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NORMAL EIGENVALUES IN EVOLUTIONARY PROCESS

Dohan Kim, Rinko Miyazaki, Toshiki Naito, and Jong Son Shin

Abstract. Firstly, we establish spectral mapping theorems for normal
eigenvalues (due to Browder) of a C0-semigroup and its generator. Sec-
ondly, we discuss relationships between normal eigenvalues of the compact
monodromy operator and the generator of the evolution semigroup on
Pτ (X) associated with the τ -periodic evolutionary process on a Banach
space X, where Pτ (X) stands for the space of all τ -periodic continuous
functions mapping R to X.

1. Introduction and preliminaries

1.1. Introduction

Let X be a Banach space. We denote by Pτ (X) the set of all τ -periodic
continuous X-valued functions on R := (−∞,∞). For a given τ -periodic evo-
lutionary process {U(t, s)}t≥s on X the monodromy operator V (0) is given
by V (0) = U(0,−τ). Denote by L the (infinitesmal) generator of the C0-
semigroup {T h}h≥0 (see (11)) on Pτ (X) associated with {U(t, s)}t≥s. It is
important to study the spectral properties of the generator L. Roughly speak-
ing, (Lu)(t) = − du

dt
+ A(t)u(t), u ∈ D(L) ⊂ Pτ (X) if {U(t, s)}t≥s arise from a

τ -periodic evolution equation of the form du
dt

= A(t)u.
In particular, let A(t) = A + β(t)I, where A is the generator of a C0-

semigroup T (t), I is the identity operator, and β(t) is a τ -periodic, continuous
scalar-valued function. Then the evolutionary process and the monodromy
operator become

U(t, s) = e
∫

t

s
β(r)drT (t− s) and V (0) = e

∫

τ

0
β(r)drT (τ).
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In this case, the evolution equation may serve as a model for the following PDE

∂u(t, x)

∂t
=

∂2u(t, x)

∂x2
+ β(t)u(t, x), 0 ≤ x ≤ π, t ≥ 0(1)

u(t, 0) = u(t, π) = 0, t ≥ 0.(2)

We would like to decide the set of all normal eigenvalues (see [1] for definition)
of the generator L arising from the equation (1) with the boundary condition
(2). In general, the spectra of the generator L is deeply concerned with spectra
of the monodromy operator V (0), for example, cf. [5, 8].

The purpose of this paper is to give the spectral mapping theorems for
normal eigenvalues in a C0-semigroups and relationships between spectra of
V (0) and L. We denote by σn(H) the set of all normal eigenvalues for a linear
operator H : X → X and by σp(H) the point spectrum of H .

First, in Section 2 we will contribute new results to the theory of spectral
properties of a C0-semigroup T (t) and its generator A. In particular, we give
relationships between the ascents of µI − T (t) and λI −A, and show that the
order of pole of (λI − A)−1 for some λ coincides with the order of pole of
(µI − T (t))−1, provided that µ = eλt, t > 0 (Theorem 2.6 and Theorem 2.10).
These are new results which is not found in the literatures [2, 4, 12, 15], etc..
As an application, we prove that the inclusion σn(T (t)) \ {0} ⊂ etσn(A), t > 0
holds (Theorem 2.11).

Second, in Section 3 we give a relationship between σn(V (0)) and σn(L) and
some additional results on other spectra. More recently, it was proved that if
1 ∈ σn(V (0)), then 0 ∈ σn(L) in [5], which is important to obtain criteria
of the existence of τ -periodic solutions for τ -periodic systems with nonlinear
perturbation. On the other hand, in the sequential paper [6] we proved that
the equality

dimN ((αI − L)m) = dimN ((eταI − V (0))m)

holds by using a representation of elements in the null space N ((αI − L)m).
Summing up those results in Section 3, we shall prove that eατ ∈ σn(V (0)) if
and only if α ∈ σn(L) (Theorem 3.5), provided that the monodromy operator
V (0) is compact. As additional results, we give spectral properties on the
resolvent set, the continuous spectrum and the residual spectrum in connection
with V (0) and L.

The results up to this point are illustrated in the equation (1) with β(t) =
α(t)− γ in Section 4.

