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COMMON SOLUTION TO GENERALIZED MIXED
EQUILIBRIUM PROBLEM AND FIXED POINT PROBLEM
FOR A NONEXPANSIVE SEMIGROUP IN HILBERT SPACE

BEHZAD DJAFARI-ROUHANI, MOHAMMAD FARID, AND KALEEM RaAzA KAzMmI

ABSTRACT. In this paper, we introduce and study an explicit hybrid re-
laxed extragradient iterative method to approximate a common solution
to generalized mixed equilibrium problem and fixed point problem for
a nonexpansive semigroup in Hilbert space. Further, we prove that the
sequence generated by the proposed iterative scheme converges strongly
to the common solution to generalized mixed equilibrium problem and
fixed point problem for a nonexpansive semigroup. This common solu-
tion is the unique solution of a variational inequality problem and is the
optimality condition for a minimization problem. The results presented
in this paper are the supplement, improvement and generalization of the
previously known results in this area.

1. Introduction

Throughout the paper unless otherwise stated, let H be a real Hilbert space
with inner product (-,-) and norm || - ||. Let C be a nonempty, closed and
convex subset of H.

Recall that a mapping T': C' — C'is said to be nonexpansive if || Tz —Ty|| <
[z —yll, Vo, y € C.

A family S := {T'(s) : 0 < s < oo} of mappings from C' into itself is called
nonezxpansive semigroup on C' if it satisfies the following conditions:

(i) T(0)x = z for all z € C;

(i) T(s+1t)=T(s)T(t) for all s,t > 0;
(iti) [|7'(s)z —T(s)yll < [lx —y|| for all 2,y € C and s > 0;
(iv) for all x € C, s+ T'(s)x is continuous.
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The set of all the common fixed points of a family S is denoted by Fix($J),
ie.,

Fix(Q):={z e C:T(s)r=2, 0<s< o0} = ﬂ Fix(T'(s)),
0<s<00
where Fix(T'(s)) is the set of fixed points of T'(s).
Recall that a mapping f : C' — C is said to be weakly contractive [15] if

1f () = FWIl < llz = yll = o[z —yl)), Yo,y € C,

where 1 : [0,400) — [0,+00) is a continuous and strictly increasing function
such that 1) is positive on (0, +00) and 1(0) = 0. If ¢(t) = (1 — k)¢, then f is
said to be contractive with constant k > 0. If ¢(¢) = 0, then f is said to be
nonexpansive.

The fixed point problem (in short, FPP) for a nonexpansive semigroup S is:
Find z € C such that

(1.1) x € Fix(S).

Next, we consider the following generalized mixed equilibrium problem (in
short, GMEP): Find = € C such that

(12) F(x,y)+<Ax,yfx>+¢(y,z)f¢(z,z) 207 VyEC,

where F' : O x C — R and ¢ : C x C — R, R is the set of all real num-
bers, be nonlinear bifunctions. The solution set of GMEP(1.2) is denoted by
Sol(GMEP(1.2)).

If A =0, then GMEP(1.2) reduces to the generalized equilibrium problem
(in short, GEP) of finding « € C such that

(1.3) F(x,y) + ¢y, z) — ¢(x,x) >0, Yy € C.

The solution set of GEP(1.3) is denoted by Sol(GEP(1.3)).
If A=0and ¢ =0, then GMEP(1.2) reduces to the equilibrium problem (in
short, EP) of finding = € C such that

(1.4) F(z,y) >0, Vy € C,

which has been studied by Blum and Oettli [1].
If F =0 and ¢ = 0, then GMEP(1.2) reduces to the classical variational
inequality problem (in short, VIP) of finding = € C' such that

(1.5) (Az,y —x) >0, Yy € C.

An operator B : H — H is said to be strongly positive if there exists a
constant 4 > 0 such that (Bz,z) > 7||z||?,Vz € H.

In 2006, Marino and Xu [11] introduced the following implicit and explicit
iterative methods based on viscosity approximation method for fixed point
problem (FPP) for a nonexpansive self mapping 7" on H:

(1.6) x =tyf(x) + (I —tB)Txy,
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and
(1.7) Tnt1 = Y f(xn) + (I — apB)Txy,

where f is a contraction mapping on H with constant o > 0, B is a strongly
positive self-adjoint and bounded linear operator on H with constant 7 > 0
and y € (0, 2). They proved that the net (z;) and the sequence {, } generated
by (1.6) and (1.7), respectively, both converge strongly to the unique solution
of the variational inequality

(B—~f)z,x—2z) >0, Vx € Fix(T),

which is the optimality condition for the minimization problem

1
min  —(Bzx,z) — h(z),
z€Fix(T) 2
where h is the potential function for ~f.
Recently, Ceng et al. [3] introduced and studied the following explicit iter-
ative scheme for FPP for a nonexpansive mapping T":

(1.8) Tny1 = Polony f(zn) + (I — pon B)Ty),

where P¢ is a metric projection on C' and p > 0.
In 2008, Plubtieng and Punpaeng [13] introduced and studied the following
implicit iterative scheme to prove a strong convergence theorem for FPP(1.1):

1 [
(1.9) xy =tf(ay) + (1 — t)s—/ T(s)xids,
tJo
where (z;) is a continuous net and (s;) is a positive real divergent net.
In 2010, Cianciaruso et al. [5] introduced the following implicit and ex-
plicit iterative methods for approximating a common solution of EP(1.4) and
FPP(1.1) for a nonexpansive semigroup S = {T'(s) : 0 < s < 00}:

1
Fl(utay) + _<y — Ut, Ut — $t>a vy € Ca
Tt
(1.10) 1 per
xp =tyf(ze) + (I — tB)S—/ T(s)usds,
tJo
where (s¢) and (r;) are the continuous nets in (0,1);
and
1
Fl(unay) + _<y — Unp, Un — xn)a Vy € C,
T
(1.11) n 1 e
Tnt1 = @y f(xn) + (I — anB)—/ T(s)upds,
Sn 0

where {ay}, {sn} and {r,} are the sequences in (0, 1).
Very recently, Xiao et al. [15] introduced and studied the following implicit
iterative scheme and obtained strong convergence theorem for EP(1.4) and
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FPP(1.1):
F(un,y) + 5y =t i = 29) 20, ¥y € C,
1 n
(1.12) zn = (I — ﬂn)s—/ T(8)unds + Brtn,
n Jo
Tn =1 —andl)zn +anyf(zn), Vo> 1.

