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NORMAL EIGENVALUES IN EVOLUTIONARY PROCESS

DoHAN KiMm, RINKO MI1YAZAKI, TOSHIKI NAITO, AND JONG SON SHIN

ABSTRACT. Firstly, we establish spectral mapping theorems for normal
eigenvalues (due to Browder) of a Cp-semigroup and its generator. Sec-
ondly, we discuss relationships between normal eigenvalues of the compact
monodromy operator and the generator of the evolution semigroup on
Pr(X) associated with the 7-periodic evolutionary process on a Banach
space X, where Pr(X) stands for the space of all 7-periodic continuous
functions mapping R to X.

1. Introduction and preliminaries
1.1. Introduction

Let X be a Banach space. We denote by P.(X) the set of all 7-periodic
continuous X-valued functions on R := (—o0, 00). For a given 7-periodic evo-
lutionary process {U(t,s)}i>s on X the monodromy operator V(0) is given
by V(0) = U(0,—7). Denote by L the (infinitesmal) generator of the Cp-
semigroup {T"},>0 (see (11)) on P.(X) associated with {U(t,s)};>s. It is
important to study the spectral properties of the generator L. Roughly speak-
ing, (Lu)(t) = —% + A(t)u(t),u € D(L) C Pr(X) if {U(t, s)}+>, arise from a
T-periodic evolution equation of the form 2% = A(t)u.

In particular, let A(t) = A+ 5(t)I, where A is the generator of a Cp-
semigroup T'(¢), I is the identity operator, and 5(¢) is a 7-periodic, continuous
scalar-valued function. Then the evolutionary process and the monodromy
operator become

U(t,s) = el Brdrpt — s) and V(0) = elo A7),
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In this case, the evolution equation may serve as a model for the following PDE
(1) ou(t,z)  0%u(t,x)
o Oz2

(2) u(t,0) =u(t,7) =0, t > 0.

We would like to decide the set of all normal eigenvalues (see [1] for definition)
of the generator L arising from the equation (1) with the boundary condition
(2). In general, the spectra of the generator L is deeply concerned with spectra
of the monodromy operator V'(0), for example, cf. [5, 8].

The purpose of this paper is to give the spectral mapping theorems for
normal eigenvalues in a Cy-semigroups and relationships between spectra of
V(0) and L. We denote by o,,(H) the set of all normal eigenvalues for a linear
operator H : X — X and by 0,(H) the point spectrum of H.

First, in Section 2 we will contribute new results to the theory of spectral
properties of a Cy-semigroup 7'(t) and its generator A. In particular, we give
relationships between the ascents of uI — T'(t) and Al — A, and show that the
order of pole of (A — A)~! for some A coincides with the order of pole of
(ul —T(t))~1, provided that u = e*,t > 0 (Theorem 2.6 and Theorem 2.10).
These are new results which is not found in the literatures [2, 4, 12, 15], etc..
As an application, we prove that the inclusion o, (T'(t)) \ {0} C et*»(D) t >0
holds (Theorem 2.11).

Second, in Section 3 we give a relationship between o, (V' (0)) and o, (L) and
some additional results on other spectra. More recently, it was proved that if
1 € 0,(V(0)), then 0 € 0,(L) in [5], which is important to obtain criteria
of the existence of 7-periodic solutions for 7-periodic systems with nonlinear
perturbation. On the other hand, in the sequential paper [6] we proved that
the equality

+B8)u(t,z), 0<z<m t>0

dim N ((al — L)™) = dim N ((e"] — V(0))™)

holds by using a representation of elements in the null space N((aI — L)™).
Summing up those results in Section 3, we shall prove that e*” € ¢, (V(0)) if
and only if a € 0,(L) (Theorem 3.5), provided that the monodromy operator
V(0) is compact. As additional results, we give spectral properties on the
resolvent set, the continuous spectrum and the residual spectrum in connection
with V(0) and L.

The results up to this point are illustrated in the equation (1) with 8(t) =
a(t) — v in Section 4.