1.2. Preliminaries

Let T be a closed linear operator with dense domain D(T ) ⊂ X . Set N (T ) =
{x ∈ D(T ) | Tx = 0} and R(T ) = {Tx ∈ X | x ∈ D(T )}. The complex number
ζ is called a normal eigenvalue of the operator T if the following conditions are
satisfied:

(i) R(ζI − T ) is closed;
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(ii) ∪m∈NN ((ζI − T )m) is of finite dimension, where N = {1, 2, 3, . . .}; and
(iii) The point ζ is an isolated point of the spectrum of T .
Let ρ(T ) denote the resolvent set of T, σ(T ) the spectrum of T, σp(T ) the

point spectrum of T and σn(T ) the set of all normal eigenvalues of T. Note
that if T is a compact operator, then

σ(T ) \ {0} = σp(T ) \ {0} = σn(T ).(3)

If the smallest nonnegative integer m such that

N (Tm) = N (Tm+1), T 0 = I

exists, it is called the ascent of the operator T and denoted by η(T ). Ifm = η(T )
is a positive integer, then

N (Tm−1) $ N (Tm) = N (Tm+1)

holds. If no such integer exists, we say that η(T ) = ∞. Note that η(T ) = 0
if and only if T−1 exists. The generalized eigenspace of T with respect to
ζ0 ∈ σp(T ), denoted by Nζ0(T ), is the smallest closed subspace of X containing
∪∞
k=1N ((ζ0I−T )k). If ζ0I−T has the ascent m, then Nζ0(T ) = N ((ζ0I−T )m).

If the smallest nonnegative integer m such that

R(Tm) = R(Tm+1)

exists, it is called the descent of the operator T and denoted by δ(T ). We say
that δ(T ) = ∞ if for each n, R(T n+1) $ R(T n). Note that δ(T ) = 0 if and
only if R(T ) = X .

If λ0 is an isolated singular point of the resovent R(λ, T ) = (λI −T )−1, and
if the Laurent expansion of R(λ, T ) in powers of λ− λ0 is

R(λ, T ) =
∑

n≥−k

(λ− λ0)
nPn

with P−k 6= 0, we shall say that λ0 is a pole of R(λ, T ) of order k. The following
two results show relationships between the order of a pole λ0 of R(λ, T ) and
the ascent and descent of λ0I − T , under the assumption ρ(T ) 6= ∅.
Lemma 1.1 ([13, Theorem 10.1, Sec. 10, Chap. 5]). If λ0 is a pole of R(λ, T )
of order p, then λ0 ∈ σp(T ) and the ascent and descent of λ0I − T are both

equal to p.

Lemma 1.2 ([13, Theorem 10.2, Sec. 10, Chap. 5]). Suppose that λ0 ∈ σ(T )
and λ0I − T has finite ascent and descent. Then λ0 is a pole of R(λ, T )

The fundamental result on the normal eigenvalues of T is found in [1, 15] as
follows.

Lemma 1.3 ([1, Lemma 17]). Let T be a closed linear operator densely defined

in the Banach space X with dimNλ0
(T ) < ∞ for the complex number λ0. Then

λ0 ∈ σn(T ) if and only if the resolvent R(λ, T ) is analytic in the neighborhood

of λ0 and has a pole at λ0.
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Clearly, it follows from Lemma 1.3 and Lemma 1.1 that if λ0 ∈ σn(T ), then
λ0 is a pole of R(λ, T ) of some order m, and hence, λ0I − T has the ascent m.

2. Normal eigenvalues in C0-semigroups

Let T (t) be a C0-semigroup on X with the generator A in this section.
First, we will state some fundamental facts on spectral properties in C0-

semigroups. We define an operator Bλ(t), λ ∈ C, t > 0 as

Bλ(t)x =

∫ t

0

eλ(t−s)T (s)x ds, x ∈ X.

Then Bλ(t) is a bounded linear operator on X with the following properties:

(λI −A)Bλ(t)x = (etλI − T (t))x, x ∈ X,

Bλ(t)(λI −A)x = (etλI − T (t))x, x ∈ D(A),

cf. [12, Lemma 2.2, Chap. 2]. These relations work effectively in the proof of
the statement 1) in the following lemma; the statement 2) is proved through
the technique of Fourier series.

Lemma 2.1 ([2, Theorems 3.7, Chap. IV, pp. 277–278], [15, Proposition 4.13]).
The following statements hold true:

1) ρ(T (t)) \ {0} ⊂ etρ(A) for t ≥ 0; more precisely, if eλt ∈ ρ((T (t)), then
λ ∈ ρ(A), which implies etσ(A) ⊂ σ(T (t)) for t ≥ 0.

2)

σp(T (t)) \ {0} = etσp(A) for t ≥ 0.

