NORMAL EIGENVALUES IN EVOLUTIONARY PROCESS

Dohan Kim, Rinko Miyazaki, Toshiki Naito, and Jong Son Shin

Abstract

Firstly, we establish spectral mapping theorems for normal eigenvalues (due to Browder) of a C_{0}-semigroup and its generator. Secondly, we discuss relationships between normal eigenvalues of the compact monodromy operator and the generator of the evolution semigroup on $P_{\tau}(X)$ associated with the τ-periodic evolutionary process on a Banach space X, where $P_{\tau}(X)$ stands for the space of all τ-periodic continuous functions mapping \mathbb{R} to X.

1. Introduction and preliminaries

1.1. Introduction

Let X be a Banach space. We denote by $P_{\tau}(X)$ the set of all τ-periodic continuous X-valued functions on $\mathbb{R}:=(-\infty, \infty)$. For a given τ-periodic evolutionary process $\{U(t, s)\}_{t \geq s}$ on X the monodromy operator $V(0)$ is given by $V(0)=U(0,-\tau)$. Denote by L the (infinitesmal) generator of the $C_{0}-$ semigroup $\left\{T^{h}\right\}_{h \geq 0}$ (see (11)) on $P_{\tau}(X)$ associated with $\{U(t, s)\}_{t \geq s}$. It is important to study the spectral properties of the generator L. Roughly speaking, $(L u)(t)=-\frac{d u}{d t}+A(t) u(t), u \in D(L) \subset P_{\tau}(X)$ if $\{U(t, s)\}_{t \geq s}$ arise from a τ-periodic evolution equation of the form $\frac{d u}{d t}=A(t) u$.

In particular, let $A(t)=A+\beta(t) I$, where A is the generator of a $C_{0^{-}}$ semigroup $T(t), I$ is the identity operator, and $\beta(t)$ is a τ-periodic, continuous scalar-valued function. Then the evolutionary process and the monodromy operator become

$$
U(t, s)=e^{\int_{s}^{t} \beta(r) d r} T(t-s) \text { and } V(0)=e^{\int_{0}^{\tau} \beta(r) d r} T(\tau)
$$

[^0]In this case, the evolution equation may serve as a model for the following PDE

$$
\begin{gather*}
\frac{\partial u(t, x)}{\partial t}=\frac{\partial^{2} u(t, x)}{\partial x^{2}}+\beta(t) u(t, x), \quad 0 \leq x \leq \pi, t \geq 0 \tag{1}\\
u(t, 0)=u(t, \pi)=0, t \geq 0 \tag{2}
\end{gather*}
$$

We would like to decide the set of all normal eigenvalues (see [1] for definition) of the generator L arising from the equation (1) with the boundary condition (2). In general, the spectra of the generator L is deeply concerned with spectra of the monodromy operator $V(0)$, for example, cf. [5, 8].

The purpose of this paper is to give the spectral mapping theorems for normal eigenvalues in a C_{0}-semigroups and relationships between spectra of $V(0)$ and L. We denote by $\sigma_{n}(H)$ the set of all normal eigenvalues for a linear operator $H: X \rightarrow X$ and by $\sigma_{p}(H)$ the point spectrum of H.

First, in Section 2 we will contribute new results to the theory of spectral properties of a C_{0}-semigroup $T(t)$ and its generator A. In particular, we give relationships between the ascents of $\mu I-T(t)$ and $\lambda I-A$, and show that the order of pole of $(\lambda I-A)^{-1}$ for some λ coincides with the order of pole of $(\mu I-T(t))^{-1}$, provided that $\mu=e^{\lambda t}, t>0$ (Theorem 2.6 and Theorem 2.10). These are new results which is not found in the literatures [2, 4, 12, 15], etc.. As an application, we prove that the inclusion $\sigma_{n}(T(t)) \backslash\{0\} \subset e^{t \sigma_{n}(A)}, t>0$ holds (Theorem 2.11).

Second, in Section 3 we give a relationship between $\sigma_{n}(V(0))$ and $\sigma_{n}(L)$ and some additional results on other spectra. More recently, it was proved that if $1 \in \sigma_{n}(V(0))$, then $0 \in \sigma_{n}(L)$ in [5], which is important to obtain criteria of the existence of τ-periodic solutions for τ-periodic systems with nonlinear perturbation. On the other hand, in the sequential paper [6] we proved that the equality

$$
\operatorname{dim} N\left((\alpha I-L)^{m}\right)=\operatorname{dim} N\left(\left(e^{\tau \alpha} I-V(0)\right)^{m}\right)
$$

holds by using a representation of elements in the null space $N\left((\alpha I-L)^{m}\right)$. Summing up those results in Section 3, we shall prove that $e^{\alpha \tau} \in \sigma_{n}(V(0))$ if and only if $\alpha \in \sigma_{n}(L)$ (Theorem 3.5), provided that the monodromy operator $V(0)$ is compact. As additional results, we give spectral properties on the resolvent set, the continuous spectrum and the residual spectrum in connection with $V(0)$ and L.

The results up to this point are illustrated in the equation (1) with $\beta(t)=$ $\alpha(t)-\gamma$ in Section 4.

1.2. Preliminaries

Let T be a closed linear operator with dense domain $D(T) \subset X$. Set $N(T)=$ $\{x \in D(T) \mid T x=0\}$ and $R(T)=\{T x \in X \mid x \in D(T)\}$. The complex number ζ is called a normal eigenvalue of the operator T if the following conditions are satisfied:
(i) $R(\zeta I-T)$ is closed;
(ii) $\cup_{m \in \mathbb{N}} N\left((\zeta I-T)^{m}\right)$ is of finite dimension, where $\mathbb{N}=\{1,2,3, \ldots\}$; and
(iii) The point ζ is an isolated point of the spectrum of T.