1.2. Preliminaries

Let T be a closed linear operator with dense domain D(T) C X . Set N(T') =
{reD(T)|Tr=0}and R(T) ={Tx € X | x € D(T)}. The complex number
¢ is called a normal eigenvalue of the operator T if the following conditions are
satisfied:

(i) R(¢I —T) is closed;
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(ii) UmenN((¢I —T)™) is of finite dimension, where N = {1,2,3,...}; and

(iii) The point ¢ is an isolated point of the spectrum of 7.

Let p(T) denote the resolvent set of T', o(T) the spectrum of T, o,(T) the
point spectrum of T and ¢, (T") the set of all normal eigenvalues of T. Note
that if T' is a compact operator, then

3) o(T)\ {0} = 0p(T) \ {0} = 0n(T).

If the smallest nonnegative integer m such that

N(T™)=N(T™), TO=1
exists, it is called the ascent of the operator T and denoted by n(T). If m = n(T)
is a positive integer, then
NI & N(T™) = N(T™*)
holds. If no such integer exists, we say that n(T") = co. Note that n(T") =0
if and only if 771 exists. The generalized eigenspace of T' with respect to
Co € 0,(T), denoted by N, (T), is the smallest closed subspace of X containing
U, N((CoI —T)*). If (oI — T has the ascent m, then N¢, (T') = N((¢ol —T)™).
If the smallest nonnegative integer m such that
R(T™) = R(T™)

exists, it is called the descent of the operator T' and denoted by §(T). We say
that 6(T) = oo if for each n, R(T™*!') & R(T™). Note that §(T) = 0 if and
only if R(T) = X.

If o is an isolated singular point of the resovent R(\,T) = (A —T)~ !, and
if the Laurent expansion of R(A,T') in powers of A — \g is

RAT) = Y (A= 20)" Py
n>—k

with P_j # 0, we shall say that Ag is a pole of R(\,T') of order k. The following
two results show relationships between the order of a pole A9 of R(A,T) and
the ascent and descent of \gI — T, under the assumption p(T') # (.

Lemma 1.1 ([13, Theorem 10.1, Sec. 10, Chap. 5]). If A is a pole of R(\,T)
of order p, then Ao € o,(T) and the ascent and descent of oI — T are both
equal to p.

Lemma 1.2 ([13, Theorem 10.2, Sec. 10, Chap. 5]). Suppose that Ao € o(T)
and \oI — T has finite ascent and descent. Then Ao is a pole of R(A\,T)

3

The fundamental result on the normal eigenvalues of T is found in [1, 15] as
follows.

Lemma 1.3 ([1, Lemma 17]). Let T be a closed linear operator densely defined
in the Banach space X with dim Ny, (T') < oo for the complex number Ag. Then
Ao € on(T) if and only if the resolvent R(\,T') is analytic in the neighborhood
of Mo and has a pole at \g.
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Clearly, it follows from Lemma 1.3 and Lemma 1.1 that if A\g € 0,,(T), then
Ao is a pole of R(\,T') of some order m, and hence, A\gI — T has the ascent m.

2. Normal eigenvalues in Cy-semigroups

Let T'(t) be a Cy-semigroup on X with the generator A in this section.
First, we will state some fundamental facts on spectral properties in Cp-
semigroups. We define an operator By(t),A € C,t > 0 as

¢
By(t)x = / AT (s)x ds, =z e X.
0

Then B (t) is a bounded linear operator on X with the following properties:
(M — A)Bx(t)x = (e = T(t)z, =€ X,

Br(t)(M — Az = (T — T(t))x, =€ D(A),
cf. [12, Lemma 2.2, Chap. 2]. These relations work effectively in the proof of

the statement 1) in the following lemma; the statement 2) is proved through
the technique of Fourier series.

Lemma 2.1 ([2, Theorems 3.7, Chap. IV, pp. 277-278], [15, Proposition 4.13]).
The following statements hold true:

1) p(T(t)) \ {0} C ) for t > 0; more precisely, if e* € p((T(t)), then
A € p(A), which implies et C o(T(t)) for t > 0.

2)

op(T()\ {0} = et»™) for t>0.

More precisely, if X\ € 0,(A), then e\ € o,(T(t)), and conversely, if e\ €
op(T(t)), then there exists k € Z such that A + 224 € 0,,(A), i = /=1, where
Z stands for the set of all integers.