More precisely, if λ ∈ σp(A), then eλt ∈ σp(T (t)), and conversely, if eλt ∈
σp(T (t)), then there exists k ∈ Z such that λ+ 2kπ

t
i ∈ σp(A), i =

√
−1, where

Z stands for the set of all integers.

For µ ∈ σp(T (t)) \ {0}, t > 0 we denote by Λt(µ) the set of all λ ∈ σp(A)
such that µ = eλt. Then Λt(µ) 6= ∅. The following result shows relationships
between the eigenspaces corresponding to µ ∈ σp(T (t))\{0} for each t > 0 and
the eigenspaces corresponding to λ ∈ Λt(µ).

Lemma 2.2 ([11, Lemma 2.1]). If (A− λI)mx = 0, then

T (t)x = eλt
m−1
∑

k=0

tk

k!
(A− λI)kx.

Lemma 2.3. The following statements hold true:
1) Let µ = eλt, t ≥ 0. Then

N ((λI −A)n) ⊂ N ((µI − T (t))n), n = 1, 2, . . . ,

and

Nλ(A) ⊂ Nµ(T (t)).
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2) Let µ ∈ σp(T (t)) \ {0}, t > 0. Then N ((µI − T (t))n) is the minimal

closed subspace containing the linear independent subspaces N ((λI − A)n) for

all λ ∈ Λt(µ), that is

N ((µI − T (t))n) =
⊕

λ∈Λt(µ)

N ((λI −A)n), n = 1, 2, . . . ,(4)

where D stands for the closure of the set D.

Note that the assertion 1) in Lemma 2.3 is easily proved by using Lemma
2.2. The assertion 2) for n = 1 is proved in the book in [15, Proposition 4.13].
For the general n ≥ 1 the assertion 2) is found in [3, Lemma 6.1, Chap. 7,
p. 213] without proof.

Next, we give relationships between the ascent of eλtI − T (t), t > 0 and the
ascent of λI −A. For this purpose the following result is needed.

Lemma 2.4. For t > 0,

N ((A− λI)m) \N ((A− λI)m−1)

⊂ N ((T (t)− eλtI)m) \N ((T (t)− eλtI)m−1), m = 1, 2, . . . .(5)

Proof. Let x ∈ N ((A − λI)m). Then x ∈ D((A − λI)n) = D(An) for n =
0, 1, 2, . . ., and for j = 0, 1, 2, . . . ,

(T (t)− eλtI)jx

= ejλt
(

t(A− λI) +
t2

2!
(A− λI)2 + · · ·+ tm−1

(m− 1)!
(A− λI)m−1

)j

x

= ejλt
(

tj(A− λI)jx+ j
tj+1

2!
(A− λI)j+1x+ · · ·

+
tj(m−1)

((m− 1)!)j
(A− λI)j(m−1)x

)

.

Here we have used Lemma 2.2. Hence, if x ∈ N (A − λI)m), then (T (t) −
eλtI)mx = 0 for t ≥ 0; if x ∈ N ((A− λI)m) \N ((A− λI)m−1) 6= ∅, then

(T (t)− eλtI)m−1x = e(m−1)λttm−1(A− λI)m−1x 6= 0

for t > 0. The proof is complete. �

Corollary 2.5. η(A− λI) ≤ η(T (t)− eλtI).

Theorem 2.6. Let µ ∈ σp(T (t)) \ {0}, t > 0. If µI −T (t) has the finite ascent

m (and hence, 1 ≤ m), then the maximal ascent of λI −A for all λ ∈ Λt(µ) is
m, and vice versa. Then

Nµ(T (t)) =
⊕

λ∈Λt(µ)

Nλ(A).(6)
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Proof. Assume that µI−T (t) has the finite ascent m. Then η(λI−A) ≤ m for
all λ ∈ Λt(µ) by Corollary 2.5. It suffices to prove that there exists a λ0 ∈ Λt(µ)
such that η(λ0I −A) = m. Assume that η(λI −A) ≤ m− 1 for all λ ∈ Λt(µ).
Then we have

N ((µI − T (t))m) =
⊕

λ∈Λt(µ)

N ((λI −A)m)

=
⊕

λ∈Λt(µ)

N ((λI −A)m−1)

= N ((µI − T (t))m−1).

This is a contradiction since N ((µI − T (t))m−1) $ N ((µI − T (t))m).
Conversely, we assume that the maximal ascent of λI −A for all λ ∈ Λt(µ)

is m. Then, for n ≥ m, we have

N ((µI − T (t))n) =
⊕

λ∈Λt(µ)

N ((λI −A)n)

=
⊕

λ∈Λt(µ)

N (λI −A)m)

= N ((µI − T (t))m).