Let $\rho(T)$ denote the resolvent set of $T, \sigma(T)$ the spectrum of $T, \sigma_{p}(T)$ the point spectrum of T and $\sigma_{n}(T)$ the set of all normal eigenvalues of T. Note that if T is a compact operator, then

$$
\begin{equation*}
\sigma(T) \backslash\{0\}=\sigma_{p}(T) \backslash\{0\}=\sigma_{n}(T) \tag{3}
\end{equation*}
$$

If the smallest nonnegative integer m such that

$$
N\left(T^{m}\right)=N\left(T^{m+1}\right), \quad T^{0}=I
$$

exists, it is called the ascent of the operator T and denoted by $\eta(T)$. If $m=\eta(T)$ is a positive integer, then

$$
N\left(T^{m-1}\right) \varsubsetneqq N\left(T^{m}\right)=N\left(T^{m+1}\right)
$$

holds. If no such integer exists, we say that $\eta(T)=\infty$. Note that $\eta(T)=0$ if and only if T^{-1} exists. The generalized eigenspace of T with respect to $\zeta_{0} \in \sigma_{p}(T)$, denoted by $N_{\zeta_{0}}(T)$, is the smallest closed subspace of X containing $\cup_{k=1}^{\infty} N\left(\left(\zeta_{0} I-T\right)^{k}\right)$. If $\zeta_{0} I-T$ has the ascent m, then $N_{\zeta_{0}}(T)=N\left(\left(\zeta_{0} I-T\right)^{m}\right)$. If the smallest nonnegative integer m such that

$$
R\left(T^{m}\right)=R\left(T^{m+1}\right)
$$

exists, it is called the descent of the operator T and denoted by $\delta(T)$. We say that $\delta(T)=\infty$ if for each $n, R\left(T^{n+1}\right) \varsubsetneqq R\left(T^{n}\right)$. Note that $\delta(T)=0$ if and only if $R(T)=X$.

If λ_{0} is an isolated singular point of the resovent $R(\lambda, T)=(\lambda I-T)^{-1}$, and if the Laurent expansion of $R(\lambda, T)$ in powers of $\lambda-\lambda_{0}$ is

$$
R(\lambda, T)=\sum_{n \geq-k}\left(\lambda-\lambda_{0}\right)^{n} P_{n}
$$

with $P_{-k} \neq 0$, we shall say that λ_{0} is a pole of $R(\lambda, T)$ of order k. The following two results show relationships between the order of a pole λ_{0} of $R(\lambda, T)$ and the ascent and descent of $\lambda_{0} I-T$, under the assumption $\rho(T) \neq \emptyset$.

Lemma 1.1 ([13, Theorem 10.1, Sec. 10, Chap. 5]). If λ_{0} is a pole of $R(\lambda, T)$ of order p, then $\lambda_{0} \in \sigma_{p}(T)$ and the ascent and descent of $\lambda_{0} I-T$ are both equal to p.

Lemma 1.2 ([13, Theorem 10.2, Sec. 10, Chap. 5]). Suppose that $\lambda_{0} \in \sigma(T)$ and $\lambda_{0} I-T$ has finite ascent and descent. Then λ_{0} is a pole of $R(\lambda, T)$

The fundamental result on the normal eigenvalues of T is found in $[1,15]$ as follows.

Lemma 1.3 ([1, Lemma 17]). Let T be a closed linear operator densely defined in the Banach space X with $\operatorname{dim} N_{\lambda_{0}}(T)<\infty$ for the complex number λ_{0}. Then $\lambda_{0} \in \sigma_{n}(T)$ if and only if the resolvent $R(\lambda, T)$ is analytic in the neighborhood of λ_{0} and has a pole at λ_{0}.

Clearly, it follows from Lemma 1.3 and Lemma 1.1 that if $\lambda_{0} \in \sigma_{n}(T)$, then λ_{0} is a pole of $R(\lambda, T)$ of some order m, and hence, $\lambda_{0} I-T$ has the ascent m.

2. Normal eigenvalues in \boldsymbol{C}_{0}-semigroups

Let $T(t)$ be a C_{0}-semigroup on X with the generator A in this section.
First, we will state some fundamental facts on spectral properties in $C_{0^{-}}$ semigroups. We define an operator $B_{\lambda}(t), \lambda \in \mathbb{C}, t>0$ as

$$
B_{\lambda}(t) x=\int_{0}^{t} e^{\lambda(t-s)} T(s) x d s, \quad x \in X
$$

Then $B_{\lambda}(t)$ is a bounded linear operator on X with the following properties:

$$
\begin{gathered}
(\lambda I-A) B_{\lambda}(t) x=\left(e^{t \lambda} I-T(t)\right) x, \quad x \in X, \\
B_{\lambda}(t)(\lambda I-A) x=\left(e^{t \lambda} I-T(t)\right) x, \quad x \in D(A),
\end{gathered}
$$

cf. [12, Lemma 2.2, Chap. 2]. These relations work effectively in the proof of the statement 1) in the following lemma; the statement 2) is proved through the technique of Fourier series.

Lemma 2.1 ([2, Theorems 3.7, Chap. IV, pp. 277-278], [15, Proposition 4.13]). The following statements hold true:

1) $\rho(T(t)) \backslash\{0\} \subset e^{t \rho(A)}$ for $t \geq 0$; more precisely, if $e^{\lambda t} \in \rho((T(t))$, then $\lambda \in \rho(A)$, which implies $e^{t \sigma(A)} \subset \sigma(T(t))$ for $t \geq 0$.
2)

$$
\sigma_{p}(T(t)) \backslash\{0\}=e^{t \sigma_{p}(A)} \quad \text { for } \quad t \geq 0 .
$$

More precisely, if $\lambda \in \sigma_{p}(A)$, then $e^{\lambda t} \in \sigma_{p}(T(t))$, and conversely, if $e^{\lambda t} \in$ $\sigma_{p}(T(t))$, then there exists $k \in \mathbb{Z}$ such that $\lambda+\frac{2 k \pi}{t} i \in \sigma_{p}(A), i=\sqrt{-1}$, where \mathbb{Z} stands for the set of all integers.

For $\mu \in \sigma_{p}(T(t)) \backslash\{0\}, t>0$ we denote by $\Lambda_{t}(\mu)$ the set of all $\lambda \in \sigma_{p}(A)$ such that $\mu=e^{\lambda t}$. Then $\Lambda_{t}(\mu) \neq \emptyset$. The following result shows relationships between the eigenspaces corresponding to $\mu \in \sigma_{p}(T(t)) \backslash\{0\}$ for each $t>0$ and the eigenspaces corresponding to $\lambda \in \Lambda_{t}(\mu)$.