Motivated by the work of Ceng et al. [3], Xiao et al. [15], Cianciaruso et al.
[5], Kazmi et al. [8, 9, 10], and by the ongoing research in this direction, we
suggest and analyze an explicit hybrid relaxed extragradient iterative method
for approximating a common solution to generalized mixed equilibrium prob-
lem and fixed point problem for a nonexpansive semigroup in Hilbert space.
Further, we prove that the sequence generated by the proposed iterative scheme
converges strongly to the common solution to generalized mixed equilibrium
problem and fixed point problem for a nonexpansive semigroup. This com-
mon solution is the unique solution of a variational inequality problem and is
the optimality condition for a minimization problem. The results and method

presented here improve and generalize the corresponding results and methods
given in [5, 9, 10, 15].

2. Preliminaries

We recall some concepts and results which are needed in sequel.

The symbols — and — denote strong and weak convergence, respectively, I
denotes the identity operator on H.

For every point = € H, there exists a unique nearest point in C' denoted by
Pcx such that

(2.1) | — Poz| < [lz -y, Yy € C.

The mapping P¢ is called the metric projection of H onto C. It is well known
that Pc is nonexpansive and satisfies

(2.2) (x —y, Pcx — Poy) > ||Pcx — Poyl|?, Va,y € H.
Moreover, Pox is characterized by the fact Pox € C and
(2.3) (x — Pox,y — Pox) <0, Vy € C.
This implies that
(2.4) o —yl* = |z — Pez|® + ||y — Pox|?, Vo € H, ¥y € C.
In a real Hilbert space H, it is well known that
(25) Az + (1= Nyl2 = A2 + (1= gl = A1 = Nlle — g2

for all z,y € H and X\ € [0,1].
It is also known that every Hilbert space H satisfies:
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(1) Opial’s condition [12], i.e., for any sequence {z"} with 2™ — z the
inequality

(2.6) liminf |2 — z|| < liminf ||2" — y|

holds for every y € H with y # x;

(2)
(2.7) o+l < lz)|* + 2{y, & +y), Yo,y € H;
Definition 2.1. A mapping T : H — H is said to be

(i) monotone, if

(Tx — Ay,x —y) >0, Va,y € H;
(ii) a-strongly monotone, if there exists a constant « > 0 such that
(Te —Ty,x —y) >alz—y|* Va,y € H;
(iii) B-Lipschitz continuous, if there exists a constant 8 > 0 such that

[Tz =Tyl < Bllx —yll, Yo,y € H.

Lemma 2.1 ([7]). Let C be a nonempty, closed and convex subset of a strictly
conver Banach space E and let T be a nonexpansive mapping from C into itself
with Fix(T) # 0. Then Fix(T) is closed and conver.

Definition 2.2. Let F be a nonempty subset of a Hausdorff topological vec-
tor space X and conv(E) denote the convex hull of E. Then a multivalued
mapping G : E — 2% is said to be a KKM map if, for every finite subset
{z1,22,23,...,2n} C E, conv(z1,22,T3,...,2,) C UL, G(x;).

Lemma 2.2 ([6]). Let E be a nonempty subset of a Hausdor[f topological vector
space X and let G : E — 2% be a KKM map. If G(z) is closed for all x € E
and is compact for at least one x € E, then NyepG(z) # 0.

Lemma 2.3 ([2], Demiclosed principle). Let H be a real Hilbert space, C' be a
closed and convex subset of H and let S : C — H be a nonexpansive mapping.
Then I — S is demiclosed at y € H, i.e., for any sequence {z™} in C' such that
2" =z e€C and (I —8)a"™ — y, we have (I — S)T =y.

Lemma 2.4 ([11]). Assume B is a strongly positive linear bounded operator on
a Hilbert space H with coefficient ¥ > 0 and 0 < p < ||B||~t. Then ||I—pB|| <
1-—p7.

Lemma 2.5 ([14]). Let C be a nonempty bounded closed and convex subset of
H and let S = {T(s): 0 < s < oo} be a nonexpansive semigroup on C. Then
for any h >0,

I I

lim sup HZ/ T(s)xds — T(h)(;/ T(s)zds)|| = 0.
0 0

t—o00 zeC
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Lemma 2.6 ([16]). Assume that {an} is a sequence of nonnegative real num-
bers such that
ant1 = (1 —m)an +6n, n 20,

where {vn} is a sequence in (0,1) and {05} is a sequence in R such that

(1) 32021 Y = 005

(i) limsup, o 22 <0 or 3207, |0n] < 0.
Then lim,_, o a, = 0.
Lemma 2.7 ([4]). Let {\,} and {Bn} be two sequences of nonnegative real
numbers and let {a,} be a sequence of positive real numbers satisfying the
conditions y "o o = 00 such that either limsup,, _, . g—: =0o0ry. 2B <
0. Let the recursive inequality

Ant1 < A —apb(An) + Bn, n=0,1,2,3,...,

be given, where Y () is a continuous and strict increasing function for all A > 0
with ¥(0) = 0. Then X\, converges to zero, as n — 0.

3. Existence of solution of GEP(1.3)
First, we have the following assumptions.

Assumption 3.1. Let F' and ¢ satisfy the following conditions:
(1) F(z,z) =0, Va,y € C|
(2) F is monotone, i.e.,
Fa,y) + F(y,x) <0, Yo,y € C;

(3) For each y € C, x — F(x,y) is weakly upper semicontinuous;
(4) For each x € C, y — F(x,y) is convex and lower semicontinuous;

(5) ¢(-,-) is weakly continuous and ¢(-,y) is convex;

(6) ¢ is skew-symmetric, i.e.,

Pz, x) — o, y) + ¢(y,y) — oy, x) = 0, Va,y € C.
Now, we define T, : H — C as follows:
1

(31) T,(2) = {x € C ¢ Fla,y) - 0(y,2)~6(r, 2) 4+

<y71'51'72> 2 05 Vy € C}a

where r is a positive real number.
Now, we prove some properties of the mapping 7, which lead the existence
and uniqueness of solution to GEP(1.3).

Theorem 3.1. Let H be a real Hilbert space; let C' be a nonempty, closed and
conver subset of H. Let F,¢ : C' x C — R be nonlinear mappings satisfying
Assumption 3.1. Let for each z € H and for each x € C, there exist a bounded
subset D, C C and z, € C such that for any y € C'\ Dy,

1
F(y, zo) + ¢z0,y) = 0y, y) + —{zo — 9,y = 2) <0
Let the mapping T, be defined by (3.1). Then the following conclusions hold:
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(i) T-(2) is nonempty for each z € H;
(ii) T is single-valued,
(iii) T 4s firmly nonexpansive mapping, i.e., for all z1,2z0 € H,

T (21) = T (22)1* < (Tr(21) = Tr(22), 21 — 22);
(iv) Fix(T,)= Sol(GEP(1.3));
(v) Sol(GEP(1.3)) is closed and conver.