Hence η(µI − T (t)) ≤ m. Since there exists λ0 ∈ Λt(µ) such that η(λ0I −
A) = m, it follows that m ≤ η(eλ0tI − T (t)) = η(µI − T (t)). Therefore
η(µI − T (t)) = m. �

The next result immediately follows from Theorem 2.6.

Corollary 2.7. Let µ ∈ σp(T (t)) \ {0}, t > 0. Then the ascent of λI − A is 1
for every λ ∈ Λt(µ) if and only if the ascent of µI − T (t) is 1.

Lemma 2.8. Let µ ∈ σp(T (t)) \ {0}, t > 0. Then dimNµ(T (t)) < ∞ if and

only if Λt(µ) is finite and dimNλ(A) < ∞ for all λ ∈ Λt(µ). If one of the

above equivalent conditions is satisfied, then the ascent of µI − T (t) coincides

with the maximal ascent of λI −A for all λ ∈ Λt(µ) and

Nµ(T (t)) =
⊕

λ∈Λt(µ)

Nλ(A).(7)

Proof. Assume that dimNµ(T (t)) < ∞. Then there is an ascent m of µI−T (t)
for which Nµ(T (t)) = N ((µI − T (t))m). By the assertion 1) in Lemma 2.3 we
have Nλ(A) ⊂ Nµ(T (t)) for all λ ∈ Λt(µ). Since dimNµ(T (t)) < ∞, we have
1 ≤ dimNλ(A) < ∞; and hence, Λt(µ) is finite.

Conversely, assume that Λt(µ) is a finite set and dimNλ(A) < ∞ for λ ∈
Λt(µ). Set m = max{η(λI −A) | λ ∈ Λt(µ)}. Then the assertion 2) in Lemma
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2.3 implies

N ((µI − T (t))m) =
⊕

λ∈Λt(µ)

N ((λI −A)m) =
⊕

λ∈Λt(µ)

Nλ(A).(8)

By using the same argument as in the proof of Theorem 2.6 we have (7) and
hence, dimNµ(T (t)) < ∞. �

Finally, we consider the orders of poles for R(µ, T (t)) and R(λ,A) provided
that µ = etλ, t > 0. The following result was shown independently by using the
same idea in [9, Theorem 4.2] and [2, Theorem 3.6, Chap. IV, pp. 276–277].

Lemma 2.9. Suppose that µ0 6= 0, t > 0 and µ0 is a pole of R(µ, T (t)) of order
k. If λ0 ∈ Λt(µ0), then λ0 is a pole of R(λ,A) with the order ≤ k : as a result,

if k = 1, then λ0 is a pole of R(λ,A) of order 1.

Lemma 2.9 is improved as follows.

Theorem 2.10. Suppose that µ0 6= 0, t > 0 and µ0 is a pole of R(µ, T (t)) of

order k. Then there exists a λm ∈ Λt(µ0) such that λm is a pole of R(λ,A) of

order k.

Proof. From the assumption together with Lemma 1.1 we see that µ0I − T (t)
has the ascent k. Hence it follows from Theorem 2.6 that there exists a λm ∈
Λt(µ0) satisfying η(λmI − A) = k. Since λm is a pole of R(λ,A) by Lemma
1.3, the order of the pole λm is k by Lemma 1.1. The reminder is obvious. �

Let

σe(A) = σ(A) \ σn(A), σe(T (t)) = σ(T (t)) \ σn(T (t)).

Then etσe(A) ⊂ σe(T (t)) for t > 0; see [15, Proposition 4.13]. From this in-
clusion a spectral mapping theorem for normal eigenvalues is not derived, gen-
erally. Using Lemma 2.8 and Lemma 2.9, we will give a spectral mapping
theorem for normal eigenvalues.

Theorem 2.11. If µ0 ∈ σn(T (t)) \ {0}, then Λt(µ0) ⊂ σn(A). In particular,

σn(T (t)) \ {0} ⊂ etσn(A), t > 0.