Lemma 2.2 ([11, Lemma 2.1]). If $(A-\lambda I)^{m} x=0$, then

$$
T(t) x=e^{\lambda t} \sum_{k=0}^{m-1} \frac{t^{k}}{k!}(A-\lambda I)^{k} x .
$$

Lemma 2.3. The following statements hold true:

1) Let $\mu=e^{\lambda t}, t \geq 0$. Then

$$
N\left((\lambda I-A)^{n}\right) \subset N\left((\mu I-T(t))^{n}\right), \quad n=1,2, \ldots,
$$

and

$$
N_{\lambda}(A) \subset N_{\mu}(T(t))
$$

2) Let $\mu \in \sigma_{p}(T(t)) \backslash\{0\}, t>0$. Then $N\left((\mu I-T(t))^{n}\right)$ is the minimal closed subspace containing the linear independent subspaces $N\left((\lambda I-A)^{n}\right)$ for all $\lambda \in \Lambda_{t}(\mu)$, that is

$$
\begin{equation*}
N\left((\mu I-T(t))^{n}\right)=\varlimsup_{\lambda \in \Lambda_{t}(\mu)} N\left((\lambda I-A)^{n}\right), \quad n=1,2, \ldots, \tag{4}
\end{equation*}
$$

where \bar{D} stands for the closure of the set D.
Note that the assertion 1) in Lemma 2.3 is easily proved by using Lemma 2.2. The assertion 2) for $n=1$ is proved in the book in [15, Proposition 4.13]. For the general $n \geq 1$ the assertion 2) is found in [3, Lemma 6.1, Chap. 7, p. 213] without proof.

Next, we give relationships between the ascent of $e^{\lambda t} I-T(t), t>0$ and the ascent of $\lambda I-A$. For this purpose the following result is needed.

Lemma 2.4. For $t>0$,

$$
\begin{align*}
& N\left((A-\lambda I)^{m}\right) \backslash N\left((A-\lambda I)^{m-1}\right) \\
\subset & N\left(\left(T(t)-e^{\lambda t} I\right)^{m}\right) \backslash N\left(\left(T(t)-e^{\lambda t} I\right)^{m-1}\right), \quad m=1,2, \ldots . \tag{5}
\end{align*}
$$

Proof. Let $x \in N\left((A-\lambda I)^{m}\right)$. Then $x \in D\left((A-\lambda I)^{n}\right)=D\left(A^{n}\right)$ for $n=$ $0,1,2, \ldots$, and for $j=0,1,2, \ldots$,

$$
\begin{aligned}
& \left(T(t)-e^{\lambda t} I\right)^{j} x \\
= & e^{j \lambda t}\left(t(A-\lambda I)+\frac{t^{2}}{2!}(A-\lambda I)^{2}+\cdots+\frac{t^{m-1}}{(m-1)!}(A-\lambda I)^{m-1}\right)^{j} x \\
= & e^{j \lambda t}\left(t^{j}(A-\lambda I)^{j} x+j \frac{t^{j+1}}{2!}(A-\lambda I)^{j+1} x+\cdots\right. \\
& \left.\quad+\frac{t^{j(m-1)}}{((m-1)!)^{j}}(A-\lambda I)^{j(m-1)} x\right) .
\end{aligned}
$$

Here we have used Lemma 2.2. Hence, if $\left.x \in N(A-\lambda I)^{m}\right)$, then $(T(t)-$ $\left.e^{\lambda t} I\right)^{m} x=0$ for $t \geq 0$; if $x \in N\left((A-\lambda I)^{m}\right) \backslash N\left((A-\lambda I)^{m-1}\right) \neq \emptyset$, then

$$
\left(T(t)-e^{\lambda t} I\right)^{m-1} x=e^{(m-1) \lambda t} t^{m-1}(A-\lambda I)^{m-1} x \neq 0
$$

for $t>0$. The proof is complete.
Corollary 2.5. $\eta(A-\lambda I) \leq \eta\left(T(t)-e^{\lambda t} I\right)$.
Theorem 2.6. Let $\mu \in \sigma_{p}(T(t)) \backslash\{0\}, t>0$. If $\mu I-T(t)$ has the finite ascent m (and hence, $1 \leq m$), then the maximal ascent of $\lambda I-A$ for all $\lambda \in \Lambda_{t}(\mu)$ is m, and vice versa. Then

$$
\begin{equation*}
N_{\mu}(T(t))=\bigoplus_{\lambda \in \Lambda_{t}(\mu)} N_{\lambda}(A) . \tag{6}
\end{equation*}
$$

Proof. Assume that $\mu I-T(t)$ has the finite ascent m. Then $\eta(\lambda I-A) \leq m$ for all $\lambda \in \Lambda_{t}(\mu)$ by Corollary 2.5. It suffices to prove that there exists a $\lambda_{0} \in \Lambda_{t}(\mu)$ such that $\eta\left(\lambda_{0} I-A\right)=m$. Assume that $\eta(\lambda I-A) \leq m-1$ for all $\lambda \in \Lambda_{t}(\mu)$. Then we have

$$
\begin{aligned}
N\left((\mu I-T(t))^{m}\right) & =\bigoplus_{\lambda \in \Lambda_{t}(\mu)} N\left((\lambda I-A)^{m}\right) \\
& =\bigoplus_{\lambda \in \Lambda_{t}(\mu)} N\left((\lambda I-A)^{m-1}\right) \\
& =N\left((\mu I-T(t))^{m-1}\right) .
\end{aligned}
$$

This is a contradiction since $N\left((\mu I-T(t))^{m-1}\right) \varsubsetneqq N\left((\mu I-T(t))^{m}\right)$.
Conversely, we assume that the maximal ascent of $\lambda I-A$ for all $\lambda \in \Lambda_{t}(\mu)$ is m. Then, for $n \geq m$, we have

$$
\begin{aligned}
N\left((\mu I-T(t))^{n}\right) & =\bigoplus_{\lambda \in \Lambda_{t}(\mu)} N\left((\lambda I-A)^{n}\right) \\
& =\overline{\left.\bigoplus_{\lambda \in \Lambda_{t}(\mu)} N(\lambda I-A)^{m}\right)} \\
& =N\left((\mu I-T(t))^{m}\right) .
\end{aligned}
$$

Hence $\eta(\mu I-T(t)) \leq m$. Since there exists $\lambda_{0} \in \Lambda_{t}(\mu)$ such that $\eta\left(\lambda_{0} I-\right.$ $A)=m$, it follows that $m \leq \eta\left(e^{\lambda_{0} t} I-T(t)\right)=\eta(\mu I-T(t))$. Therefore $\eta(\mu I-T(t))=m$.

