lee, Jong-Mu;Bae, Dae-Lok;Kang, Ho-Kyu
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.579-583
    • /
    • 1998
  • Silicide layer structures, agglomeration of silicide layers, and dopant redistributions for the Co/Ti bilayer sputter-deposited on the P-doped polycrystalline Si substrate and subjected to rapid thermal annealing were investigated and compared with those on the single Si substrate. The $CoSi_2$ phase transition temperature is higher and agglomeration of the silicide layer occurs more severely for the Co/Ti bilayer on the doped polycrystalline Si substrate than on the single Si substrate. Also, dopant loss by outdiffusion is much more significant on the doped polycrystalline Si substrate than on the single Si substrate. All of these differences are attributed to the grain boundary diffusion and heavier doping concentration in the polycrystalline Si. The layer structure after silicidation annealing of Co/ Tildoped - polycrystalline Si is polycrystalline CoSi,/polycrystalline Si, while that of Co/TiI( 100) Si is Co- Ti- Si/epi- CoSi,/(lOO) Si.

  • PDF

Sheet Resistance and Microstructure Evolution of Cobalt/Nickel Silicides with Annealing Temperature (코발트/니켈 복합실리사이드의 실리사이드온도에 따른 면저항과 미세구조 변화)

  • Jung Young-soon;Cheong Seong-hwee;Song Oh-sung
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.389-393
    • /
    • 2004
  • The silicide layer used as a diffusion barrier in microelectronics is typically required to be below 50 nm-thick and, the same time, the silicides also need to have low contact resistance without agglomeration at high processing temperatures. We fabricated Si(100)/15 nm-Ni/15 nm-Co samples with a thermal evaporator, and annealed the samples for 40 seconds at temperatures ranging from $700^{\circ}C$ to $1100^{\circ}C$ using rapid thermal annealing. We investigated microstructural and compositional changes during annealing using transmission electron microscopy and auger electron spectroscopy. Sheet resistance of the annealed sample stack was measured with a four point probe. The sheet resistance measurements for our proposed Co/Ni composite silicide was below 8 $\Omega$/sq. even after annealing $1100^{\circ}C$, while conventional nickel-monosilicide showed abrupt phase transformation at $700^{\circ}C$. Microstructure and auger depth profiling showed that the silicides in our sample consisted of intermixed phases of $CoNiSi_{x}$ and NiSi. It was noticed that NiSi grew rapidly at the silicon interface with increasing annealing temperature without transforming into $NiSi_2$. Our results imply that Co/Ni composite silicide should have excellent high temperature stability even in post-silicidation processes.

Direct Bonding of Si(100)/NiSi/Si(100) Wafer Pairs Using Nickel Silicides with Silicidation Temperature (열처리 온도에 따른 니켈실리사이드 실리콘 기판쌍의 직접접합)

  • Song, O-Seong;An, Yeong-Suk;Lee, Yeong-Min;Yang, Cheol-Ung
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.556-561
    • /
    • 2001
  • We prepared a new a SOS(silicon-on-silicide) wafer pair which is consisted of Si(100)/1000$\AA$-NiSi Si (100) layers. SOS can be employed in MEMS(micro- electronic-mechanical system) application due to low resistance of the NiSi layer. A thermally evaporated $1000\AA$-thick Ni/Si wafer and a clean Si wafer were pre-mated in the class 100 clean room, then annealed at $300~900^{\circ}C$ for 15hrs to induce silicidation reaction. SOS wafer pairs were investigated by a IR camera to measure bonded area and probed by a SEM(scanning electron microscope) and TEM(transmission electron microscope) to observe cross-sectional view of Si/NiSi. IR camera observation showed that the annealed SOS wafer pairs have over 52% bonded area in all temperature region except silicidation phase transition temperature. By probing cross-sectional view with SEM of magnification of 30,000, we found that $1000\AA$-thick uniform NiSi layer was formed at the center area of bonded wafers without void defects. However we observed debonded area at the edge area of wafers. Through TEM observation, we found that $10-20\AA$ thick amourphous layer formed between Si surface and NiSix near the counter part of SOS. This layer may be an oxide layer and lead to degradation of bonding. At the edge area of wafers, that amorphous layer was formed even to thickness of $1500\AA$ during annealing. Therefore, to increase bonding area of Si NiSi ∥ Si wafer pairs, we may lessen the amorphous layers.

  • PDF

Estimation of Temperature Distribution on Wafer Surface in Rapid Thermal Processing Systems (고속 열처리공정 시스템에서의 웨이퍼 상의 온도분포 추정)

  • Yi, Seok-Joo;Sim, Young-Tae;Koh, Taek-Beom;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.481-488
    • /
    • 1999
  • A thermal model based on the chamber geometry of the industry-standard AST SHS200MA rapid thermal processing system has been developed for the study of thermal uniformity and process repeatability thermal model combines radiation energy transfer directly from the tungsten-halogen lamps and the steady-state thermal conducting equations. Because of the difficulties of solving partial differential equation, calculation of wafer temperature was performed by using finite-difference approximation. The proposed thermal model was verified via titanium silicidation experiments. As a result, we can conclude that the thermal model show good estimation of wafer surface temperature distribution.