Proof. (i). Let x¢ be any given point in C. It is sufficient to show the existence
and uniqueness of solution of the following auxiliary problem (in short, AP) of
GEP(1.3). Find z € C such that

r[F(Z,y) + ¢(y, @) — ¢(Z,Z)] + (y — 2, — 20) = 0, Vy € C.
For each fixed y € C, we define
G(y) = {ZE eC: T[F(‘Tay) + (b(y,.’L') - ¢($,.T)] + <y — T, T = ‘T0> Z 0}

We observe that for each y € C, G(y) is nonempty since y € G(y).

We prove that G is a KKM map. Suppose that there exists a finite subset
{y1,92,...,yn} of C and o; > 0, for all i = 1,2,...,n with > | &; = 1 such
that # =" | a,y; ¢ G(y;), V i. Then we have

r[F(Z,y:) + ¢(yi, &) — (2, 2)] + (ys — &, & — z0) <0, V.

Therefore,
> air[F(E,y:) + ¢(yi, #) — (2, 2)] + (yi — £, — 20) <0, V i
=1

By making use of Assumption 3.1, we have
0=r[F(2,2)+ ¢(2,2) — ¢(2,2)] + (2 = 2,& — x0) <0,

which is a contradiction. Hence, G is a KKM map.

Note that G(y)* (the weak closure of G(y)) is a weakly closed subset of
C for each y € C'. Moreover, for each zy € C, there exist a bounded subset
D,, € C and z,, € C such that, for any x € C'\ D,,,

T[F(‘%’ Zlo) + ¢(Zﬂcoa$) - ¢($, ,T)] + <zmo — T, T — -TO> <0,
which implies that
G(ZI0> = {:L' € C: T[F(i'a ZI0)+¢(ZI07:C)7¢(1'5 ZL')]+<Z$O *SC,SC*SC()> Z 0} g DI[))

and hence G(z,,)% is weakly compact. Thus, it follows from Lemma 2.2 that

NyecG(y)” # 0.

Let Z € NyecG(y)¥. Now, we prove that G(y)* = G(y) for each y € C, i.e.,
G(y) is weakly closed. Let z € G(y)* and {z,,} be a sequence in G(y) such
that x,, = x € C. Then

T[F(xmay) + ¢(ya$m) - ¢($ma$m)] + (Y — T, Ty, — Z) > 0.
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Since ¢ is weakly continuous and F' is upper semicontinuous then

0 < 1imsup{7“[F(£Em, y) + ¢(ya xm) - ¢(‘TW’ xm)] + <y — Tm, Tm — Z>}

m—0o0

< rllimsup F(@m,,y) + lim sup ¢(y, m) — 1ini>inf O(Tm, Tom)]

m—o0 m—o0

+ lim sup(y — Tm, T — 2)
m—o0

< r[F(z,y) + ¢y, 2) — ola, 2)] + (y — =2 — 2).

This implies that 2 € G(y). Hence, G(y) is weakly closed. Consequently,
Z € NyecG(y). Therefore, T € C is a solution of AP. Thus 7}.(z) is nonempty
for each z € H.

(ii) Since, for each z € H, T,.(z) # 0, let x1, 2 € T,-(z) and hence

1
(3.2) F(x1,y) + é(y, x1) — ¢(w1,21) + ;@ —x1,11 —2) >0, Vy € C,
and

1
(3.3) F(xa,y) + &(y, x2) — p(ae, x2) + ;(y — 2,22 —2) >0, Vy e C.
Taking y = x5 in (3.2) and y = 27 in (3.3) then on adding, we have

F(x1,22) + F(22,21) + ¢(22,21) — ¢(21,21) + ¢(21, 22) — ¢(72, T2)
1
+ ;<£E2 —z1,21 — x2) > 0.

Since F' is monotone and ¢ is skew-symmetric, we have

%<1‘2 —x1,x1 — x2) > 0.
Since r > 0, we have
(xg —x1,m1 — T2) >0,
—(x1 — @2, 21 — x2) >0,
@1 — 22 <0,

which implies £1 = x5. Thus T is single-valued.
(iil) For any 21,22 € H, let x1 = T;-(21) and @9 = T,-(22). Then

1
(34) F(:Elay) + (b(yaxl) - ¢(-T13-T1) + ;(y —X1,T1 — Zl> Z 0) Vy S Ca

and

(3.5)  F(a2,y) + ¢y, x2) — (w2, 22) + %@ —x2,22 — 22) > 0, Vy € C.

Taking y = x5 in (3.4) and y = 27 in (3.5) then on adding, we have
F(z1,m2) + F(22, 1) + ¢(2,21) — ¢(71, 1) + ¢(21, 72) — ¢(32, 72)

1
+;<ZL‘27:C1,:L'17:L'2721+22> > 0.
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By using the monotonocity of F' and the property of ¢, we have

1
;<£E2 —x1,x1 — T2 — 21+ 22) > 0.

Since r > 0, therefore
(X — a1, 21 — T2 — 21 + 22) > 0
(xo — 21,21 — 22) + (22 — 21,20 — 21) 2 0
(1 — 22,01 — 22) < (21 — T2, 21 — 22),
ie.,
(3.6) llz1 — 22||? < (T3 (21) — Tr(22), 21 — 22).

Thus 7, is firmly nonexpansive-type mapping.
(iv) Let = € Fix(T,). Then we have

Fle,y) + 6y, ) = () + +{y— 2,0 —2) 20, Vy €,

and so
F(z,y) + ¢(y,z) — (z,2) > 0, Vy € C.
Thus z € Sol(GEP(1.3)).
Let € Sol(GEP(1.3)). Then we have

F(z,y) + ¢(y,x) — ¢(x,2) >0, Vy € C,

and so
1
F(z,y) + ¢(y, x) —qﬁ(m,x)—l—;(y—x,x—@ >0, VyecC.

Hence z € Fix(T;). Thus Fix(T;) = Sol(GEP(1.3)).
(v) Since T, is firmly nonexpansive, T,. is also nonexpansive. Hence, it follows
from Lemma 2.1 that Sol(GEP(1.3)) = Fix(T}) is closed and convex. O

Next, we prove the following lemma.