The next result immediately follows from Theorem 2.6.
Corollary 2.7. Let $\mu \in \sigma_{p}(T(t)) \backslash\{0\}, t>0$. Then the ascent of $\lambda I-A$ is 1 for every $\lambda \in \Lambda_{t}(\mu)$ if and only if the ascent of $\mu I-T(t)$ is 1 .

Lemma 2.8. Let $\mu \in \sigma_{p}(T(t)) \backslash\{0\}, t>0$. Then $\operatorname{dim} N_{\mu}(T(t))<\infty$ if and only if $\Lambda_{t}(\mu)$ is finite and $\operatorname{dim} N_{\lambda}(A)<\infty$ for all $\lambda \in \Lambda_{t}(\mu)$. If one of the above equivalent conditions is satisfied, then the ascent of $\mu I-T(t)$ coincides with the maximal ascent of $\lambda I-A$ for all $\lambda \in \Lambda_{t}(\mu)$ and

$$
\begin{equation*}
N_{\mu}(T(t))=\bigoplus_{\lambda \in \Lambda_{t}(\mu)} N_{\lambda}(A) \tag{7}
\end{equation*}
$$

Proof. Assume that $\operatorname{dim} N_{\mu}(T(t))<\infty$. Then there is an ascent m of $\mu I-T(t)$ for which $N_{\mu}(T(t))=N\left((\mu I-T(t))^{m}\right)$. By the assertion 1) in Lemma 2.3 we have $N_{\lambda}(A) \subset N_{\mu}(T(t))$ for all $\lambda \in \Lambda_{t}(\mu)$. Since $\operatorname{dim} N_{\mu}(T(t))<\infty$, we have $1 \leq \operatorname{dim} N_{\lambda}(A)<\infty$; and hence, $\Lambda_{t}(\mu)$ is finite.

Conversely, assume that $\Lambda_{t}(\mu)$ is a finite set and $\operatorname{dim} N_{\lambda}(A)<\infty$ for $\lambda \in$ $\Lambda_{t}(\mu)$. Set $m=\max \left\{\eta(\lambda I-A) \mid \lambda \in \Lambda_{t}(\mu)\right\}$. Then the assertion 2) in Lemma
2.3 implies

$$
\begin{equation*}
N\left((\mu I-T(t))^{m}\right)=\bigoplus_{\lambda \in \Lambda_{t}(\mu)} N\left((\lambda I-A)^{m}\right)=\bigoplus_{\lambda \in \Lambda_{t}(\mu)} N_{\lambda}(A) \tag{8}
\end{equation*}
$$

By using the same argument as in the proof of Theorem 2.6 we have (7) and hence, $\operatorname{dim} N_{\mu}(T(t))<\infty$.

Finally, we consider the orders of poles for $R(\mu, T(t))$ and $R(\lambda, A)$ provided that $\mu=e^{t \lambda}, t>0$. The following result was shown independently by using the same idea in [9, Theorem 4.2] and [2, Theorem 3.6, Chap. IV, pp. 276-277].
Lemma 2.9. Suppose that $\mu_{0} \neq 0, t>0$ and μ_{0} is a pole of $R(\mu, T(t))$ of order k. If $\lambda_{0} \in \Lambda_{t}\left(\mu_{0}\right)$, then λ_{0} is a pole of $R(\lambda, A)$ with the order $\leq k$: as a result, if $k=1$, then λ_{0} is a pole of $R(\lambda, A)$ of order 1 .

Lemma 2.9 is improved as follows.
Theorem 2.10. Suppose that $\mu_{0} \neq 0, t>0$ and μ_{0} is a pole of $R(\mu, T(t))$ of order k. Then there exists a $\lambda_{m} \in \Lambda_{t}\left(\mu_{0}\right)$ such that λ_{m} is a pole of $R(\lambda, A)$ of order k.

Proof. From the assumption together with Lemma 1.1 we see that $\mu_{0} I-T(t)$ has the ascent k. Hence it follows from Theorem 2.6 that there exists a $\lambda_{m} \in$ $\Lambda_{t}\left(\mu_{0}\right)$ satisfying $\eta\left(\lambda_{m} I-A\right)=k$. Since λ_{m} is a pole of $R(\lambda, A)$ by Lemma 1.3, the order of the pole λ_{m} is k by Lemma 1.1. The reminder is obvious.

Let

$$
\sigma_{e}(A)=\sigma(A) \backslash \sigma_{n}(A), \sigma_{e}(T(t))=\sigma(T(t)) \backslash \sigma_{n}(T(t))
$$

Then $e^{t \sigma_{e}(A)} \subset \sigma_{e}(T(t))$ for $t>0$; see [15, Proposition 4.13]. From this inclusion a spectral mapping theorem for normal eigenvalues is not derived, generally. Using Lemma 2.8 and Lemma 2.9, we will give a spectral mapping theorem for normal eigenvalues.

Theorem 2.11. If $\mu_{0} \in \sigma_{n}(T(t)) \backslash\{0\}$, then $\Lambda_{t}\left(\mu_{0}\right) \subset \sigma_{n}(A)$. In particular,

$$
\sigma_{n}(T(t)) \backslash\{0\} \subset e^{t \sigma_{n}(A)}, \quad t>0
$$

Proof. Let $\mu_{0} \in \sigma_{n}(T(t)) \backslash\{0\}$. Then $N_{\mu_{0}}(T(t))$ is of finite dimension and μ_{0} is a pole of $R(\mu, T(t))$ by Lemma 1.3. Thus it follows from Lemma 2.8 that $\Lambda_{t}\left(\mu_{0}\right)$ is a non-empty finite set and $\operatorname{dim} N_{\lambda}(A)<\infty$ for all $\lambda \in \Lambda_{t}\left(\mu_{0}\right)$. Then any point $\lambda_{0} \in \Lambda_{t}\left(\mu_{0}\right)$ is a pole of $R(\lambda, A)$ by Lemma 2.9 , so that $\lambda_{0} \in \sigma_{n}(A)$ by Lemma 1.3 again.