For p € 0,(T(t)) \ {0}, t > 0 we denote by A(p) the set of all A € o,(A4)
such that g = e*. Then As(u) # . The following result shows relationships
between the eigenspaces corresponding to p € o, (T'(t)) \ {0} for each ¢t > 0 and
the eigenspaces corresponding to A € A;(u).

Lemma 2.2 ([11, Lemma 2.1]). If (A — X)™x =0, then

m—1 tk

Ttz =eM > (A - M)k,

k=0

Lemma 2.3. The following statements hold true:
1) Let = e, t > 0. Then
N((AT = A)") € N((ul =T@)"), n=1,2,...,
and
Nx(A) C Nu(T(t)).
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2) Let p € op(T(t)) \ {0},¢ > 0. Then N((uI — T'(t))") is the minimal
closed subspace containing the linear independent subspaces N (A — A)™) for
all X € Ay(p), that is

(4) N(pI-T#)") = @ N -Ar), n=12,...,
AEAL (1)

where D stands for the closure of the set D.

Note that the assertion 1) in Lemma 2.3 is easily proved by using Lemma
2.2. The assertion 2) for n = 1 is proved in the book in [15, Proposition 4.13].
For the general n > 1 the assertion 2) is found in [3, Lemma 6.1, Chap. 7,
p. 213] without proof.

Next, we give relationships between the ascent of eMI — T'(t),t > 0 and the
ascent of A\ — A. For this purpose the following result is needed.

Lemma 2.4. Fort >0,
N((A =A™\ N((A=AD)"7H)
(5) CN{(T@)—eNMD)™\N{(T@) —eMD)™ ), m=1,2,....
Proof. Let © € N((A— AX)™). Then z € D((A— AI)") = D(A") for n =
0,1,2,...,and for j =0,1,2,...,
(T(t) — M)z
tmfl

7(771 — )i (A-— )\I)m1> T

2
= eI (t(AAI)+%(A>\I)2+~~+

i (i 4 it i
=l tJ(A—)\I)Jx+j—2' (A=A ax+---

+%(A — )\I)j(m_l)x) :
Here we have used Lemma 2.2. Hence, if € N(A — AI)™), then (T'(¢) —
eMI)my =0 fort >0;ifz € N((A—X)™)\ N((A—AXI)™1) # (), then
(T(t) — eMI)m 1y = e(m_l)’\ttm_l(A —A)™ g £0
for t > 0. The proof is complete. ]
Corollary 2.5. (A — \I) < n(T(t) — e ).

Theorem 2.6. Let u € o,(T(t))\ {0}, > 0. If uI —T(t) has the finite ascent
m (and hence, 1 < m), then the maximal ascent of \I — A for all X € A¢(p) is
m, and vice versa. Then

(6) NTW) = @D MiA).

AEAL (1)
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Proof. Assume that pI —T'(¢) has the finite ascent m. Then n(AI — A) < m for
all A € A¢(u) by Corollary 2.5. Tt suffices to prove that there exists a \g € A¢()
such that n(A\gl — A) = m. Assume that n(Al — A) < m — 1 for all A € A;(p).
Then we have

N((uI =TE)™) = @ N —4)m)

AEAL (1)

= P NOI-Aam
AEAL (1)

= N((pI = T(t))" ).

This is a contradiction since N ((u —T'(t))™ ) & N((uI —T(t))™).
Conversely, we assume that the maximal ascent of A\ — A for all A € A¢(u)
is m. Then, for n > m, we have

NI -T®)") = @ N -4

AEAL (1)
B Nor-am)
AEAL (1)
= N((u — T()™).
Hence n(pul — T'(t)) < m. Since there exists A\g € A¢(u) such that n(Agl —

A) = m, it follows that m < n(e**l — T(t)) = n(ul — T(t)). Therefore
n(pl = T(t)) =m. 0

The next result immediately follows from Theorem 2.6.

Corollary 2.7. Let u € 0,(T(t)) \ {0},¢ > 0. Then the ascent of A\I — A is 1
for every A € A¢(u) if and only if the ascent of pnI — T(t) is 1.

