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m-CANONICAL IDEALS IN SEMIGROUPS
Donc JE KwAK, MYEONG OG KiM, AND YOUNG S00 PARK

ABSTRACT. For a grading monoid S, we prove that (1) if (S, M) is
a valuation semigroup, then M is an m-canonical ideal, that is, an
ideal M such that M : (M : J) = J for every ideal J of S. (2) if §
is an integrally closed semigroup and'S has a principal m-canonical
ideal, then S is a valuation semigroup, and (3) if S is a completely
integrally closed and S has an m-canonical ideal I, then every ideal
of S is I-invertible, that is, J + ({ : J) = I for every ideal J of S.

1. Introduction

A non-zero subsemigroup with 0 of a torsion-free abelian (additive)
group is called a grading monoid. Throughout this paper, S denotes a
grading monoid. An ideal of S is a non-empty subset I of S such that
S+ 1 C1I Anideal I of S is prime if I # S and if £ + y € I implies
z€loryelforz,ye€ S Forz e S, set (z) =+ S. An ideal
I of S is principal if I = () for some z € S. Also, let M = {m €
S | m is a non-unit element of S}. If M is a non-empty set, then M is
the unique maximal ideal of S. We denotes by ¢(S) = {s -t | s,t € S}
the quotient group of S.

A non-empty subset I of ¢(S) is called a fractional ideal of S if (1)
S+ICTIand(2)s+1CS for some s € S. For a fractional ideal I
of S,set I"' = (S:I)={z €q(S) | z+ 1 C S}. A fractional ideal
I of S is said to be invertible if I + I™* = S. For a fractional ideal I
S:(8:1I)=(I"Y" is defined by I, and if I = I,, then I is called
divisorial. A fractional ideal I is said to be principal if I = £ + S for
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some z € g(S). A semigroup S is said to be reflezive if every ideal of S
is divisorial. Note that a fractional ideal of S is invertible if and only if
it is principal. Hence each invertible ideals of S is divisorial ideals.

Let I and J be fractional ideals of S. Then I : J is defined to be
{z € ¢(S) | z+ J C I} and it is also a fractional ideal of S, where all
colons are taken over ¢(S), and in case ] = S we abide by the usual
convention and say J is divisorial. We define an ideal I of S to be m-
canonical (multiplicative canonical) if every ideal of S is I -divisorial.
Hence the ideal S of S is m-canonical if and only if every ideal of S
is divisorial. Hence S is reflexive if and only if S is m-canonical. In
this paper, we study a semigroup version of [3]. In particular, we study
m-canonical ideals in valuation semigroups.

2. General results of m-canonical ideals

In this section, we present several results concerning m-canonical ideals
in semigroups.

LEMMA 2.1. ([2, Theorem 16.4]) Let I and J be fractional ideals of a
semigroup S. Then

D) (w+I:J)=u+{I:J);

2 T:u+D)=—u+{:J).

LEMMA 2.2. Let I be an m-canonical ideal of a semigroup S. Then

HU:N=8;

(2) If M is a maximal ideal of S and I C M, then I S (I : M) C S
and there is no ideal properly between I and (I : M);

(3) For each element a of S, a + I is m-canonical;

(4) I:(I:J)=J for each fractional ideal J of S;

(5) If {J,} is a non-empty set of fractional ideals of S such that NgJo #
0, then I : (NgJ,) = Ua(I : Jo); moreover it is also true in gen-
eral, without assuming that I is an m-canonical ideal, then (I :
Uada) = Na(l : Jo);

(6) If J is an ideal of S with J™' = S, then I + J = I (in particular,
I1CJ);

(7) If I is a divisorial ideal, then I is invertible;

(8) If I is a maximal ideal of S, then I is either invertible or I = I +1
and I is nonfinitely generated;
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(9) If I is a prime ideal, then I is a maximal ideal.

Proof. (1) Since I is m-canonical, S=1:(/: S). Since (I : §) = I,
we have ([ : I) = S.

(4) We observe that if J is a fractional ideal of S, then J = —s + A
where s € Sand Aisanidealof S. Hence I : (J: J)=1:(I: —s+A) =
—s+(I:(I:A))=-s+A=J by Lemma 2.1.

(5) We have (I : J,) € I : (NaJo) for each o, so that Ua(I: J,) C I:
(NaJa). Set J =Uq(I : J,). Then we have (I: J)C I:(I:J,)=J, for
each a, 50 (I : NaJo) =1 : (I : J) = J. Therefore (I : Jo) = Ua(I : Jy).