Proposition 2.12. Let $t>0$ be fixed. If

$$
\begin{equation*}
\sigma_{p}(T(t)) \backslash\{0\}=\sigma_{n}(T(t)) \backslash\{0\}, \tag{9}
\end{equation*}
$$

then

$$
\sigma_{p}(A)=\sigma_{n}(A)
$$

and

$$
\begin{equation*}
\sigma_{n}(T(t)) \backslash\{0\}=e^{t \sigma_{n}(A)} \tag{10}
\end{equation*}
$$

Proof. For the assertion $\sigma_{p}(A)=\sigma_{n}(A)$, it suffices to show $\sigma_{p}(A) \subset \sigma_{n}(A)$. Let $\lambda \in \sigma_{p}(A)$ and $\mu=e^{\lambda t}$. Then $\mu \in \sigma_{p}(T(t)) \backslash\{0\}=\sigma_{n}(T(t)) \backslash\{0\}$, and hence, $\lambda \in \sigma_{n}(A)$ by Theorem 2.11. Moreover, since $\sigma_{n}(T(t)) \backslash\{0\} \subset e^{t \sigma_{n}(A)}$ by Theorem 2.11 again, we have

$$
\sigma_{n}(T(t)) \backslash\{0\} \subset e^{t \sigma_{n}(A)}=e^{t \sigma_{p}(A)} \subset \sigma_{p}(T(t)) \backslash\{0\}
$$

This means the identity (10).
As a special case, the following results hold for a compact C_{0}-semigroup $T(t)$ and its generator A. The proofs are based on spectral properties of a compact operator, cf. [13].

Corollary 2.13. Suppose that $T(t)$ is a compact C_{0}-semigroup on X. Let $\mu \in \sigma(T(t)) \backslash\{0\}, t>0$. Then the following statements hold.

1) $\operatorname{dim} N_{\lambda}(A)<\infty$ for all $\lambda \in \Lambda_{t}(\mu)$.
2) The ascent of $\mu I-T(t)$ coincides with the maximal ascent of $\lambda I-A$ for all $\lambda \in \Lambda_{t}(\mu)$ and (7) holds. In particular, $\eta(\lambda I-A)=1$ for every $\lambda \in \Lambda_{t}(\mu)$ if and only if $\eta(\mu I-T(t))=1$.
3) The ascent of $\mu I-T(t)$ is the order of μ as the pole of $R(\xi, T(t))$.

Corollary 2.14. Suppose that $T(t)$ is a compact C_{0}-semigroup on X. Then $\sigma_{p}(A)=\sigma_{n}(A)$ and

$$
\sigma_{n}(T(t))=e^{t \sigma_{n}(A)}, t>0
$$

3. Spectral properties in evolution semigroup

We give relationships between spectra of the monodromy operator $V(0)$ and the generator L.

3.1. Relationship between normal eigenvalues of $V(0)$ and L

A family of bounded linear operators $\{U(t, s)\}_{t \geq s},(t, s \in \mathbb{R})$ from a Banach space X to itself is called a τ-periodic (strongly continuous) evolutionary process if the following conditions are satisfied:
(1) $U(t, t)=I$ for all $t \in \mathbb{R}$,
(2) $U(t, s) U(s, r)=U(t, r)$ for all $t \geq s \geq r$,
(3) The map $(t, s) \mapsto U(t, s) x$ is continuous for every fixed $x \in X$,
(4) $U(t+\tau, s+\tau)=U(t, s)$ for all $t \geq s$,
(5) $\|U(t, s)\| \leq M_{w} e^{w(t-s)}$ for some $M_{w}>0$ and $w \in \mathbb{R}$ independent of $t \geq s$.
For a given τ-periodic evolutionary process $\{U(t, s)\}_{t \geq s}$ the following operator

$$
V(t)=U(t, t-\tau)
$$

is called a monodromy operator (sometimes, a periodic map, or Poincaré map). Then, $V(t+\tau)=V(t)$ holds for every $t \in \mathbb{R}$. For a given τ-periodic evolutionary process $\{U(t, s)\}_{t \geq s}$, the family $\left\{T^{h}\right\}_{h \geq 0}$ defined by

$$
\begin{equation*}
\left(T^{h} u\right)(t):=U(t, t-h) u(t-h), \forall t \in \mathbb{R}, u \in P_{\tau}(X) \tag{11}
\end{equation*}
$$

is a C_{0}-semigroup on $P_{\tau}(X)$ (cf. [8, Lemma 2]). It is called the evolution semigroup associated with the τ-periodic evolutionary process $\{U(t, s)\}_{t \geq s}$ (briefly, evolution semigroup). Denote by L the (infinitesimal) generator of the $C_{0}{ }^{-}$ semigroup $\left\{T^{h}\right\}_{h \geq 0}$ on $P_{\tau}(X)$. It is well-known that L is a closed linear operator with dense domain $D(L)$ in $P_{\tau}(X)$. For $\alpha \in \mathbb{C}$ we set $U_{\alpha}(t, s)=$ $e^{-\alpha(t-s)} U(t, s)$. Then $U_{\alpha}(t, s)$ is also a τ-periodic evolutionary process. The monodromy operator $V_{\alpha}(0)$ and the generator L_{α} corresponding to $U_{\alpha}(t, s)$ are given by $V_{\alpha}(0)=e^{-\alpha \tau} V(0)$ and $L_{\alpha}=L-\alpha I$.

To obtain the main theorem in this section, we need the following key lemma.
Lemma 3.1 ([6, Theorem 2]). For any complex number α,

$$
\begin{equation*}
\operatorname{dim} N\left((\alpha I-L)^{m}\right)=\operatorname{dim} N\left(\left(e^{\alpha \tau} I-V(0)\right)^{m}\right), m \in \mathbb{N} \tag{12}
\end{equation*}
$$

The equation (12) shows that $e^{\alpha \tau} I-V(0)$ and $\alpha I-L$ have the same ascent.
Corollary 3.2. $e^{\alpha \tau} \in \sigma_{p}(V(0))$ if and only if $\alpha \in \sigma_{p}(L)$. More precisely, if $\alpha \in \sigma_{p}(L)$, then $e^{\alpha \tau} \in \sigma_{p}(V(0))$, and conversely, if $e^{\alpha \tau} \in \sigma_{p}(V(0))$, then $\alpha+\frac{2 k \pi}{\tau} i \in \sigma_{p}(L), k \in \mathbb{Z}$.
Proof. It is easily derived from Lemma 3.1.
Lemma 3.3 ([5, Theorem 3]). If $1 \in \sigma_{n}\left(V_{\alpha}(0)\right)$, then $0 \in \sigma_{n}\left(L_{\alpha}\right)$.
Theorem 3.4. If $e^{\alpha \tau} \in \sigma_{n}(V(0))$, then $\alpha \in \sigma_{n}(L)$, and

$$
1 \leq \eta(\alpha I-L)=\delta(\alpha I-L)=\eta\left(e^{\alpha \tau} I-V(0)\right)=\delta\left(e^{\alpha \tau} I-V(0)\right)<\infty
$$