  • PDF

Study on Property Variations of $CoSi_2$ Electrode with Its Preparation Methods ($CoSi_2$ 전극 구조의 증착법에 따른 특성 변화 연구)

  • Nam, Hyoung-Gin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.4
    • /
    • pp.5-9
    • /
    • 2007
  • Phase transition and dopant redistribution during silicidation of $CoSi_2$ thin films were characterized depending on their preparation methods. Our results indicated that cleanness of the substrate surface played an important role in the formation of the final phase. This effect was found to be reduced by addition of W resulting in the formation of $CoSi_2$. However, even in this case, the formation of the final phase was achieved at the cost of extra thermal energy, which induced rough interface between the substrate and the silicide film. As for the dopant redistribution, the deposition sequence of Co and Si on SiGe was observed to induce significant differences in the dopant profiles. It was found that co-deposition of Co and Si resulted in the least redistribution of dopants thus maintaining the original dopant profile.

  • PDF

Fabrication of triode type Ti-silicided field emission tip array (3극 티타늄 실리사이드 전계방출 팁 어레이의 제작)

  • Ohm, Woo-Yong
    • 전자공학회논문지 IE
    • /
    • v.44 no.3
    • /
    • pp.1-5
    • /
    • 2007
  • A new field emission tip array was realized by Ti silicidation of Ti coated Si tip, which has long term durability, chemical stability, and high emission current density. The fabricated Ti silicided FE tip array under high vacuum condition of about $10^{-8}Torr$ shows that the turn-on voltage is about 40V and the emission current is about $69{\mu}A$ when the bias of 150V is applied between anode and cathode of $100{\mu}m$ distance.

Improvement of Thermal Stability of Ni-Silicide Using Vacuum Annealing on Boron Cluster Implanted Ultra Shallow Source/Drain for Nano-Scale CMOSFETs

  • Shin, Hong-Sik;Oh, Se-Kyung;Kang, Min-Ho;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.260-264
    • /
    • 2010
  • In this paper, Ni silicide is formed on boron cluster ($B_{18}H_{22}$) implanted source/drains for shallow junctions of nano-scale CMOSFETs and its thermal stability is improved, using vacuum annealing. Although Ni silicide on $B_{18}H_{22}$ implanted Si substrate exhibited greater sheet resistance than on the $BF_2$ implanted one, its thermal stability was greatly improved using vacuum annealing. Moreover, the boron depth profile, using vacuum post-silicidation annealing, showed a shallower junction than that using $N_2$ annealing.

Three Dimensional Adaptive Mesh Generator for Thermal Oxidation Simulation (열산화 공정 시뮬레이션을 위한 3차원 적응 메쉬 생성기 제작에 관한 연구)

  • 윤상호;이제희;윤광섭;원태영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.48-51
    • /
    • 1995
  • We have developed the three dimensional mesh generator for three dimensional process simulation using the FEM(Finite Element Method). Tetrahedron element construct the presented three dimensional mesh, which is suitable for the simulation of three dimensional behavior of the LOCOS. The simulation of thermal oxidation is one of the problem in scale downed semiconductor processes. As three dimensional simulators use the huge size of the memory, we use the efficient method that generates the new nodes inside the growing oxide and removes the nodes nearby the SiO2/Si interface in silicon. The resented three dimensional mesh generator was designed to be used in various process simulations, for instance thermal oxidation, silicidation, nitridation, ion implantation, diffusion, and so on.

  • PDF

Fabrication of New Ti-silicide Field Emitter Array with Long Term Durability (Ti-실리사이드를 이용한 새로운 고내구성 전계방출소자의 제작)

  • Jang, Ji-Geun;Baek, Dong-Gi;Yun, Jin-Mo;Yun, Jin-Mo;Im, Seong-Gyu;Jang, Ho-Jeong
    • Korean Journal of Materials Research
    • /
    • v.8 no.1
    • /
    • pp.10-12
    • /
    • 1998
  • Si FEA 로부터 tip의 표면을 Ti금속으로 silicidation한 새로운 2극형 Ti-실리사이드 FEA를 제작하고 이의 전계방출 특성을 Si FEA의 경우와 비교하였다. 양극과 음극간의 거리를 10$\mu\textrm{m}$로 유지하고 $10^{-8}$Torr의 고진공 상태에서 측정한 실리사이드 FEA의 turn-on전압은 약 40V로, 전계방출전류와 정상상태 전류 변동율은 150V의 바이어스 아래에서 약 3x$10^{-2}$ $\mu$A/tip와 0.1%min로 나타났다. Ti-실리사이드 FEA는 Si FEA에 비해 낮은 turn-on 전압, 높은 전계방출전류 및 고내구특성을 나타내었다.

  • PDF