(8) If I is not invertible of S, then I +I"* ¢ S. Thus I + ™! =
I'andso I"' =1 :1 = 8 by (1). Since I is m-canonical, we have
I+I=1:(:1I+1I). Weobserve that (I : I +I) = S. Indeed, if
z+I+I CI thenz+I C(I:I)=3S5, and hence z € I"™! = S.
Therefore I + I = (I : S) = I. Suppose now that [ is finitely generated,
say I = (@ai,...,an). Since I + I = I, each a; = z; +y; for some z;,y; € I.
We observe that z; ¢ (a;) and y; ¢ (a;). Indeed, if z; € (a;), y; € (a;),
then z; = a; + s, yi = a; + t for some s,t € S. Hence —(s+t) =q; € S,
and so I = S, a contradiction. If z; € (a;), ¥ ¢ (a;), then z; = a; + s,
yi = a; +t for some s,t € S and ¢ # j. Hence —(s+t) = a; € S, and
so I = S, a contradiction. Therefore z; € (a;), y; € (ax) for some j, k
and 7 # j, i # k. Then a; = a; + s+ ax + t for some s,t € S. Hence
I = (ai,...,8;—1,Qit1, ..., G,). By repeating this process, we get I = (a;)
for some t. But I is not invertible, this is a contradiction. Hence I is
nonfinitely generated. O

PROPOSITION 2.3. Suppose I is an m-canonical ideal of S. Then I is
not the intersection of any set of fractional ideals of S properly containing
I. Thus I admits a unique minimal proper fractional overideal.

Proof. Let {J,} be a set of fractional ideals of S such that I ¢ J, for
each o. We claim that I # N, J,. Assume otherwise, then S=(I: 1) =
(I : Nada) = Ua(I : Jy), by Lemma 2.2. Since 0 € S,0 € (I : J,) for
some ¢, and so J, C I, a contradiction. O

PROPOSITION 2.4. Suppose I is an m-canonical ideal of (S, M) such
that I & M. Then every fractional ideal of S properly containing I
contains (I : M).
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Proof. Let {J,} be a set of fractional ideals of S such that I ¢ J, for
each a. By Proposition 2.3, we have I & Ny Jy C (I : M). It follows that
Nada = (I : M). Hence (I : M) C J, for each a. O

PROPOSITION 2.5. Let (S, M) be a Noetherian semigroup. If S has
an m-canonical ideal, then dim(S) < 1.

Proof. Assume dim(S) > 2. Then ht(M) > 2. Let P, Q be distinct
height-one prime ideals of S and choose a € P N Q. If I is an m-canonical
ideal of S, then a + I is an m-canonical ideal of S. By Proposition 2.3,
a+1 is irreducible. Since S is Noetherian, it follows that a+ I is primary.
This is contradiction, as a+ I has more than one minimal prime ideal. O

PROPOSITION 2.6. If I is an m-canonical ideal of (S, M), then I+ Sy
is an m-canonical ideal of Sy, where Spy = Ss_y ={s—u|s€ S,u €
S - M}.

Proof. We note that if J is an ideal of S, then J = J+Sy. Let J+Sus
be any ideal of Sy, where J is an ideal of S. Then I + Sy : (I + Sis :
J+Su)=1I:(I:J)=J=J+ Sy. Hence I + Sy is an m-canonical
ideal of Syy. 0

REMARK 2.7. If I and J are ideals of a semigroup (S, M), then (I :
J)+Su=I+Su:J+ Su).

The following proposition is an analogy for semigroups of [3, Proposi-
tion 5.1].

PROPOSITION 2.8. Let S C T C ¢(S). Assume (S:T) # 0. If I is an

m-canonical ideal of S, then (I : T)) is an m-canonical ideal of T.

3. Connections with star-operations

Let F(S) be the set of all fractional ideals of S. We recall that a
star-operation on S is mapping J — J* of F(S) into F(S) satisfying the
following conditions for all J, L € F(S) and 0 # u € ¢(95):

(1) () =(u) and (u+J)* =u+J"
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(2) JC J*, and J* C L* if J C L.
(3) (J*) = J~.

Consider the mapping J — I : (I : J), where I is an ideal of S with
(I:1)= S and J is a fractional ideal of S. We prove in Proposition 3.2
that this mapping is a star-operation. First, we need a lemma.

LEMMA 3.1. Let I be an ideal of S and J a fractional ideal of S. Then
I:(I:J)=n,I+u, whereu € q(S) and J C I + u.

Proof. Suppose x € I : (I: Jyand J C I +u. Thenz+(I:J)C I
and —u € (I : J), so x+(—u) € I. Hence z € I +u. Conversely, suppose
T € Ny + u for all u € ¢(S) such that J C I + u. We need to show
z+ (I :J)C1I Notethat ~-ue (I:J) e —u+JCl e JCI+u.
Hence z € I + u implies z + (—u) € I as required. O

PROPOSITION 3.2. Let I be an ideal of S with (I : I) = S. Then the
mapping J — I : (I : J) is a star-operation on S.