Proof. Let $e^{\alpha \tau} \in \sigma_{n}(V(0))$. Then $1 \in \sigma_{n}\left(V_{\alpha}(0)\right)$, since $e^{\alpha \tau} I-V(0)=e^{\alpha \tau}(I-$ $\left.V_{\alpha}(0)\right)$. Lemma 3.3 implies $0 \in \sigma_{n}\left(L_{\alpha}\right)$, and hence $\alpha \in \sigma_{n}(L)$. Then we have

$$
\eta\left(e^{\alpha \tau} I-V(0)\right)=\delta\left(e^{\alpha \tau} I-V(0)\right) \text { and } \eta(\alpha I-L)=\delta(\alpha I-L)
$$

Lemma 3.1 means $\eta(\alpha I-L)=\eta\left(e^{\alpha \tau} I-V(0)\right)$. Summing up these, we obtain the required result.

Now we are in a position to state the main theorem in this section.
Theorem 3.5. Suppose that $V(0)$ is a compact operator. Then $e^{\alpha \tau} \in \sigma_{n}(V(0))$ if and only if $\alpha \in \sigma_{n}(L)$.

Proof. Let $\alpha \in \sigma_{n}(L)$. Then $e^{\alpha \tau} \in \sigma_{p}(V(0)) \backslash\{0\}$ by Corollary 3.2. Since $V(0)$ is a compact operator, the identity (3) means $e^{\alpha \tau} \in \sigma_{n}(V(0))$. The converse follows from Theorem 3.4.

The following result is derived immediately from Theorem 3.5.

Corollary 3.6. Let $b(t)$ be a τ-periodic, continuous real function such that $b(t+\tau)=b(t)+b(\tau)$. If $T(t)$ is a compact C_{0}-semigroup on X, then

$$
U(t, s):=e^{b(t)-b(s)} T(t-s), t \geq s
$$

is a compact operator. As a result, so is $V(0):=U(0,-\tau)$. Moreover, putting $\sigma_{n}(T(\tau))=\left\{e^{\lambda_{m} \tau} \mid m \in \mathbb{N}\right\}$,

$$
\sigma_{n}(V(0))=\left\{e^{b(\tau)+\lambda_{m} \tau} \mid m \in \mathbb{N}\right\}
$$

and hence,

$$
\sigma_{n}(L)=\left\{\left.\frac{b(\tau)}{\tau}+\lambda_{m}+\frac{2 \pi k i}{\tau} \right\rvert\, m \in \mathbb{N}, k \in \mathbb{Z}\right\}
$$

3.2. Additional results

For a closed linear operator T with dense domain in X, we denote by $\sigma_{c}(T)$ and $\sigma_{r}(T)$ the continuous spectrum and the residual spectrum, respectively (cf. [12]). In this subsection we consider relationships between these spectra of $V(0)$ and L. For the resolvent sets of $V(0)$ and L the following result is well known in [5].

Lemma 3.7 ([5, Lemma 3.10]). If $e^{\alpha \tau} \in \rho(V(0))$, then $\alpha \in \rho(L)$.
First we consider its converse. To do so, we need some of lemmas. Define

$$
B_{\alpha} g=\int_{0}^{\tau} U_{\alpha}(\tau, r) g(r) d r, B_{0} g=: B g, \quad g \in P_{\tau}(X)
$$

Then it is a bounded linear operator form $P_{\tau}(X)$ to X, which has the following property.

Lemma 3.8 ([5, Lemma 7.2] and [10, Lemma 21]). $B_{\alpha} P_{\tau}(X)$ is dense in X. In particular, If $\operatorname{dim} X<\infty$, then $B_{\alpha} P_{\tau}(X)=X$.

The following result is a slight extension of the above lemma.
Lemma 3.9. Let Ω be dense in $P_{\tau}(X)$. Then $B_{\alpha} \Omega$ is also dense in X.
Proof. Since B_{α} is continuous, $B_{\alpha}(\bar{\Omega}) \subset \overline{B_{\alpha}(\Omega)}$. Since Ω is dense, $B_{\alpha}(\bar{\Omega})=$ $B_{\alpha}\left(P_{\tau}(X)\right)$, which is dense in X by Lemma 3.8. Thus $\overline{B_{\alpha}(\Omega)}=P_{\tau}(X)$; the proof is complete.

Lemma 3.10 ([6, Lemma 2.1]). Let $g \in P_{\tau}(X)$. Then $u \in D(L)$ and $(\alpha I-$ $L) u=g$ if and only if $u \in P_{\tau}(X)$ is given by

$$
\begin{equation*}
u(t)=U_{\alpha}(t, 0) w+\int_{0}^{t} U_{\alpha}(t, s) g(s) d s, \quad t \geq 0 \tag{13}
\end{equation*}
$$

with

$$
\begin{equation*}
\left(I-V_{\alpha}(0)\right) w=B_{\alpha} g . \tag{14}
\end{equation*}
$$

The following result is directly obtained from Lemma 3.10.

Corollary 3.11. $g \in R(\alpha I-L)$ if and only if $B_{\alpha} g \in R\left(e^{\alpha \tau} I-V(0)\right)$.
Now we discuss the converse of Lemma 3.7.
Proposition 3.12. If $\alpha \in \rho(L)$, then $e^{\alpha \tau} \in \rho(V(0)) \cup \sigma_{c}(V(0))$.
Proof. If $\alpha \in \rho(L)$, then by Lemma 3.1 we see that $\left(e^{\alpha t} I-V(0)\right)^{-1}$ exists. Since $R(\alpha I-L)=P_{\tau}(X)$, it follows from Lemma 3.8 that $B_{\alpha} R(\alpha I-L)$ is dense in X. Moreover, since $B_{\alpha} R(\alpha I-L) \subset R\left(e^{\alpha t} I-V(0)\right)$ by Corollary 3.11, the range $R\left(e^{\alpha t} I-V(0)\right)$ is also dense in X.