Proof. Let µ0 ∈ σn(T (t)) \ {0}. Then Nµ0
(T (t)) is of finite dimension and µ0

is a pole of R(µ, T (t)) by Lemma 1.3. Thus it follows from Lemma 2.8 that
Λt(µ0) is a non-empty finite set and dimNλ(A) < ∞ for all λ ∈ Λt(µ0). Then
any point λ0 ∈ Λt(µ0) is a pole of R(λ,A) by Lemma 2.9, so that λ0 ∈ σn(A)
by Lemma 1.3 again. �

Proposition 2.12. Let t > 0 be fixed. If

(9) σp(T (t)) \ {0} = σn(T (t)) \ {0},
then

σp(A) = σn(A)
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and

σn(T (t)) \ {0} = etσn(A).(10)

Proof. For the assertion σp(A) = σn(A), it suffices to show σp(A) ⊂ σn(A).
Let λ ∈ σp(A) and µ = eλt. Then µ ∈ σp(T (t)) \ {0} = σn(T (t)) \ {0}, and
hence, λ ∈ σn(A) by Theorem 2.11. Moreover, since σn(T (t)) \ {0} ⊂ etσn(A)

by Theorem 2.11 again, we have

σn(T (t)) \ {0} ⊂ etσn(A) = etσp(A) ⊂ σp(T (t)) \ {0}.
This means the identity (10). �

As a special case, the following results hold for a compact C0-semigroup T (t)
and its generator A. The proofs are based on spectral properties of a compact
operator, cf. [13].

Corollary 2.13. Suppose that T (t) is a compact C0-semigroup on X. Let

µ ∈ σ(T (t)) \ {0}, t > 0. Then the following statements hold.

1) dimNλ(A) < ∞ for all λ ∈ Λt(µ).
2) The ascent of µI − T (t) coincides with the maximal ascent of λI −A for

all λ ∈ Λt(µ) and (7) holds. In particular, η(λI − A) = 1 for every λ ∈ Λt(µ)
if and only if η(µI − T (t)) = 1.

3) The ascent of µI − T (t) is the order of µ as the pole of R(ξ, T (t)).

Corollary 2.14. Suppose that T (t) is a compact C0-semigroup on X. Then

σp(A) = σn(A) and

σn(T (t)) = etσn(A), t > 0.

3. Spectral properties in evolution semigroup

We give relationships between spectra of the monodromy operator V (0) and
the generator L.

3.1. Relationship between normal eigenvalues of V (0) and L

A family of bounded linear operators {U(t, s)}t≥s, (t, s ∈ R) from a Banach
spaceX to itself is called a τ-periodic (strongly continuous) evolutionary process
if the following conditions are satisfied:

(1) U(t, t) = I for all t ∈ R,
(2) U(t, s)U(s, r) = U(t, r) for all t ≥ s ≥ r,
(3) The map (t, s) 7→ U(t, s)x is continuous for every fixed x ∈ X ,
(4) U(t+ τ, s+ τ) = U(t, s) for all t ≥ s,
(5) ‖U(t, s)‖ ≤ Mwe

w(t−s) for some Mw > 0 and w ∈ R independent of
t ≥ s.

For a given τ -periodic evolutionary process {U(t, s)}t≥s the following oper-
ator

V (t) = U(t, t− τ)
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is called a monodromy operator (sometimes, a periodic map, or Poincaré map).
Then, V (t+τ) = V (t) holds for every t ∈ R. For a given τ -periodic evolutionary
process {U(t, s)}t≥s, the family {T h}h≥0 defined by

(T hu)(t) := U(t, t− h)u(t− h), ∀t ∈ R, u ∈ Pτ (X)(11)

is a C0-semigroup on Pτ (X) (cf. [8, Lemma 2]). It is called the evolution semi-

group associated with the τ -periodic evolutionary process {U(t, s)}t≥s (briefly,
evolution semigroup). Denote by L the (infinitesimal) generator of the C0-
semigroup {T h}h≥0 on Pτ (X). It is well-known that L is a closed linear
operator with dense domain D(L) in Pτ (X). For α ∈ C we set Uα(t, s) =
e−α(t−s)U(t, s). Then Uα(t, s) is also a τ -periodic evolutionary process. The
monodromy operator Vα(0) and the generator Lα corresponding to Uα(t, s) are
given by Vα(0) = e−ατV (0) and Lα = L− αI.

To obtain the main theorem in this section, we need the following key lemma.

Lemma 3.1 ([6, Theorem 2]). For any complex number α,

dimN ((αI − L)m) = dimN ((eατI − V (0))m), m ∈ N.(12)

The equation (12) shows that eατ I−V (0) and αI−L have the same ascent.

Corollary 3.2. eατ ∈ σp(V (0)) if and only if α ∈ σp(L). More precisely,

if α ∈ σp(L), then eατ ∈ σp(V (0)), and conversely, if eατ ∈ σp(V (0)), then

α+ 2kπ
τ

i ∈ σp(L), k ∈ Z.