Lemma 3.1. Let F and ¢ satisfy Assumption 3.1 and let the mapping T, be
defined by (3.1). Let 21,20 € H and r1,79 > 0. Then

ro — T
[Ty (z2) = Ty (z1)]| < |72 — 23] + [ra =]

|7, (22) — 2.
Proof. For any z1,29 € H and 1,72 > 0, let 21 = T,.(21) and a9 = T;.(22) for
some z1,22 € C, we have

1
(37) F('Tlay) + (b(yaxl) - (b(xlaxl) + T_<y —X1,T1 — Zl) Z Oa Vy S Ca
1

and

1
(3.8)  F(x2,y) + é(y, x2) — ¢(w2,22) + T—<y — 2,29 —22) > 0, Yy € C.
2
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Taking y = x2 in (3.7) and y = 27 in (3.8), then on adding, we have
F(xy,22) + F(22, 1) + ¢(a2,71) — d(w1,21) + ¢(21, 22) — ¢(22, 72)

xr1 — 21 To — 22

r > + <$1 — T2, T

Using monotonocity of F' and skew symmetricity of ¢, we have

+<:L'2_:L'13 >ZO

Tl — 21 T2 — 22
(g — - y>0
2 1, =
T1 T2

which implies that

r
(T2 — w1, 21 — 22 + T2 — 21 — —1(:62 —29)) >0,

T2
and so
T
|z — £E1||2 <{xo—x1,82 — 29+ 290 — 21 — r—l(xz — 29)),
2
T
w2 = @a]]® < w2 = 01,22 — 21+ (1= 2)(22 = 22),
2
T —T1
a2 — a1]? < flez — 2222 — 2l + 72"y — 2
This completes the proof. ([

4. Explicit hybrid relaxed extregradient iterative method

We prove the strong convergence of the sequences generated by an explicit
hybrid relaxed extregradient iterative scheme for solving GMEP(1.2).

Theorem 4.1. Let H be a real Hilbert space and let C' be a nonempty, closed,
and convexr subset of H. Let F,¢ : C x C — R be nonlinear bifunctions
satisfying Assumption 3.1. Let f be a weakly contractive mapping with a func-
tion ¢ on H; let A : H — H be a-inverse strongly monotone operator; let
B : H — H be a strongly positive bounded linear operator with coefficient
¥ >0, and S = {T(s) : s > 0} be a nonexpansive semigroup on C. Assume
that T := Fix(J) N Sol(GMEP(1.2)) # 0. For any 0 < v <7, let the sequence
{z"} generated by the following iterative schemes:

20 e C,
Yy =Tpn (2™ —r"A(z™)),
u =T (y" —r"A(y")),
1 tn
2" ="+ (1 - ﬂ")t— / T(s)u"ds,
n Jo
a"*t = Polayf(z") + (I - a"B)z"],
where {a"}, {B"} are the sequences in (0,1) and {r"}, {t"} are sequences of
positive real numbers satisfying the following conditions:

(i) limp e @™ =0, Y02 ja™ =00, > o0 la™ —a™ | < oo;
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(ii) limy oo 8" =0, Y00 ]|8" — "7 < o0;
n n—1
(i) Y02 I < o

(iv) 0 < liminf, o 7" < limsup,_, 7" < 2a, Y oo, |r" Tt

— " < oo
Then the sequence {x"} converges strongly to z* € T' which uniquely solves the
following variational inequality

(4.1) (B=~f)z",2z"—2)<0 forany z€T.

Proof. Since a™ — 0 as n — 0o, we may assume, with no loss of generality,
that o < ||B||™!, Vn > 1. Then, a" < %, Vn > 1.

Let z € I'. Then z = Tyn (2 — 1" A(2)).

Now, we estimate

(4.2) 12" = 2|

tn
=|p"u"+ (1-6") / T(s)u™ds — z||

[}

= [p"u" + (1= p")

= =

/%ﬂ@wwﬁwamnn
0

1 tn
SWWuﬂ+O—WWiAT@MM—ﬂ

n

1 tn 1 tn

=g = 2l = [ s = o [ 1)

0 n Jo

1

ln
1 [t

< g =2l + (1= 8 [ - 2ds
n JO

< Bl = 2l + (1= ) —

tn
< Bl =2 + (1= 8") /O 1T (s)u™ = T(s)z|ds

< lu™ = 2],
and
(4.3) ly"™ — =]
= | Trn(z™ — r™A(2™)) — z||2

(
= || Tn (2™ — 7" A(2™)) — Ty (2 — 1™ A(2))]?
= [[(a" = 2) =" (A(z") — A(2))[”
< Jla™ = 2| = 27" (A(2") — A(2), 2" — 2) + (r")? | A(a™) — A=)
< flz” = z)|* = 2r"a|A@@") — A(2)|P + (r")? | A(z") — A(2)]]?
< fla™ = 2| = r"(2a = ") A@a™) — A(2)||?

< fla™ = 2lf* - (T")Q(i—: — D[ A@") — A(2)|%,
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or

(4.4) ly"™ =z < [la" — 2].
Further, we estimate
(4.5) [u™ — 2|

= Ton(y™ — 1" Ay™)) — 2|

=T (y" = 1" AW™)) = Tin (2 = 7" A(2))|I?

=" —2) = r"(A(y") — A(2))II?

< o™ = 2l = 2r"(A(y") — A(2),y" — 2) + (M2 AY") — A=)
< lly™ = 2l1* = 2" al|A(y") — A)|* + ()| AGy") — A(2)])?