Corollary 3.13. If $V(0)$ is a compact operator, then $\alpha \in \rho(L)$ if and only if $e^{\alpha \tau} \in \rho(V(0))$.

Next we consider the continuous spectrum and the residual spectrum for $V(0)$ and L.

Proposition 3.14. If $\alpha \in \sigma_{c}(L)$, then $e^{\alpha \tau} \in \sigma_{c}(V(0))$.
Proof. If $\alpha \in \sigma_{c}(L)$, then $(\alpha I-L)^{-1}$ exists and $R(\alpha I-L)$ is dense in $P_{\tau}(X)$. It follows from Lemma 3.9 that $B_{\alpha} R(\alpha I-L)$ is dense in X. This implies that the range $R\left(e^{\alpha \tau} I-V(0)\right)$ is also dense in X. Hence $e^{\alpha \tau} \in \rho(V(0)) \cup \sigma_{c}(V(0))$. If $e^{\alpha \tau} \in \rho(V(0))$, then $\alpha \in \rho(L)$ by Lemma 3.7. This yields a contradiction since $\alpha \in \sigma_{c}(L)$. Therefore $e^{\alpha \tau} \in \sigma_{c}(V(0))$.

Combining Lemma 3.12 and Proposition 3.14 we obtain the following result.
Corollary 3.15. If $\alpha \in \rho(L) \cup \sigma_{c}(L)$, then $e^{\alpha \tau} \in \rho(V(0)) \cup \sigma_{c}(V(0))$.
Proposition 3.16. If $e^{\alpha \tau} \in \sigma_{r}(V(0))$, then $\alpha \in \sigma_{r}(L)$.
Proof. If $e^{\alpha \tau} \in \sigma_{r}(V(0))$, then $\left(e^{\alpha \tau} I-V(0)\right)^{-1}$ exists, as a result, $(\alpha I-L)^{-1}$ exists. Moreover, since $R\left(e^{\alpha \tau} I-V(0)\right)$ is not dense in X and $B_{\alpha} R(\alpha I-L) \subset$ $R\left(e^{\alpha t} I-V(0)\right)$, the range $R(\alpha I-L)$ is not also dense in $P_{\tau}(X)$ by Lemma 3.9. This proves the proposition.

4. An example

Let $X=L^{2}([0, \pi], \mathbb{C})$. Then, X is a Hilbert space with the usual inner product \langle,$\rangle given by$

$$
\langle w, z\rangle=\int_{0}^{\pi} w(x) \overline{z(x)} d x, w, z \in X
$$

Let us consider a partial differential equation of the form

$$
\begin{gather*}
\frac{\partial u(t, x)}{\partial t}=\frac{\partial^{2} u(t, x)}{\partial x^{2}}+(\alpha(t)-\gamma) u(t, x), \quad 0 \leq x \leq \pi, t \geq 0 \tag{15}\\
u(t, 0)=u(t, \pi)=0, t \geq 0 \tag{16}
\end{gather*}
$$

where $\gamma \in \mathbb{R}$ and $\alpha(t)$ is a π-periodic, continuous scalar-valued function. Define a linear operator A_{0} by

$$
A_{0} u=\frac{d^{2} u}{d x^{2}} \text { for } u \in D\left(A_{0}\right)
$$

where

$$
\begin{gathered}
D\left(A_{0}\right)=\{u \in X \mid u \text { is continuously differentiable and } \\
\\
u^{\prime} \text { is abosolutely continuous, } \\
\left.u^{\prime \prime} \in X, u(0)=u(\pi)=0\right\} .
\end{gathered}
$$

Then A_{0} is a closed linear operator with dense domain in X and A_{0} is selfadjoint. It is well-known that

$$
\sigma\left(A_{0}\right)=\sigma_{p}\left(A_{0}\right)=\left\{\lambda_{m}:=-m^{2} \mid m \in \mathbb{N}\right\}
$$

$\eta\left(\lambda_{m} I-A_{0}\right)=1$ for all $m \in \mathbb{N}$, and $N_{\lambda_{m}}\left(A_{0}\right)=N\left(\lambda_{m} I-A_{0}\right)=\operatorname{span}\left\{z_{m}\right\}$, where $z_{m}(x)=\sqrt{\frac{2}{\pi}} \sin m x$.

On the other hand, A_{0} is the generator of a compact C_{0}-semigroup $T_{0}(t)$ on X such that $\left\|T_{0}(t)\right\|=e^{-t}$ for $t \geq 0$, cf. [2, 14]. Since A_{0} is a selfadjoint operator, $T(t)$ is also a self-adjoint operator. Note that $\left\{z_{m}\right\}_{m=1}^{\infty}$ is an orthonormal basis in X. Since $T_{0}(t) z_{m}=e^{\lambda_{m} t} z_{m}, m=1,2, \ldots$, and $f=$ $\sum_{m=1}^{\infty}\left\langle f, z_{m}\right\rangle z_{m}$ for every $f \in X$, we obtain

$$
T_{0}(t) f=\sum_{m=1}^{\infty} e^{\lambda_{m} t}\left\langle f, z_{m}\right\rangle z_{m}
$$

Hence $0 \notin \sigma_{p}\left(T_{0}(t)\right), \sigma_{p}\left(T_{0}(t)\right)=\left\{e^{\lambda_{m} t} \mid m \in \mathbb{N}\right\}, t>0$ and $\eta\left(e^{\lambda_{m} t} I-T_{0}(t)\right)=$ 1. Then we obtain the following result.