Proof. It is easily derived from Lemma 3.1. �

Lemma 3.3 ([5, Theorem 3]). If 1 ∈ σn(Vα(0)), then 0 ∈ σn(Lα).

Theorem 3.4. If eατ ∈ σn(V (0)), then α ∈ σn(L), and

1 ≤ η(αI − L) = δ(αI − L) = η(eατ I − V (0)) = δ(eατ I − V (0)) < ∞.

Proof. Let eατ ∈ σn(V (0)). Then 1 ∈ σn(Vα(0)), since eατI − V (0) = eατ (I −
Vα(0)). Lemma 3.3 implies 0 ∈ σn(Lα), and hence α ∈ σn(L). Then we have

η(eατ I − V (0)) = δ(eατ I − V (0)) and η(αI − L) = δ(αI − L).

Lemma 3.1 means η(αI − L) = η(eατ I − V (0)). Summing up these, we obtain
the required result. �

Now we are in a position to state the main theorem in this section.

Theorem 3.5. Suppose that V (0) is a compact operator. Then eατ ∈ σn(V (0))
if and only if α ∈ σn(L).

Proof. Let α ∈ σn(L). Then eατ ∈ σp(V (0))\ {0} by Corollary 3.2. Since V (0)
is a compact operator, the identity (3) means eατ ∈ σn(V (0)). The converse
follows from Theorem 3.4. �

The following result is derived immediately from Theorem 3.5.
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Corollary 3.6. Let b(t) be a τ-periodic, continuous real function such that

b(t+ τ) = b(t) + b(τ). If T (t) is a compact C0-semigroup on X, then

U(t, s) := eb(t)−b(s)T (t− s), t ≥ s

is a compact operator. As a result, so is V (0) := U(0,−τ). Moreover, putting

σn(T (τ)) = {eλmτ | m ∈ N},
σn(V (0)) = {eb(τ)+λmτ | m ∈ N};

and hence,

σn(L) = {b(τ)
τ

+ λm +
2πki

τ
| m ∈ N, k ∈ Z}.

3.2. Additional results

For a closed linear operator T with dense domain in X , we denote by σc(T )
and σr(T ) the continuous spectrum and the residual spectrum, respectively
(cf. [12]). In this subsection we consider relationships between these spectra of
V (0) and L. For the resolvent sets of V (0) and L the following result is well
known in [5].

Lemma 3.7 ([5, Lemma 3.10]). If eατ ∈ ρ(V (0)), then α ∈ ρ(L).

First we consider its converse. To do so, we need some of lemmas. Define

Bαg =

∫ τ

0

Uα(τ, r)g(r)dr, B0g =: Bg, g ∈ Pτ (X).

Then it is a bounded linear operator form Pτ (X) to X , which has the following
property.

Lemma 3.8 ([5, Lemma 7.2] and [10, Lemma 21]). BαPτ (X) is dense in X.

In particular, If dimX < ∞, then BαPτ (X) = X.

The following result is a slight extension of the above lemma.

Lemma 3.9. Let Ω be dense in Pτ (X). Then BαΩ is also dense in X.

Proof. Since Bα is continuous, Bα(Ω) ⊂ Bα(Ω). Since Ω is dense, Bα(Ω) =

Bα(Pτ (X)), which is dense in X by Lemma 3.8. Thus Bα(Ω) = Pτ (X); the
proof is complete. �

Lemma 3.10 ([6, Lemma 2.1]). Let g ∈ Pτ (X). Then u ∈ D(L) and (αI −
L)u = g if and only if u ∈ Pτ (X) is given by

(13) u(t) = Uα(t, 0)w +

∫ t

0

Uα(t, s)g(s)ds, t ≥ 0

with

(14) (I − Vα(0))w = Bαg.

The following result is directly obtained from Lemma 3.10.
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Corollary 3.11. g ∈ R(αI − L) if and only if Bαg ∈ R(eατ I − V (0)).

Now we discuss the converse of Lemma 3.7.

Proposition 3.12. If α ∈ ρ(L), then eατ ∈ ρ(V (0)) ∪ σc(V (0)).

Proof. If α ∈ ρ(L), then by Lemma 3.1 we see that (eαtI − V (0))−1 exists.
Since R(αI − L) = Pτ (X), it follows from Lemma 3.8 that BαR(αI − L) is
dense in X . Moreover, since BαR(αI−L) ⊂ R(eαtI−V (0)) by Corollary 3.11,
the range R(eαtI − V (0)) is also dense in X . �

Corollary 3.13. If V (0) is a compact operator, then α ∈ ρ(L) if and only if

eατ ∈ ρ(V (0)).