Lemma 2.8. Let p € o,(T(t)) \ {0},¢ > 0. Then dim N,(T'(t)) < oo if and
only if Ae(p) is finite and dim Nx(A) < oo for all X € Ay(p). If one of the
above equivalent conditions is satisfied, then the ascent of ul — T'(t) coincides
with the maximal ascent of \XI — A for all A € A¢(u) and

(7) NTW) = @ M)

AEAL (1)

Proof. Assume that dim N,(T'(t)) < co. Then there is an ascent m of ul —T'(t)
for which N, (T'(t)) = N((ud — T'(t))™). By the assertion 1) in Lemma 2.3 we
have Ny(A) C N,(T(t)) for all A € Ay(p). Since dim N, (T'(t)) < oo, we have
1 < dim Ny (A) < oo; and hence, A¢(p) is finite.

Conversely, assume that A;(u) is a finite set and dim Ny(A) < oo for A\ €
Ai(p). Set m = max{n(AI — A) | A € A¢+(u)}. Then the assertion 2) in Lemma
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2.3 implies

8) Nl -T)™ = P NAI-A™) = P M.

AEA: (1) AEA: (1)
By using the same argument as in the proof of Theorem 2.6 we have (7) and
hence, dim N, (T'(t)) < oco. O

Finally, we consider the orders of poles for R(u,T(t)) and R(A, A) provided
that = e**,t > 0. The following result was shown independently by using the
same idea in [9, Theorem 4.2] and [2, Theorem 3.6, Chap. IV, pp. 276-277].

Lemma 2.9. Suppose that 1o # 0,t > 0 and uo is a pole of R(p, T(t)) of order
k. If Ao € At(po), then Ao is a pole of R(A, A) with the order < k : as a result,
if k=1, then Ao is a pole of R(\, A) of order 1.

Lemma 2.9 is improved as follows.

Theorem 2.10. Suppose that pg # 0,t > 0 and po is a pole of R(u,T(t)) of
order k. Then there exists a Ay € A¢(1o) such that A\, is a pole of R(A, A) of
order k.

Proof. From the assumption together with Lemma 1.1 we see that pol — T'(¢)
has the ascent k. Hence it follows from Theorem 2.6 that there exists a \,, €
A¢(po) satistying (A I — A) = k. Since Ay, is a pole of R(A, A) by Lemma
1.3, the order of the pole A, is k by Lemma 1.1. The reminder is obvious. O
Let
0e(A) = o(A)\ on(A), 0.(T(t)) = o(T(t)) \ on(T(t)).
Then e'<(4) C o (T(t)) for t > 0; see [15, Proposition 4.13]. From this in-
clusion a spectral mapping theorem for normal eigenvalues is not derived, gen-

erally. Using Lemma 2.8 and Lemma 2.9, we will give a spectral mapping
theorem for normal eigenvalues.

Theorem 2.11. If py € 0, (T(t)) \ {0}, then At(uo) C on(A). In particular,
on(T () \ {0} C el ¢ > 0.

Proof. Let po € 0,(T(t)) \ {0}. Then N, (T'(t)) is of finite dimension and 1
is a pole of R(u,T(t)) by Lemma 1.3. Thus it follows from Lemma 2.8 that
A¢(po) is a non-empty finite set and dim Ny(A) < oo for all A € A(po). Then
any point A\g € A¢(o) is a pole of R(A, A) by Lemma 2.9, so that Ay € 0, (A)
by Lemma 1.3 again. O

Proposition 2.12. Lett > 0 be fized. If
9) op(T(t) \ {0} = on(T'(t)) \ {0},

then
UP(A) =on(4)
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and

(10) on(T(t) \ {0} = &' (D).

Proof. For the assertion o,(A) = 0,(A), it suffices to show 0,(4) C 0,(A).
Let A € 0,(A) and p = eM. Then p € 0,(T(t)) \ {0} = on(T(t)) \ {0}, and
hence, \ € 0,,(A) by Theorem 2.11. Moreover, since o, (T(t)) \ {0} C eton(4)
by Theorem 2.11 again, we have

on(T(H) \ {0} C e = &' C g, (T(1)) \ {0}.
This means the identity (10). O

As a special case, the following results hold for a compact Cy-semigroup 7T'(t)
and its generator A. The proofs are based on spectral properties of a compact
operator, cf. [13].