Proof. Conditions (1) and (2) of the definition of a star-operation are
easily verified. We show the condition (3). Since (I : I) = S, we have
I'=1:(I:I)=1:S=1 Thisimplies that J*C (I+u)" =I*+u=
I +u, and so J* = (J*)* by Lemma 3.1. O

COROLLARY 3.3. Let I be an ideal of S and let f denote the mapping
on F(S) defined by f(J) = (I : J). Then the following conditions are
equivalent:

(1) I is m-canonical;
(2) f is one-to-one;
(3) f is onto.

The next corollary helps make the search for m-canonical ideals tractable.

COROLLARY 3.4. Let I be an ideal of S with (I : I) = S. If J is a
divisorial fractional ideal, then J is I-divisorial.
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REMARK 3.5. If I is an m-canonical ideal of S, then the mapping
J — Ju =1:(I:J)is a star-operation on S with finite character,
where J € F(S), in fact, *; = d, where d is the identity star-operation
on S. Indeed, since (I : I) = S, *; is a star-operation on S. Since [ is
m-canonical, we have J* = I : (I : J) = J. Therefore *; = d and *; is
of finite character.

LEMMA 3.6. Let I be an ideal of S with (I : I) = S and define
J*=1:(:J) for each J € F(S). If I is divisorial, i.e., I = I, then
J* = J, for every J € F(S).

Proof. Let J be an ideal of S and recall that J* = N,/ + u, where the
intersection is over all u € ¢(S) such that J C I +u by Lemma 3.1. Since
I is divisorial, (I +u)y = I,+u = I +u [2, Theorem 16.4(6)], and so J* is
divisorial. Therefore J, C J*. Since the map J — J* is a star-operation,
we also have J* C J,, so J* = J,. O

PROPOSITION 3.7. The following statements are equivalent:
1) Each ideal of S is divisorial;

2) S has a principal m-canonical ideal;

3) S has an invertible m-canonical ideal;

4) S has a divisorial m-canonical ideal.

Proof. Tt suffices to prove the implication (4) = (1). Let I be an m-
canonical ideal such that I = I,. Hence, J=1:([:J)=J" = J, by
Lemma 2.2(1) and Lemma 3.6. O

With corollary 3.4 in mind, it is natural to make the following defini-
tion.

DEFINITION 3.8. Let I be an ideal of S and J € F(S). Then J is said
to be I- invertsble if J+ (I : J)=1.

REMARK 3.9. (1) If J is invertible, then J is I-invertible. To see
this, write J =+ S forsome 2 € S. Then (I : J) = (I : x+ S) =
—z+(I:8)=—z+1 by Lemma 2.1. Since x +1 C J+ I, we have
ICJ+(—z)+1I=J+ I :J). The reverse inclusion is clear. So
J+({I:J)=1

582



m-canonical ideals in semigroups

(2) If I is a principal ideal of S, then I-invertible implies invertible.
Hence I-invertible implies I-divisorial.

We recall that an element z € ¢(S) is called almost integral over S if
there exists a € 9 such that a+nz € Sforalln > 1. S is called completely
integrally closed if every almost integral element over S belongs to S.

PROPOSITION 3.10. Let S be a completely integrally closed semigroup.
If I is an m-canonical ideal of S, then every ideal of S is I-invertible.

Proof. Let J be an ideal of S and set L = J + J~'. Since S is
completely integrally closed, L=! = S. By Lemma 2.2 part (6), we
have I+ L =1. Since I+ J ' C (I:J), I C J+(I:J). Therefore
J+(I:J) =1 O

4. m-canonical ideals in valuation semigroups

In this section, we introduce the properties of m-canonical ideals in
valuation semigroups.

PROPOSITION 4.1. If I and J are m-canonical ideals of S, then J =
I + u for some u € ¢(S).

Proof. We have J = [ : (I : J) = N,J + u (Lemma 3.1), since I is
m-canonical. On the other hand, J is m-canonical, so Proposition 2.3
implies that J = I + u for some u € ¢(S). a

COROLLARY 4.2. If I and J are m-canonical ideals of S, then J is
I-invertible.

Proof. This follows directly from Proposition 4.1, Lemma 2.1 and
Lemma 2.2(1). O

Let G be a torsion-free abelian group and I' a totally ordered abelian
group, where both G and T are additive groups. A valuation v: G — T
is a function such that v(a + b) = v(a) + v(b) for each a,b € G. Set
V = {a € G| v(a) > 0}, then V is called a valuation semigroup. We
recall that S is a valuation semigroup if and only if either a € S or
—a € S for each a € G [9, Lemma 10]. Note that if (S,M) is a valuation
semigroup, then (M : M) = S.
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LEMMA 4.3. ([8]) Suppose (S, M) is a valuation semigroup. If M is
not principal, then the set of ideals which are non-divisorials is the form

{a+M|ac€ S}

THEOREM 4.4. If (S, M) is a valuation semigroup, then M is an m-
canonical ideal of S.