Next we consider the continuous spectrum and the residual spectrum for
V (0) and L.

Proposition 3.14. If α ∈ σc(L), then eατ ∈ σc(V (0)).

Proof. If α ∈ σc(L), then (αI − L)−1 exists and R(αI − L) is dense in Pτ (X).
It follows from Lemma 3.9 that BαR(αI −L) is dense in X . This implies that
the range R(eατI −V (0)) is also dense in X . Hence eατ ∈ ρ(V (0))∪ σc(V (0)).
If eατ ∈ ρ(V (0)), then α ∈ ρ(L) by Lemma 3.7. This yields a contradiction
since α ∈ σc(L). Therefore eατ ∈ σc(V (0)). �

Combining Lemma 3.12 and Proposition 3.14 we obtain the following result.

Corollary 3.15. If α ∈ ρ(L) ∪ σc(L), then eατ ∈ ρ(V (0)) ∪ σc(V (0)).

Proposition 3.16. If eατ ∈ σr(V (0)), then α ∈ σr(L).

Proof. If eατ ∈ σr(V (0)), then (eατI − V (0))−1 exists, as a result, (αI − L)−1

exists. Moreover, since R(eατI − V (0)) is not dense in X and BαR(αI −L) ⊂
R(eαtI−V (0)), the range R(αI−L) is not also dense in Pτ (X) by Lemma 3.9.
This proves the proposition. �

4. An example

Let X = L2([0, π],C). Then, X is a Hilbert space with the usual inner
product 〈, 〉 given by

〈w, z〉 =
∫ π

0

w(x)z(x)dx, w, z ∈ X.

Let us consider a partial differential equation of the form

∂u(t, x)

∂t
=

∂2u(t, x)

∂x2
+ (α(t) − γ)u(t, x), 0 ≤ x ≤ π, t ≥ 0(15)

u(t, 0) = u(t, π) = 0, t ≥ 0,(16)
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where γ ∈ R and α(t) is a π-periodic, continuous scalar-valued function. Define
a linear operator A0 by

A0u =
d2u

dx2
for u ∈ D(A0),

where

D(A0) = {u ∈ X | u is continuously differentiable and

u′ is abosolutely continuous,

u′′ ∈ X,u(0) = u(π) = 0}.

Then A0 is a closed linear operator with dense domain in X and A0 is self-
adjoint. It is well-known that

σ(A0) = σp(A0) = {λm := −m2 | m ∈ N},

η(λmI − A0) = 1 for all m ∈ N, and Nλm
(A0) = N (λmI − A0) = span{zm},

where zm(x) =
√

2
π
sinmx.

On the other hand, A0 is the generator of a compact C0-semigroup T0(t)
on X such that ‖T0(t)‖ = e−t for t ≥ 0, cf. [2, 14]. Since A0 is a self-
adjoint operator, T (t) is also a self-adjoint operator. Note that {zm}∞m=1 is
an orthonormal basis in X . Since T0(t)zm = eλmtzm,m = 1, 2, . . ., and f =
∑∞

m=1〈f, zm〉zm for every f ∈ X , we obtain

T0(t)f =

∞
∑

m=1

eλmt〈f, zm〉zm.

Hence 0 6∈ σp(T0(t)), σp(T0(t)) = {eλmt | m ∈ N}, t > 0 and η(eλmtI−T0(t)) =
1. Then we obtain the following result.

Proposition 4.1. The following relations hold:

σp(A0) = σn(A0), σp(T0(t)) = σn(T0(t)), σn(T0(t)) = etσn(A0), t > 0.

Furthermore, we define a closed linear operator A by

Au =
d2u

dx2
− γu for u ∈ D(A) = D(A0),

which is the generator of the C0-semigroup T (t) = e−γtT0(t) on X . If we set
A(t) = A+ α(t)I for t ∈ R, then the equation (15) is represented as

d

dt
u(t) = A(t)u(t).(17)

Set

a(t) =

∫ t

0

α(r)dr.
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Then, a(t + π) = a(t) + a(π). The solution operator U(t, s) of the equation
(17) is represented as

U(t, s) = ea(t)−a(s)T (t− s) = e−γ(t−s)ea(t)−a(s)T0(t− s), t ≥ s,

and hence,

V (0) := U(π, 0) = e−γπea(π)T0(π).(18)

Clearly, σp(V (0)) = σn(V (0)). It is easy to show that {U(t, s)}t≥s is a π-
periodic evolutionary process on X . Note that U(t, s), t > s is a compact
operator and so is V (0). Let L be the generator of the evolution semigroup
{T h}h≥0 on Pπ(X) associated with {U(t, s)}t≥s. Then the operator L has the
following properties.