" 2, 20
<ly™ =2l = ") — DIAG™) - AG)I?
<ly™ - =]*.
Hence
(4.6) [u” = 2] < [|l=" — z]|.
Now, we estimate
(4.7)
[E—]|

= [|Po(@™f(z") + (I —a"B)z") — 2
= (@™ f(@") + (I —a"B)z")
= (@™ f(@") + (I —a"B)z")—a"yf(z)=(I —a"B)z — " B(z) + "7 (2)||
ST =a™Bll[lz" =zl + o™l f(«") = f(2)]| + a"[[7f(2) = B(2)]|

< (I =—alla” =zl + a™yllz" — 2] = a"¢([|z" — 2[) + " (|7 (2) = B(2)]

<A -a"@ =" = 2l + a7 f(2) = B(2)|l-
By induction,

PP (g CES CT

Thus {z"} is bounded and hence {y"}, {z"}, {u"}, {f(z™)}, {B(z")} are
bounded.
Next, we estimate

(4.8)
lz" = 2m|

= [[Pe(a™yf(z") + (I = a"B)z") = Po(a" 'y f(z" ™) + (I — a" 7' B)2"71)|
< @™y f(a") + (I = a"B)z") = (a" 'y f (2"~ )+( a"1B)" )|
< ey f(a™) — a™yf (@) + ety fa" ) — e Ty f(z L)
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+(I—-a"B)z" —(I—a"B)z" '+ (I —a"B)z""' — (I -a" 'B)z""}
< a™y|f(@") = fF" I +ala” = a" I f @)
I —a"Bll" = 2" + o = a" M B(" )|
< a™yfla” = 2" = ey (fla” = 2" M) +Ala” = o T "]
+ (I —a")[z" = 2" + | = o™ B" Y]
Let w" = % fotn T(s)u™ds. Now, we estimate
(4.9) I2" = 2"
= 5+ (= B - R (1
= B 4 Bt = g (L= Y — (1 Fu
- o U
< UB" = Bl A+ B u” = T+ 18 = A [lw |
+ (1= ") " —w
< (1= B lw" — w4+ B lu” —u |
+ 18" = B (" M+ D
Further, we estimate

lw™ — w7

—1

I 1
1 / T(s)uds — — / T(s)u"1ds|
tmn 0 tn 1 0

1" 1 1
= ||—/ T(s)uds — —/ T(s)u" tds + —/ T(s)u" 'ds
" Jo t" Jo t" Jo

1 L 1t
i T(s)u" tds + t_”/ T(s)u™ tds — pro / T(s)u™ ds||
0 0 0
1" ) 11 )
== [T(s)u™ —=T(s)u"]lds+ (= — —) T(s)u"""ds
tmn 0 PAL tn—1 0
I 1
+— T(s)u" tds — — T(s)u™ ds||
I . S L .
== [T(s)u™ —=T(s)u" ]ds+ (= — —) T(s)u"""ds
tmn 0 AL tn—1 0
I
+ m T(s)u™ 'ds||.

tn—l
If p € Fix(Q), then
(4.10) lw™ —w™ Y|
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= ||tin/0 [T(s)u™ — T(s)u™ ']ds
o) [ T = Telas
1

t J

+ [T (s)u"~" = T(s)plds|

2|tn _ tn—ll

<t — w4+ (B

"=t = pl.
Thus, from (4.9), we have
(4.11) 2™ — 2" 74|

n n— n 2|tn7tn71|
< — = (1= g A

+18™ = B ([l + M)
n n—1
At
+ 18" = B (™ + ).
Next, we estimate
(4.12) lu" T —u™||
= | T (" = " PAQ™ ) = Ton(y™ — 7™ A(y™) |
< ly™H =T AT = (vt - Ay™))|

Mu"= =l

< ™ =7+

+ 11— Tzzl [|[u" T — (y" Tt — T A(y" ™) (using Lemma 3.1)
<y = AW — AT A
L= =y A
<y = e A
= g e A
< ™=yl B = AT+ LA™
T Lan |
Using (4.12) in (4.11), we have
(4.13) 2" — 2"
<y =y B = AGD] + AG )
! 2t — |

= D = 7+ et =g

tn
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18" = B (| + ).
Now, we estimate
(4.14) Jy" =y
= || Tyn (@™ — 1" A(@")) = Tyn-a (2"~ = 1" LA@" )|
< fla™ =" A(z") = (@7 =T A T)

,rn—l
L= —=lly" = (@™ =" A"))]
< ||(xn _ xn—l) _ T‘nA(.’L'n) + T‘nA(.’L'n_l) _ TnA(,CEn_l) + T‘n_lA(iEn_l)”
rn

- @) + A

7—.7‘7,
< @™ = am1) = 17 A" + 7A@ |+ - A

.

’f‘n_l n n n n— n
L= =l =yt = A
< @™ =2 D+ " = (A D+ AGE™)])
7’"_1
+ 1= ——|llz" =",
T
and
(4.15) [u™ = y"[| < | Ton (y™ — 1™ A(Y")) — Ton (2™ — 1" A(z"™))]|

<|ly" = r"Ay") = (a" =" A@"))]|
< |ly" —a") —r"(AQy") — A(="))||
<[lz" —y"|.
Using (4.13) in (4.8), we have
(4.16)  [j2" T — 2™
a"yl|z" — " | = o™y (|la™ — 2"
+9la”™ — o™ | f (@D + " — o | B(z" )|
+ (1= a" " =y M+ [ =A™+ A" D)

rnfl 2|tn 7tn71| B
[l =y + T =

+18" = Bl T+l
ayfla" — 2" Y| = ayy([la" — 2" H])

+la™ =" I @I+ IBE"HI) + (1 — e 7){]l2" — 2"

IN

.

IN

n—1

n n— n n— r n n
+ " =" (AN + AT + (1 - =" ="

Tn

n n—1 n n—1 2|tn — tn_1| n—1
" =AY+ A" O + ="
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+18™ = B Hlw" | 4 [lu I}

Since liminf, o 7™ > 0, 3 b > 0 such that ” > b. Hence (4.16) reduces to
"t — 2| < [la™ — 2" = o™y ((|la” — 2" ) + o — oM

2lrm — n—1 2tn7tn71

=, |

n n—1
- M
+ " =" M+ 5 m

+ 8" = B M,

M

where

M = max{ SI;I;{VIIf(xn_l)H + IIB(Z"_l)II},Sliri{llA(fE")ll +1AGE" I
sup{[[A(y™) | + [1AG" DI}, sup{flw™ M| + [l =3,
n>1 n>1

sup{[[u"~" —p[}}.
n>1

Thus,

2" — 2™ < a”ylla”™ — 2" = oy (|2 — 2" TH)) + €7,

where

gn — |an _ an—l' + |,rn _ ,rn—1| + 2\7""—b7‘"71| + 2|t";7115"71\ + |6n . Bn_1| M

and hence by conditions (i)-(iv), we observe that X2 (€™ < co. By Lemma
2.7, we have

(4.17) lim [lz" " — 2| = 0.
n—oo
Next, we show lim,, o [|T(s)z™ — 2™| = 0.
First, we estimate
[l +t —w"|

= [Po(a”yf(z") + (I — a"B)2") — w"||
< |[Po(a™yf(z") + (I = a"B)z") = Po(w")]
(I

< ||a”vf<sc"> —a"B)z" —w"|

< o™y f (@) + (I—a"B) (B " + (1-B") & [2 T(s)umds)— & [I" T(s)undsl|
< a"lf @) + (L—a™)B" [u" | + (1—a™7)(1 — B7) — 1)l fo yurds|
< a"lf @) + (1 - a"F)B" u"]| + ("8 — B — @) & fi T(s u"dsn.