Proof. Let J be an ideal of S. We recall that every ideal of S is
divisorial if and only if M is principal [9]. So it suffices to assume J
is non-divisorial (Corollary 3.4) and M is nonfinitely generated. In this
case, J = a + M for some a € S by Lemma 4.3. Hence M : (M : J) =
M:M:a+M)=a+[M:(M:M)]=a+(M:S)=a+M=J. So
J is M-divisorial. O

COROLLARY 4.5. If (S, M) is a valuation semigroup and M is non-
finitely generated, then M = M + M.

Proof. Since M is m-canonical, we have M+ M =M : (M : M + M).
We observe that (M : M + M) =(S: M). Indeed, z+ M+ M C M &
T+MC(M:M)=8 & z€(S:M). Since M is nonfinitely gener-
ated, M, = S,andso (S: M)=M"1=S. Hence M+ M =M : (M :
M+M)=M:(S:M)=(M:S)=M. O

We recall that an element = € ¢(S) is called integral over S if nz € S
for some non-negative integer n. S is called integrally closed if every
integral element over § belongs to S.

THEOREM 4.6. Suppose S is an integrally closed semigroup. If I is
principal m-canonical, then S is a valuation semigroup.

Proof. Let I = z + S for some z € S, and J an ideal of S. Then

J=I:(I:J)=z+8S:(z+S5:J)=S5:(S:J)=J, Thus every ideal
of S is divisorial. By [9, proposition 17], S is a valuation semigroup. O

For another simple proof, since [ is principal m-canonical, every ideal
of S is divisorial by Proposition 3.7. So S is a valuation semigroup [9,
Proposition 17].

COROLLARY 4.7. Let S be an integrally closed semigroup. If S is
m-canonical, then S is a valuation semigroup.
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COROLLARY 4.8. Let S be a semigroup with a principal maximal ideal
M. If S is m-canonical, then S is a valuation semigroup.

We recall that a semigroup S is coherent if the intersection of two
finitely generated ideals of S is again finitely generated.

Following proposition is an analogy for semigroups of (3, Proposition
2.5].

PROPOSITION 4.9. Suppose (S, M) is an integrally closed coherent
semigroup. If S has an m-canonical ideal and NS ,nM = (, then S is a
valuation semigroup.

PROPOSITION 4.10. Let S be a completely integrally closed semigroup.
If (S, M) is a valuation semigroup, then every ideal of S is M-invertible.

Proof. Let J be an ideal of S. We may assume that J is infinitely
generated, since otherwise J is invertible and thus M-invertible. Since S
is completely integrally closed, (J + J~1), = S,and so (J+J™ 1) ' = 8.
Since M is m-canonical, we have M + (J + J~!) = M, by Lemma 2.2
part(6). Then M C J+J 1 C S. If J+ J! = G, then J is invertible,
and so J is principal, a contradiction. Thus M = J + J~1. Hence
J+J1=J+(M: M+ J)= M. To complete the proof, we note that
M+J=M:(M:M+J)=(M:J1), and since J+ J! = M,
weget J CM:J!=M+J C J Therefore, M +J = J and
J+(M:J)y=M. O

For another proof, since S is a valuation semigroup, M is an m-
canonical ideal of S. Hence every ideal of S is M-invertible, by Proposi-
tion 3.7.

COROLLARY 4.11. If (S, M) is a 1-dimensional valuation semigroup,
then every ideal of S is M-invertible.

Proof. Let {V,} be the set of valuation oversemigroups of S and let
VY be the complete integral closure for each A. By [7, (3.11) (1)}, we
have M\Vy = S§*, where S* is the complete integral closure of S. If
M+ M~! =S, then M is a finitely generated ideal of S. It follows that
S is a Noetherian semigroup, and hence S* = S. If M + M~! = M, then
S*C M™' = (M : M). For each ideal I of S, I : I is an idempotent
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element of F(S). Therefore M~} is an idempotent. By [7, (3.9)], S* is
the maximum idempotent element of F(S). Hence S* = M~!. Since M
is an m-canonical ideal of S, (M : M) = S. So §* = S. By Proposition
4.10, every ideal of S is M-invertible. O

COROLLARY 4.12. If S is a valuation semigroup with an nonfinitely
generated maximal ideal M, then every non-divisorial ideal of S is M-
invertible.

Proof. Let J be a non-divisorial ideal of S. Then J = a+ M for some
a€S. Hence J+ (M :J)y=a+M:(M:a+M)=M:(M: M) =
(M : S) = M. Therefore J is M-invertible. O
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