• Title/Summary/Keyword: Semigroup

Search Result 381, Processing Time 0.026 seconds

ON LEFT REGULAR po-SEMIGROUPS

  • Lee, Sang-Keun;Jung, Jae-Hong
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 1998
  • The paper refers to ordered semigroups in which $x^2 (x \in S)$ are left ideal elements. We mainly show that this $po$-semigroup is left regular if and only if S is a union of left simple subsemigroups of S.

  • PDF

The Universal Property of Inverse Semigroup Equivariant KK-theory

  • Burgstaller, Bernhard
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.111-137
    • /
    • 2021
  • Higson proved that every homotopy invariant, stable and split exact functor from the category of C⁎-algebras to an additive category factors through Kasparov's KK-theory. By adapting a group equivariant generalization of this result by Thomsen, we generalize Higson's result to the inverse semigroup and locally compact, not necessarily Hausdorff groupoid equivariant setting.

On 2-absorbing Primary Ideals of Commutative Semigroups

  • Mandal, Manasi;Khanra, Biswaranjan
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.425-436
    • /
    • 2022
  • In this paper we introduce the notion of 2-absorbing primary ideals of a commutative semigroup. We establish the relations between 2-absorbing primary ideals and prime, maximal, semiprimary and 2-absorbing ideals. We obtain various characterization theorems for commutative semigroups in which 2-absorbing primary ideals are prime, maximal, semiprimary and 2-absorbing ideals. We also study some other important properties of 2-absorbing primary ideals of a commutative semigroup.

Left Regular and Left Weakly Regular n-ary Semigroups

  • Pornsurat, Patchara;Pibaljommee, Bundit
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.29-41
    • /
    • 2022
  • We study the concept of a quasi-ideal and a generalized bi-ideal of an n-ary semigroup; give a construction of the quasi-ideal of an n-ary semigroup generated by its nonempty subset; and introduce the notions of regularities, namely, a left regularity and a left weakly regularity. Moreover, the notions of a right regularity, a right weak regularity and a complete regularity are given. Finally, characterizations of these regularities are presented.

WEIERSTRASS SEMIGROUPS AT PAIRS OF NON-WEIERSTRASS POINTS ON A SMOOTH PLANE CURVE OF DEGREE 5

  • Cheon, Eun Ju;Kim, Seon Jeong
    • The Pure and Applied Mathematics
    • /
    • v.27 no.4
    • /
    • pp.251-267
    • /
    • 2020
  • We classify all semigroups each of which arises as a Weierstrass semigroup at a pair of non-Weierstrass points on a smooth plane curve of degree 5. First we find the candidates of semigroups by computing the dimensions of linear series on the curve. Then, by constructing examples of smooth plane curves of degree 5, we prove that each of the candidates is actually a Weierstrass semigroup at some pair of points on the curve. We need to study the systems of quadratic curves, which cut out the canonical series on the plane curve of degree 5.

BIPOLAR FUZZY SET THEORY APPLIED TO SUB-SEMIGROUPS WITH OPERATORS IN SEMIGROUPS

  • Kang, Mee-Kwang;Kang, Jeong-Gi
    • The Pure and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.23-35
    • /
    • 2012
  • Given a set ${\Omega}$ and the notion of bipolar valued fuzzy sets, the concept of a bipolar ${\Omega}$-fuzzy sub-semigroup in semigroups is introduced, and related properties are investigated. Using bipolar ${\Omega}$-fuzzy sub-semigroups, bipolar fuzzy sub-semigroups are constructed. Conversely, bipolar ${\Omega}$-fuzzy sub-semigroups are established by using bipolar fuzzy sub-semigroups. A characterizations of a bipolar ${\Omega}$-fuzzy sub-semigroup is provided, and normal bipolar ${\Omega}$-fuzzy sub-semigroups are discussed. How the homomorphic images and inverse images of bipolar ${\Omega}$-fuzzy sub-semigroups become bipolar ${\Omega}$-fuzzy sub-semigroups are considered.

m-CANONICAL IDEALS IN SEMIGROUPS

  • Kwak, Dong-Je;Kim, Myeong-Og;Park, Young-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.577-586
    • /
    • 2000
  • For a grading monoid S, we prove that (1) if (S, M) is a valuation semigroup, then M is an m-canonical ideal, that is, an ideal M such that M : (M:J)=J for every ideal J of S. (2) if S is an integrally closed semigroup and S has a principal m-canonical ideal, then S is a valuation semigroup, and (3) if S is a completely integrally closed and S has an m-canonical ideal I, then every ideal of S is I-invertible, that is, J+(I+J)=I for every ideal J of S.

  • PDF

NORMAL EIGENVALUES IN EVOLUTIONARY PROCESS

  • Kim, Dohan;Miyazaki, Rinko;Naito, Toshiki;Shin, Jong Son
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.895-908
    • /
    • 2016
  • Firstly, we establish spectral mapping theorems for normal eigenvalues (due to Browder) of a $C_0$-semigroup and its generator. Secondly, we discuss relationships between normal eigenvalues of the compact monodromy operator and the generator of the evolution semigroup on $P_{\tau}(X)$ associated with the ${\tau}$-periodic evolutionary process on a Banach space X, where $P_{\tau}(X)$ stands for the space of all ${\tau}$-periodic continuous functions mapping ${\mathbb{R}}$ to X.

ON STRONGLY REGULAR NEAR-SUBTRACTION SEMIGROUPS

  • Dheena, P.;Kumar, G. Satheesh
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.323-330
    • /
    • 2007
  • In this paper we introduce the notion of strongly regular near-subtraction semigroups (right). We have shown that a near-subtraction semigroup X is strongly regular if and only if it is regular and without non zero nilpotent elements. We have also shown that in a strongly regular near-subtraction semigroup X, the following holds: (i) Xa is an ideal for every a $\in$ X (ii) If P is a prime ideal of X, then there exists no proper k-ideal M such that P $\subset$ M (iii) Every ideal I of X fulfills $I=I^2$.

COMMON SOLUTION TO GENERALIZED MIXED EQUILIBRIUM PROBLEM AND FIXED POINT PROBLEM FOR A NONEXPANSIVE SEMIGROUP IN HILBERT SPACE

  • DJAFARI-ROUHANI, BEHZAD;FARID, MOHAMMAD;KAZMI, KALEEM RAZA
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.89-114
    • /
    • 2016
  • In this paper, we introduce and study an explicit hybrid relaxed extragradient iterative method to approximate a common solution to generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup in Hilbert space. Further, we prove that the sequence generated by the proposed iterative scheme converges strongly to the common solution to generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup. This common solution is the unique solution of a variational inequality problem and is the optimality condition for a minimization problem. The results presented in this paper are the supplement, improvement and generalization of the previously known results in this area.