Since limy 00 @™ = 0, lim, oo 8" = 0, {2z"}, {u"}, {f(z™)} and {T'(s)u"}
are bounded, therefore

(4.18) lim ||:I:"+1 —w"|| =0.

n—oo

Thus, by (4.17) and (4.18), we have

lo"™ — w" || < [l2" — 2" + 2" —w”|

)
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(4.19) lim |j2" — w"| = 0.

n—oo

Now, we estimate
(4.20) IT(s)x™ — 2™
1 tn 1 tn,
< T = 1)y [ TEuds] +[T(s)5 [ T(s)ards|
0 0
1 1
Sl [ rwas vl [ T -

1 [t 1 [t
< ||x"——/ T(s)u”ds||+||T(s)—/ T(s)uds
1t

,t_no

I I
<22 —w™|| + HT(S)t_"/O T(s)u"ds — t_"/o T(s)u™ds|.

I
T(s)u"ds|| + ”t_”/o T(s)u"ds — a"||

Without loss of generality, we may assume that < is nonexpansive semigroup
on C; and by Lemma 2.5, we have

1 n 1 g
(4.21) lim sup ||T(s)—/ T(s)u"ds — t_"/ T(s)u"ds|| = 0.
0 0

n—00 pcC tn
Using (4.19) and (4.21) in (4.20), we have
(4.22) lim ||T'(s)az™ — 2™ = 0.
n—oo
Now, we prove that lim,,_, ||[u™ — z"|| = 0.
Using Lemma 2.4 and (2.7), we estimate

(4.23)
"+t — 2|2

= [[Pe(a"yf(@") + (I —a"B)z") — 2|
< |[Pe(a™yf(z") + (I — a"B)2") — P (2)|”
< [la™yf(a") + (I = a"B)2" — z||?
< (I =a"B)(z" = z) + a7y f(a") — " B(2)|?
< (1= a"3)?[e" = 2| + 20" (v f(«") — B(2),
< (L= a™y)?|lz" = 2|* + 22" (v f (") — 7 f(2) +7f(2) = B(2),2" " —2)
< (1 =a™9)?[lz" = 2|? + 22" {f(z") = f(2),2" " = 2)

+2a"(7f(2) = B(2),a"*! — 2)
< (1 —a™)?|z" = 2| + 22"y [l — 2|2 — 2|

= 20" y([la" — z[D]la"* = 2] + 20" v f (2) = B(2)|[|la"F - ]|

+
+

z), 2" —z)
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< (1= a"7)?|lu” = 2)|* + 20" ]| — 2|[||2" — 2|
+20" v f(2) = B(2)l|la" " — [l.
Using firmly nonexpansivity of T,.n, we estimate
lu™ — 2|
= |75 (y" = " Ay") — T (= — (Z))II2
< (TR(y" =" A(y") = T(z — " A2)),y" — 1" AY") — (2 — 1" A(2)))
= (u" =z, y" —2+71"A(z) —r"A(y"))
(" = z,y" = 2) + " (u" — 2, A(z) — A(y"))

1 n n n n n
= g(llu *ZII2+IIy =2l = [l =y ?) + " = 2][[|ACz) = Ay"™)]l-
Thus,

(4.24)  Jlu" = 2| < ly" = 2]* = u™ = y" I + 0" u" — 2] [ A(2) = A,

(4.25)  Jlu™ = 2|* < [la™ = 2[* = [lu” = y" | + 7" [|l2" = 2| A(2) — A@y™)]-
(using (4.4) and (4.6))

Now, we estimate
la"* — 2|
= ||Pc(a™yf(a") + (I — a"B)2") — 2|”
< ||Po(a”yf(z") + (I = o B)z") — Po(2)|?
< Ja"yf(a") + (I - a"B)z" — 2|?
< (I = a"B)(2" — 2) + a"(f(z") = B(2))|I?
< (1= a"3)?2" = 2|” + 2a"(yf(a") = B(z),2"*! — 2)
< (= a7 [u” = z|* + 22" (v f(2") = B(2),2""" — 2)
(using (4.2))
< Jlu™ = 2] + 20" (v f(a") = B(2),2""" — 2)
<y =27 =" (2a = ) [|A(Y") — AP + 20" (v f(2") — B(2),2"T — 2).
(using (4.5))
Hence,
(20— )| A(y") — A(2)]P
< Ja” = 22 = 2™ 2|” + 20|y f(2") = B(z)|[]|lz"F ~ 2|
< 2™ =2 (Jla" T = 2]+ e = 2) + 207 [y f (") = B(2) [l - ]|
< 2™t =2 ([la" T = 2] + 2" — 2]) + 20" My,
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where My = sup,,> {[|[7f(z") — B(z)||[|a""" — z||}. Using 0 < liminf,, o 7" <
limsup,,_,. ™ < 2a, a™ — 0 as n — oo and (4.17) in above inequality, we
have

(4.26) lim [[A(y™) — A(2)|| = 0.

n—00
Again, we have
Iz = 2|2
< lla™yf(2") + (I = a"B)2" — ||
< (I = a"B)(z" — 2) + a"(vf(a") = B(2))|”
< (1= a"y)?||2" — 2| + 20" (vf(a") - B(z),a""" — 2)
< lly™ = 2l* + 20" Iy f (@) = B(2)[[[la" " — 2|
< Jla™ = 2| = 1" (2a — )| A(e™) = A(2)|1? + 22" |7 f (") = B(2) 2" — 2]].
(using (4.3))
Hence,
(20 = ") A(") — A(2)]?
< ™t =2 |(fla" T = 2]+ lla” = z]) + 207 v f (2") = B)|l]2" T~ 2]
< e = 2| (fla" = 2l + |2 — 2) + 20" M.

