Browse > Article
http://dx.doi.org/10.3740/MRSK.2004.14.6.389

Sheet Resistance and Microstructure Evolution of Cobalt/Nickel Silicides with Annealing Temperature  

Jung Young-soon (Department of Materials Science and Engineering The University of Seoul)
Cheong Seong-hwee (Department of Materials Science and Engineering The University of Seoul)
Song Oh-sung (Department of Materials Science and Engineering The University of Seoul)
Publication Information
Korean Journal of Materials Research / v.14, no.6, 2004 , pp. 389-393 More about this Journal
Abstract
The silicide layer used as a diffusion barrier in microelectronics is typically required to be below 50 nm-thick and, the same time, the silicides also need to have low contact resistance without agglomeration at high processing temperatures. We fabricated Si(100)/15 nm-Ni/15 nm-Co samples with a thermal evaporator, and annealed the samples for 40 seconds at temperatures ranging from $700^{\circ}C$ to $1100^{\circ}C$ using rapid thermal annealing. We investigated microstructural and compositional changes during annealing using transmission electron microscopy and auger electron spectroscopy. Sheet resistance of the annealed sample stack was measured with a four point probe. The sheet resistance measurements for our proposed Co/Ni composite silicide was below 8 $\Omega$/sq. even after annealing $1100^{\circ}C$, while conventional nickel-monosilicide showed abrupt phase transformation at $700^{\circ}C$. Microstructure and auger depth profiling showed that the silicides in our sample consisted of intermixed phases of $CoNiSi_{x}$ and NiSi. It was noticed that NiSi grew rapidly at the silicon interface with increasing annealing temperature without transforming into $NiSi_2$. Our results imply that Co/Ni composite silicide should have excellent high temperature stability even in post-silicidation processes.
Keywords
Silicidation; Co/Ni silicide; RTA; Nickel monosilicide; Microstructure; Phase composition.;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 The International Technology RoadMap For Semiconductor, Front End Process, p. 25, SIA, 2003 Edition (2003)
2 S. L. Hsia, T. Y. Tan, P. Smith and G. E. Seebauer and D. E. Batchelor, J. Electrochem. Soc., 146, 4240 (1999)   DOI
3 J. B. Lasky, J. S. Nakos, O. J. Cain and P. J. Geiss, IEEE Trans. Electron Devices, 38(2), 262 (1991)   DOI   ScienceOn
4 R. T. Tung, MRS Symp. Proc., 427, 481 (1996)   DOI
5 M. L. A. Dass, D. B. Fraser and C. S. Wei, Appl. Phys. Lett., 58(12), 1308 (1991)   DOI
6 S. P. Murarka, J. Electrochem. Soc., 129, 293 (1982)   DOI
7 S. H. Cheong and O. S. Song, Korean J. Mater. Res., 15(5), 279 (2003)   과학기술학회마을   DOI
8 G. B. Kim and H. K. Baik, Appl. Phys. Lett., 69(23), 3498 (1996)   DOI   ScienceOn
9 D. B. Williams and C. Barry Carter, Transmission electron microscopy: a textbook for materials secience, p.155, Plenum Press, New York, (1996)
10 A. Lauwers, A. Steegen, M. de-Potter, R. Lindsay, A. Satta, H. Bender and K. Maex, J. Vac. Sci. Technol. B., 19(6), 2026 (2001)   DOI   ScienceOn
11 M. Y. Wang, C. W. Chang, C. M. Wu, C. T. Lin, C. H. Hsieh, W. S. Shue, M. S. Liang, VLSI Technology Digest, 157, (2003)
12 S. L. Hsia, T. Y Tan, P. Smith and G. E. McGuire, J. Appl. Phys., 88, 133 (2000)   DOI   ScienceOn
13 M. Garcia-Mendez, M. H. Farias, D. H. Galvan-Martinez, A. Posada-Amarillas and G. Beamson, Surface Science, 532-535, 952, (2003)   DOI   ScienceOn
14 J. Y. Dai, Z. R. Guo, S. F. Tee, C. L. Tay, Eddie Er and S. Redkar, Appl. Phys. Lett., 78(20), 3091 (2001)   DOI   ScienceOn
15 J. Prokop, C. E. Zybill and S. Veprek, Thin Solid Films, 359, 39 (2000)   DOI   ScienceOn