Corollary 2.13. Suppose that T(t) is a compact Cy-semigroup on X. Let
wea(T(t)\{0},t > 0. Then the following statements hold.

1) dim Ny(A) < oo for all X € Ay(p).

2) The ascent of ul —T(t) coincides with the mazimal ascent of A\I — A for
all X € Ae(p) and (7) holds. In particular, n(AI — A) = 1 for every A € A¢(p)
if and only if n(ul —T(t)) = 1.

3) The ascent of uI —T(t) is the order of u as the pole of R(§,T(t)).

Corollary 2.14. Suppose that T(t) is a compact Cy-semigroup on X. Then
op(A) = 0,(A) and
on(T(t)) = et ¢ > 0.

3. Spectral properties in evolution semigroup

We give relationships between spectra of the monodromy operator V(0) and
the generator L.

3.1. Relationship between normal eigenvalues of V(0) and L

A family of bounded linear operators {U(t, s)}¢>s, (t, s € R) from a Banach
space X to itself is called a 7-periodic (strongly continuous) evolutionary process
if the following conditions are satisfied:

(1) U(t,t) =1 for all t € R,
) U(t,s)U(s,r) =Ul(t,r) forall t > s >r,
) The map (¢, s) — U(t, s)z is continuous for every fixed z € X,
YU+ 71,s+7)=Ul(t,s) for all t > s,
5) |U(t,s)|| < Mye*®= 5) for some M,, > 0 and w € R independent of
t>s.

(2
(3
(4
(

For a given 7-periodic evolutionary process {U (¢, s)};>s the following oper-
ator
V(it)=U(t,t—71)
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is called a monodromy operator (sometimes, a periodic map, or Poincaré map).
Then, V (t+7) = V(t) holds for every ¢ € R. For a given 7-periodic evolutionary
process {U(t, s)}i>s, the family {T"},>¢ defined by

(11) (T"u)(t) == U(t,t — h)u(t — h),Vt € R,u € P,(X)

is a Cy-semigroup on P (X) (cf. [8, Lemma 2]). It is called the evolution semi-
group associated with the 7-periodic evolutionary process {U(t, s)}>s (briefly,
evolution semigroup). Denote by L the (infinitesimal) generator of the Cp-
semigroup {7"},>0 on P.(X). It is well-known that L is a closed linear
operator with dense domain D(L) in P;(X). For a € C we set U,(t,s) =
e‘o‘(t_s)U(t, s). Then U,(t, s) is also a 7-periodic evolutionary process. The
monodromy operator V,,(0) and the generator L, corresponding to U, (t, s) are
given by V,(0) = e *"V(0) and Lo = L — ol.

To obtain the main theorem in this section, we need the following key lemma.

Lemma 3.1 ([6, Theorem 2]). For any complex number a,
(12) dim N((af — L)™) =dim N((e*" I — V(0))"™), m € N.
The equation (12) shows that e*"I —V(0) and ol — L have the same ascent.

Corollary 3.2. ¢*7 € 0,(V(0)) if and only if « € o,(L). More precisely,
if a € ogp(L), then e*” € 0,(V(0)), and conversely, if e*™ € 0,(V(0)), then
a+ i€ g,(L),k e L.

Proof. Tt is easily derived from Lemma 3.1. O
Lemma 3.3 ([5, Theorem 3]). If 1 € 0,(V,(0)), then 0 € ,(Ly).
Theorem 3.4. If e*” € 0,(V(0)), then a € 0,(L), and

1<n(al —L)=68(al — L) =n(e* I -V (0)) =6(e*"I—V(0)) < oo.

Proof. Let e*T € 0,(V(0)). Then 1 € 0,(V,(0)), since e*"I — V(0) = e*"(I —
V4 (0)). Lemma 3.3 implies 0 € 0,,(L,), and hence o € 0, (L). Then we have

n(e* I —V(0)) =6(e* I -V (0)) and n(al — L) =(al — L).

Lemma 3.1 means n(al — L) = n(e*" I —V(0)). Summing up these, we obtain
the required result. (I

Now we are in a position to state the main theorem in this section.

Theorem 3.5. Suppose that V (0) is a compact operator. Then e*™ € o, (V (0))
if and only if a € o, (L).