Using 0 < liminf,, o 7™ < limsup,,_, ., " < 2a, &' — 0 as n — oo and (4.17)
in above inequality, we have

(4.27) lim [A(z") — A(z)]| = 0.

n—o0

From (4.23), we have
lz"*t — 2]
< (1 =a"y)?[u" = 2] + 22"y 2" — 2||a™ — 2|
+20" |7 f(2) = B(2)|ll|lz"*" — ||
< (1—a"y)?[lla"™ = 2)|* = [lu" = y"|I* + 20" [l2" — ||| A(2) — A(y™)]]
+20" 2™ — 2 [la” — 2]l + 2077 f(2) = B(2)l[]l2" - 2.
(using (4.25))
Therefore,
(1= ™72 — |2
< (1 =a"y)?fla" — 2] = fla" T - 2|f?
(1= )20 |7 — 2|l A2) — AQy™)|
+20"]|2" = 2 [la” — 2l + 207 |7 f(2) — B(2)|[[|l2" " — 2
< o™ = 2|2 = " — 2]+ (1 — a"7)20" " — 2|l A(2) — A"
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+20"]|2" = 2 [la” — 2]l + 2077 (2) = B(2)|[|l2" " ~ 2|
< et =2 (2" = 2] + 2" - 2]l)

+ (1= a"y)?2r" 2" — 2| A(2) — Ay

+20"]|2" = 2 [la” — 2]l + 20717 (2) — B(2)|ll|l2"* — 2.

Taking n — oo and using (4.26), (4.17) and o™ — 0 in above inequality, we
have

(4.28) Jim Ju” =y = 0.
Using firmly nonexpansivity of T,.», we estimate
ly™ — 2|
= T (2" =" A(a")) = Ton (2 — (Z))II2
< (Tpn (2™ — 1" A(2™)) = Trn(z — 1" A(2)), 2™ — " A(2") — (2 — 1" A(2)))

=(y" —z, 2" —z+r"A(z) — r" A(z"))
y" =z, a" = z) + (Y -z, A(z) — A(a™))

|}_|/\

Sy =2l + 2™ = 217 = lly™ = 2"[%) + "y — 2| A(2) = A@™)].
Therefore,
(429)  ly" =212 < 2™ = 2| — [ly" — 2| + 7" [|l=" — 2[[[| A(2) — A@a")]-
From (4.23), we have
[l — 2|
< (1= a™y)?[lu” = z|* + 20"y [la"* = 2||[|lz" — 2|
+2a" v f(2) = B(2)|[l«" ! — z||
< (1 —=a™)?[lly" = 2)1* = [lu” = y" || + 2" [|2" = 2[|]| A(2) — A(y™)]l]
+ 20"y [la" = 2|llla" = 2|l + 20" (|7 f(2) = B(2)|[la" ! — ]|
< (L—a™y)?[a" = 2l = [ly" —a™|* + " [ly" - z[|| A(a™) — A(2)]|
— (1= a"7)?Ju" =y | + (1 = a"9)*2r" 2" — z[|| A(z) — A(y"™)]
+2a" |7 f(2) = B(2)llz" " = 2] + 22" |7 f(2) = B(2)|l|lz""" — 2]
Therefore,
(1 —a"3)?[ly" —a"|?
< (1 —a"9)?a" = z)* = 2" 2|
+ (1= a3 ly" = 2 A") = A)] - (1 = a"F)?[lu” - y"?
+ (1= a™y)*2r" 2" — ||| A(z) — A(y")|
+2a" [y f(2) = B(2)|[lla" " = 2l + 20 |7 f (2) = B(2)[ll|l2""" — z||
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< 2™ =2 = [l = 2l + (1 - ")y - 2]l A") — A2)]
= (1= lu” = y"|I* + (1= a"F)%2" 2" — 2|[[|A(2) - A(y")]
+20" |7 f(2) = B(2)[l|lz"*" = 2]l + 20" |7 £ (2) = B(2)|l[|l="+!
< e =2l 2 + 2" - 2]l)
+ (1= a7y = 2|l A") = A(2)]| = (1= ") [lu” = "
+ (1= a"y)"2r" 2" — 2| A(2) — A"
+20"[[7f(2) = B(2)|l|l2"*" = 2]l + 20" |7 (2) = B(2)|[|l2"*" ~ 2|.

Taking n — oo and using (4.26), (4.27), (4.17), (4.28) and o™ — 0 as n — o0
in above, we have

(4.30) Jim [l —2™|| = 0.

2" = 2|

Now,
Ju™ = 2" < flu" =y + ly" — 2™[].

Using (4.28) and (4.30) in above inequality, we have

lim ||u™ —2z"| = 0.
—oo
Further, it follows from (4.19), lim,_,c ||u™ — 2™| = 0, and lim, ;o ™ =0

that
[z —u™|| < (1= BM)[|Jw" — "] + ||]z" — u"|| = 0 as n — oo.

Since {z"} is bounded, there exists a weakly convergent subsequence {z™*}
of {2}, say ™ — #. Then it follows from (4.30) that there exists also a
weakly convergent subsequence {y™*} of {y™} such that y™* — Z.

Now, we show that & € Sol(GMEP(1.2)) N Fix(S). First, we show that
% € Fix($). Assume that & € Fix($¥). Since 2™ — & and T'(s)Z # Z, from
Opial’s condition (2.6), we have
liminf |2 — &| < liminf ||x"* — T'(s)Z|
n—oo n— oo

< lim inf{||z™ — T(s)z"*| + ||T'(s)x™ — T(s)z||}
n—r oo

< liminf ||z — Z|
n—o0
which is a contradiction. Thus, we obtain Z € Fix(S).
Next, we show that £ € Sol(GMEP(1.2)). The relation y" = Tpn(z" —
r™ A(z™)) implies that

1
(y—y",y" — (" —r"A(z"))) > 0, Yy € C,

F(y"sy) + 0y, y") = oy"y") + =

1
¢(y,y")*¢(y”,y”)+r—n<y*y",y”*$”> > F(y,y")+(A(x"),y" —vy), Vy € C,

using monotonicity of F.
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Hence,

(4.31) Sy, y™) = Y™ y"™) + y — ™
> Fy,y™) + (A(z"™),y"™ —y), Vy € C.
For t, with 0 <t <1, let y, =ty + (1 —t)& € C. Then from (4.31), we have
(Aye)sye — y"™) = (Alye) — A" ), ye —y™) — Sy, y™) + o(y™ ™)

Nk _ pNk
— -y, %> + F(ye,y™)
— (AE"™) = AW"™), ye —y™).