Proposition 4.2.

σp(L) = σn(L), σn(V (0)) = eπσn(L),

σn(L) = {αm + 2ki | m ∈ N, k ∈ Z}, αm =
a(π)

π
− (γ +m2)

and

η((αm + 2ki)I − L) = 1

for all m ∈ N, k ∈ Z.

Proof. Since σp(T0(π)) = σn(T0(π)) and σn(T0(π)) = {e−m2π | m ∈ N}, it
follows from (18) that

σp(V (0)) = σn(V (0)) = {eπαm | m ∈ N}.
Thus Corollary 3.2 implies that σp(V (0)) = eπσp(L). Let α ∈ σp(L). Then
eπα ∈ σp(V (0)), and hence eπα ∈ σn(V (0)). By Theorem 3.4 we obtain α ∈
σn(L), that is, σp(L) = σn(L). As a result, σn(V (0)) = eπσn(L). Moreover,
Corollary 3.6 implies that σn(L) = {αm + 2ki | m ∈ N, k ∈ Z}. Furthermore,

since η(e−m2πI − T0(π)) = 1, we have η(eπαmI − V (0)) = 1. Theorem 3.4
implies that η((αm + 2ki)I − L) = 1. �

References

[1] F. E. Browder, On the spectral theory of elliptic differential operators I, Math. Ann.
142 (1961), 22–130.

[2] K.-J. Engel and R. Nagel, One-Parameter Semigroups of Linear Evolution Equations,
Springer, 1999.

[3] J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations,
Springer, 1993.

[4] E. Hille and R. S. Phillip, Functional Analysis and Semi-Groups, American Mathemat-
ical Society, Providence, R. I., 1957.

[5] R. Miyazaki, D. Kim, T. Naito, and J. S. Shin, Fredholm operators, evolution semi-

groups, and periodic solutions of nonlinear periodic systems, J. Differential Equations
257 (2014), no. 11, 4214–4247.

[6] , Generalized eigenspaces of generators of evolution semigroups, to appear in J.
Math. Anal. Appl..



908 D. KIM, R. MIYAZAKI, T. NAITO, AND J. S. SHIN

[7] , Solutions of higher order inhomogeneous periodic evolutionary process, in
preparation.

[8] T. Naito and N. V. Minh, Evolution semigroups and spectral criteria for almost periodic

solutions of periodic evolution equations, J. Differential Equations 152 (1999), no. 2,
358–376.

[9] T. Naito and J. Shin, On solution semigroups of functional differential equations, RIMS
Kokyuuroku 940 (1996), 161–175.

[10] J. S. Shin and T. Naito, Representations of solutions, translation formulae and as-

ymptotic behavior in discrete linear systems and periodic continuous linear systems,
Hiroshima Math. J. 44 (2014), no. 1, 75–126.

[11] J. S. Shin, T. Naito, and N. V. Minh, On stability of solutions in linear autonomous

functional differential equations, Funkcial. Ekvac. 43 (2000), no. 2, 323–337.
[12] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equa-

tions, Springer, 1983.
[13] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, John Wiley-Sons. Inc.,

1980.
[14] C. C. Travis and G. F. Webb, Existence and stability for partial functional differential

equations, Trans. Amer. Math. Soc. 200 (1974), 394–418.
[15] G. F. Webb, Theory of Nonlinear Age-dependent Population Dynamics, Pure and Appl.

Math. Vol.89, Dekker, 1985.

Dohan Kim

Department of Mathematics

Seoul National University

Seoul 151-747, Korea

E-mail address: dhkim@snu.ac.kr

Rinko Miyazaki

Graduate School of Engineering

Shizuoka University

Hamamatsu, Shizuoka 432-8561, Japan

E-mail address: miyazaki.rinko@shizuoka.ac.jp

Toshiki Naito

The University of Electro-Communications

Chofu, Tokyo 182-8585, Japan

E-mail address: naito-infdel@jcom.home.ne.jp

Jong Son Shin

Faculty of Science and Engineering

Hosei University

Koganei, Tokyo 184-8584, Japan

E-mail address: shinjongson@jcom.home.ne.jp