Proof. Let o € 0,,(L). Then e*™ € 0,(V(0))\ {0} by Corollary 3.2. Since V'(0)
is a compact operator, the identity (3) means e®” € ¢,(V(0)). The converse
follows from Theorem 3.4. O

The following result is derived immediately from Theorem 3.5.
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Corollary 3.6. Let b(t) be a T-periodic, continuous real function such that
b(t+7)=0b(t)+b(r). If T(t) is a compact Cy-semigroup on X, then

Ult,s) =@ —5), t > s
is a compact operator. As a result, so is V(0) := U(0,—7). Moreover, putting
on(T(7)) = {7 | m € N},

on(V(0)) = {"7 7 | m € N};
and hence,

b 2mki
an(L):{Q+Am+%|meN,keZ}.

3.2. Additional results

For a closed linear operator T' with dense domain in X, we denote by o.(T)
and o,(T) the continuous spectrum and the residual spectrum, respectively
(cf. [12]). In this subsection we consider relationships between these spectra of
V(0) and L. For the resolvent sets of V(0) and L the following result is well
known in [5].

Lemma 3.7 ([5, Lemma 3.10]). If e®™ € p(V(0)), then « € p(L).

First we consider its converse. To do so, we need some of lemmas. Define
B.g = / Ua(7,7)g(r)dr, Bog =: Bg, g€ P-(X).
0

Then it is a bounded linear operator form P, (X) to X, which has the following
property.

Lemma 3.8 ([5, Lemma 7.2] and [10, Lemma 21]). B, P-(X) is dense in X.
In particular, If dim X < oo, then BoPr(X)=X.

The following result is a slight extension of the above lemma.

Lemma 3.9. Let Q be dense in Pr(X). Then B,Q is also dense in X.

Proof. Since B, is continuous, B, (2) C B, (). Since  is dense, B, () =

B, (P; (X)), which is dense in X by Lemma 3.8. Thus B,(?) = P;(X); the
proof is complete. Il

Lemma 3.10 ([6, Lemma 2.1]). Let g € Pr(X). Then u € D(L) and (ol —
Lyu =g if and only if u € P;(X) is given by

(13) u(t) = Uy(t,0)w + /t Uu(t,s)g(s)ds, t>0
0

with

(14) (I~ Va(0))w = Bug.

The following result is directly obtained from Lemma 3.10.
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Corollary 3.11. g € R(al — L) if and only if Bog € R(e*™I — V(0)).
Now we discuss the converse of Lemma 3.7.
Proposition 3.12. If a € p(L), then e*™ € p(V(0)) U o.(V(0)).

Proof. If a € p(L), then by Lemma 3.1 we see that (eI — V(0))~! exists.
Since R(al — L) = P.(X), it follows from Lemma 3.8 that B,R(al — L) is
dense in X. Moreover, since By R(al — L) C R(e®**I—V(0)) by Corollary 3.11,
the range R(e®'] —V(0)) is also dense in X. O

Corollary 3.13. If V(0) is a compact operator, then o € p(L) if and only if
e*™ € p(V(0)).

Next we consider the continuous spectrum and the residual spectrum for
V(0) and L.
Proposition 3.14. If a € o.(L), then e*™ € 0.(V(0)).

Proof. If a € o.(L), then (af — L)~ exists and R(al — L) is dense in P, (X).
It follows from Lemma 3.9 that B, R(al — L) is dense in X. This implies that
the range R(e*"I —V(0)) is also dense in X. Hence ¢*™ € p(V(0)) Uo.(V(0)).
If e* € p(V(0)), then o € p(L) by Lemma 3.7. This yields a contradiction
since a € o.(L). Therefore e*™ € a.(V(0)). O

Combining Lemma 3.12 and Proposition 3.14 we obtain the following result.
Corollary 3.15. If o € p(L) Uo.(L), then e*™ € p(V(0)) Uo.(V(0)).
Proposition 3.16. If e*” € ¢,.(V(0)), then o € o,.(L).