Since A is a-inverse strongly monotone then it is ——L1psch1tz continuous and
monotone. Again since ||y™ — ™| — 0 then ||A( ") — A(z™)|| — 0. Fur-
ther, since ¢ is weak continuous and F' is weak lower semicontinuous in second
argument, then above inequality implies that

ynk _ xnk

)

(4.32) O(ye, &) — o2, 8) > Fyr, &) — (A(ye), ye — ).
Now, for t > 0,
0= F(yt, yr)
< tF(ys,y) + (1 — t)F(ys, &) (using (4.32))
StE(yy) + (1= 0)[d(ye, &) — o(2,2) + (A(ye), ye — 2)]
< tF(yey) + (1= 0)t[o(y, 2) — (2, 2)] + (1 — 1) (A(ye), ty + (1 — )& — &)
= Fy,y) + (1 = t)[¢(y, ) — 8(2,2) + (A(ye), y — 2)].

Letting ¢ — 0 then by Assumption 3.1(3) and Lipschitz continuity of A, we
have

F(&,y) + oy, &) — o(&, &) + (A(2),y — &) 2 0, Vy € C.
This implies that & € Sol(GMEP(1.2)).
We claim that z* is the unique solution of the variational inequality (4.1).
First, we show the uniqueness of the solution to the variational inequality
(4.1)inT. Let Z, & € T, then
(B=~f)z,x—1) <0,
(B=~f)2,2—x)<0.
Adding the above two inequalities, we have
0> (B(z —),7 — &) — 7 {(f(7) - f(2),7 — &)
> 7z - 2[* —~lz - 2> +yo(llz - )|z - 2|
== +r(lz - z)llz - .

Hence,
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Since 3;—7 < 0, we have

RSS

(Iz —2[) <0.

By the property of ¢, we have & = Z.
Next, we prove ((vf — B)z*,z—2*) <0 for any z € I. Let v™ = "y f(z")+
(I —a™B)z™ then 2"t = Pc( ™). Now, we estimate

2™t = 2]* = | Po(") = 2|
< (v" —z,z" Tt — 2)
= (@"yf(z™) + (I — a"B)(z") — z, 2" — 2)
=a"(vf(z™) — B(z"),z" T — 2) + (2" — z,2" T — 2).
Since a™ € (0,1), then above inequality implies that
(4.33) (B(z") — 7 f(a™), 2" — 2) < (27 — g+ gntl ),

Now, it follows from [|z"—u"|| — 0, ||[#" —u"|| = 0 asn — oo and ™ — z* € T

that [|z™ — u™| — 0 as k — oo. Replacing n in (4.33) with n; and taking

limit £ — oo, we have

(4.34) ((B—=~f)z",2"—2) <0 forany z € T,

which implies that z* € T is unique solution of (4.1), i.e., z* = Pr(I —vf + B).
Next, we prove that

limsup(yf(z*) — B(z*),z" " — 2*) <0.

n—oo

Indeed, we can consider a subsequence z™* of " such that

(4.35) limsup(yf(z*)—B(z*), 2" —2*) = klim (Yf(z*)=B(z*), x™ Tt —2%).

Since z™ is bounded therefore the subsequence x™* of 2™ converges weakly to
z. We have already proved that such z € T'. From (4.34) and (4.35), we have

(4.36) limsup(yf(z*) — B(z*), 2" — 2*)

kl;n;o(vf(z*) — B(z*),z™ Tt — %)

=(z—2",vf(z") — B(z")) <0.
Finally, we show x™ — z*.
Let v™ = o™y f(2™) + (I — a"B)z". We estimate
et — 2|2

= || Pc(") - 2"|*

< < (’Un —o", " n+l _ > <’7f(.%'n) ( ),$n+1 . Z*>
+((I —a"B)(z" — 2%), 2" = 27)
o)~ B 2 (- B )8 )

( —z
- f(Z*)7$n+1 —2") +a™{(yf(z") = B(z"), 2"t = 2%)

IN
=S =
8

3
~
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+((I —a"B)(z" — 2%), 2" ! — %)

aylla” = 2" = 2|+ o (v f(27) = B(z7),a" T — 27)

+ (1= a™y)lz" = 2% [la"* =27

oyl = 2" = 2|+ o (v f(27) = B(z7),a" T — 27)

+ (1= a™y)[la" = 2 [[[|lz" T = 27|

1= a7 =)™ = 2*[[la"* = 2| + " (yf(z") = B(z"),2"! — 2")

.
( « 2(/7 7))(”1,71 72*”2 + ||:Cn+1 - Z*||2)
+a(yf(z") = B(z"), 2" = 27),

which implies that

N

IN

IN

IN

o+ - 22
(1 _an(i_’}/)) " — ¥ 2 2o 2% — 2 :L,n-i-l ¥
=Grarg-)” T G oy WE) T BE /
20"

IN

(1 —a™F =)™ == + (vf(z") = B(z"),a" ! = 2%)

(+arG—)
< (- a)e” = 2P+ a",

where a” = a"(§ — «) and b" = (1+a"72(7—7))<7f(z*) — B(z*), 2"t — 2*).
Thus, it follows from condition (i) and (4.36) that X2 ,a" < oo and

limsup b™ < 0. Therefore by Lemma 2.6, we can conclude that z" — z* =

Pr(I —~f + B). This completes the proof. O

Finally, we have the following consequence of Theorem 4.1, which generalizes
Theorem 3.1 due to Xiao [15].

Corollary 4.1. Let H be a real Hilbert space and let C be a nonempty, closed,
and convex subset of H. Let F': C'x C' — R be nonlinear bifunctions satisfying
Assumption 3.1 (1)-(4). Let f be a weakly contractive mapping with a function
¥ on H, and let B: H — H be a strongly positive bounded linear operator with
coefficient ¥ > 0, and & = {T'(s) : s > 0} be a nonexpansive semigroup on
C. Assume that T’ := Fix(3) N Sol(EP(1.4)) # 0. For any 0 < v <7, let the
sequence {x"} generated by the following iterative schemes:

2% e C,
u" = Tp(z"),

tn
o' = Polayf(a") + (I - a"B)2"],

where 0 < r < 2a; {a™}, {B™} are the sequences in (0,1) and {t"} is a
sequence of positive real numbers satisfying the following conditions:

2" =p"u" + (1 — ﬂ")i /tn T(s)u™ds,
0
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(1) limy, 00 @™ =0, ZZOZO a™ = oo, ZZOZO la™ — a7t < oo;
(ii) limy, oo 8" =10, Y 0r 8" — "7 < o0;

‘tnitn—1|

(iii) ZZO:O —— < o9

Then the sequence {x™} converges strongly to z* € T which uniquely solves the
following variational inequality

(B—~f)z",2"—z) <0 for any z € T".

Proof. Tt is on similar lines of proof of Theorem 4.1, and hence omitted. ([
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