Proof. If e*7 € 0,.(V(0)), then (eI — V(0))~! exists, as a result, (al — L)~!
exists. Moreover, since R(e®"I —V(0)) is not dense in X and ByR(al — L) C
R(e**I—V(0)), the range R(al — L) is not also dense in P;(X) by Lemma 3.9.
This proves the proposition. (Il

4. An example

Let X = L?([0,7],C). Then, X is a Hilbert space with the usual inner
product (,) given by

(w, z) = /07T w(z)z(z)dz, w,z € X.

Let us consider a partial differential equation of the form

ou(t,z)  O%u(t, )

(15) ot 922

+ (a(t) = Y)u(t,z), 0<z<m, t>0

(16) u(t,0) =u(t,m) =0, t >0,
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where v € R and «(t) is a m-periodic, continuous scalar-valued function. Define

a linear operator Ay by
2u
Ao’u = ﬁ for u e D(A()),

where

D(Ap) = {u € X | u is continuously differentiable and
u’ is abosolutely continuous,
v’ € X,u(0) = u(r) = 0}.

Then Ag is a closed linear operator with dense domain in X and Ag is self-
adjoint. It is well-known that

o(Ag) = 0,(Ag) = { A := —m? | m € N},

n(AmI — Ag) = 1 for all m € N, and Ny, (Ag) = N(A\nI — Ao) = span{zpm },

where z,,(x) = \/Esin mae.

s
On the other hand, Aj is the generator of a compact Cp-semigroup Tp(t)
on X such that [|[To(t)|| = e™* for t > 0, cf. [2, 14]. Since Ag is a self-
adjoint operator, T'(t) is also a self-adjoint operator. Note that {z,,,}5°_; is
an orthonormal basis in X. Since Ty(t)z,m = e’ 'z, m = 1,2,..., and f =
oo _1{fszm)zm for every f € X, we obtain

To(t)f = Y ([, zm)2m.
m=1

Hence 0 &€ 0,,(To(t)), 0p(To(t)) = {e*t | m € N}, t > 0 and (et —Ty(t)) =
1. Then we obtain the following result.

Proposition 4.1. The following relations hold:
op(A0) = on(Ao), 0p(To(t)) = on(To(1), ou(To(t)) = €' A), ¢ > 0.
Furthermore, we define a closed linear operator A by

_ Fu
dx?

which is the generator of the Cyp-semigroup T'(t) = e 7*T(t) on X. If we set
A(t) = A+ a(t)I for t € R, then the equation (15) is represented as

(17) %u(t) = A(t)u(t).

Set

Au —~u for uwe€ D(A) = D(Ayp),
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Then, a(t + 7) = a(t) + a(r). The solution operator U(t,s) of the equation
(17) is represented as

Ult,s) = e®®=9G)IT(t — 5) = e =) ea® =0T (t — 5), ¢ > s,
and hence,
(18) V(0) := U(nm,0) = e e Ty (7).

Clearly, 0,(V(0)) = 0,(V(0)). It is easy to show that {U(t,s)}i>s is a m-
periodic evolutionary process on X. Note that U(t,s),t > s is a compact
operator and so is V(0). Let L be the generator of the evolution semigroup
{T"}h>0 on Pr(X) associated with {U(t, s)};>s. Then the operator L has the
following properties.

Proposition 4.2.
op(L) = on(L), ou(V(0)) = ™),

a(m)

U"(L):{am'i_Qk'leeN,k’eZ}, Ay, = —(/7+m2)

and
n((am + 2ki)I — L) =1
for allm e Nk € Z.

Proof. Since o,(To(m)) = on(To(m)) and o, (To(m)) = {e_mz’r | m € N}, it
follows from (18) that

ap(V(0)) = 0n(V(0)) = {e™™ [ m € N}.

Thus Corollary 3.2 implies that o,(V(0)) = e™»(). Let a € 0,(L). Then
e™ € 0,(V(0)), and hence e™ € ¢,(V(0)). By Theorem 3.4 we obtain a €
on(L), that is, 0,(L) = 0, (L). As a result, 0,(V(0)) = e™»(F). Moreover,
Corollary 3.6 implies that o, (L) = {am + 2ki | m € N,k € Z}. Furthermore,
since n(e=™ "I — Ty(m)) = 1, we have n(e™=I — V(0)) = 1. Theorem 3.4
implies that n((com +2ki)] — L) = 1. O
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