Proposition 4.1. The following relations hold:

$$
\sigma_{p}\left(A_{0}\right)=\sigma_{n}\left(A_{0}\right), \quad \sigma_{p}\left(T_{0}(t)\right)=\sigma_{n}\left(T_{0}(t)\right), \quad \sigma_{n}\left(T_{0}(t)\right)=e^{t \sigma_{n}\left(A_{0}\right)}, t>0
$$

Furthermore, we define a closed linear operator A by

$$
A u=\frac{d^{2} u}{d x^{2}}-\gamma u \text { for } u \in D(A)=D\left(A_{0}\right)
$$

which is the generator of the C_{0}-semigroup $T(t)=e^{-\gamma t} T_{0}(t)$ on X. If we set $A(t)=A+\alpha(t) I$ for $t \in \mathbb{R}$, then the equation (15) is represented as

$$
\begin{equation*}
\frac{d}{d t} u(t)=A(t) u(t) \tag{17}
\end{equation*}
$$

Set

$$
a(t)=\int_{0}^{t} \alpha(r) d r
$$

Then, $a(t+\pi)=a(t)+a(\pi)$. The solution operator $U(t, s)$ of the equation (17) is represented as

$$
U(t, s)=e^{a(t)-a(s)} T(t-s)=e^{-\gamma(t-s)} e^{a(t)-a(s)} T_{0}(t-s), t \geq s
$$

and hence,

$$
\begin{equation*}
V(0):=U(\pi, 0)=e^{-\gamma \pi} e^{a(\pi)} T_{0}(\pi) . \tag{18}
\end{equation*}
$$

Clearly, $\sigma_{p}(V(0))=\sigma_{n}(V(0))$. It is easy to show that $\{U(t, s)\}_{t \geq s}$ is a π periodic evolutionary process on X. Note that $U(t, s), t>s$ is a compact operator and so is $V(0)$. Let L be the generator of the evolution semigroup $\left\{T^{h}\right\}_{h \geq 0}$ on $P_{\pi}(X)$ associated with $\{U(t, s)\}_{t \geq s}$. Then the operator L has the following properties.

Proposition 4.2.

$$
\begin{gathered}
\sigma_{p}(L)=\sigma_{n}(L), \quad \sigma_{n}(V(0))=e^{\pi \sigma_{n}(L)} \\
\sigma_{n}(L)=\left\{\alpha_{m}+2 k i \mid m \in \mathbb{N}, k \in \mathbb{Z}\right\}, \quad \alpha_{m}=\frac{a(\pi)}{\pi}-\left(\gamma+m^{2}\right)
\end{gathered}
$$

and

$$
\eta\left(\left(\alpha_{m}+2 k i\right) I-L\right)=1
$$

for all $m \in \mathbb{N}, k \in \mathbb{Z}$.
Proof. Since $\sigma_{p}\left(T_{0}(\pi)\right)=\sigma_{n}\left(T_{0}(\pi)\right)$ and $\sigma_{n}\left(T_{0}(\pi)\right)=\left\{e^{-m^{2} \pi} \mid m \in \mathbb{N}\right\}$, it follows from (18) that

$$
\sigma_{p}(V(0))=\sigma_{n}(V(0))=\left\{e^{\pi \alpha_{m}} \mid m \in \mathbb{N}\right\}
$$

Thus Corollary 3.2 implies that $\sigma_{p}(V(0))=e^{\pi \sigma_{p}(L)}$. Let $\alpha \in \sigma_{p}(L)$. Then $e^{\pi \alpha} \in \sigma_{p}(V(0))$, and hence $e^{\pi \alpha} \in \sigma_{n}(V(0))$. By Theorem 3.4 we obtain $\alpha \in$ $\sigma_{n}(L)$, that is, $\sigma_{p}(L)=\sigma_{n}(L)$. As a result, $\sigma_{n}(V(0))=e^{\pi \sigma_{n}(L)}$. Moreover, Corollary 3.6 implies that $\sigma_{n}(L)=\left\{\alpha_{m}+2 k i \mid m \in \mathbb{N}, k \in \mathbb{Z}\right\}$. Furthermore, since $\eta\left(e^{-m^{2} \pi} I-T_{0}(\pi)\right)=1$, we have $\eta\left(e^{\pi \alpha_{m}} I-V(0)\right)=1$. Theorem 3.4 implies that $\eta\left(\left(\alpha_{m}+2 k i\right) I-L\right)=1$.

References

[1] F. E. Browder, On the spectral theory of elliptic differential operators I, Math. Ann. 142 (1961), 22-130.
[2] K.-J. Engel and R. Nagel, One-Parameter Semigroups of Linear Evolution Equations, Springer, 1999.
[3] J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer, 1993.
[4] E. Hille and R. S. Phillip, Functional Analysis and Semi-Groups, American Mathematical Society, Providence, R. I., 1957.
[5] R. Miyazaki, D. Kim, T. Naito, and J. S. Shin, Fredholm operators, evolution semigroups, and periodic solutions of nonlinear periodic systems, J. Differential Equations 257 (2014), no. 11, 4214-4247.
[6] , Generalized eigenspaces of generators of evolution semigroups, to appear in J. Math. Anal. Appl..
[7] , Solutions of higher order inhomogeneous periodic evolutionary process, in preparation.
[8] T. Naito and N. V. Minh, Evolution semigroups and spectral criteria for almost periodic solutions of periodic evolution equations, J. Differential Equations 152 (1999), no. 2, 358-376.
[9] T. Naito and J. Shin, On solution semigroups of functional differential equations, RIMS Kokyuuroku 940 (1996), 161-175.
[10] J. S. Shin and T. Naito, Representations of solutions, translation formulae and asymptotic behavior in discrete linear systems and periodic continuous linear systems, Hiroshima Math. J. 44 (2014), no. 1, 75-126.
[11] J. S. Shin, T. Naito, and N. V. Minh, On stability of solutions in linear autonomous functional differential equations, Funkcial. Ekvac. 43 (2000), no. 2, 323-337.
[12] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983.
[13] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, John Wiley-Sons. Inc., 1980.
[14] C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc. 200 (1974), 394-418.
[15] G. F. Webb, Theory of Nonlinear Age-dependent Population Dynamics, Pure and Appl. Math. Vol.89, Dekker, 1985.

Dohan Kim
Department of Mathematics
Seoul National University
Seoul 151-747, Korea
E-mail address: dhkim@snu.ac.kr
Rinko Miyazaki
Graduate School of Engineering
Shizuoka University
Hamamatsu, Shizuoka 432-8561, Japan
E-mail address: miyazaki.rinko@shizuoka.ac.jp
Toshiki Naito
The University of Electro-Communications
Chofu, Tokyo 182-8585, Japan
E-mail address: naito-infdel@jcom.home.ne.jp
Jong Son Shin
Faculty of Science and Engineering
Hosei University
Koganei, Tokyo 184-8584, Japan
E-mail address: shinjongson@jcom.home.ne.jp

[^0]: Received June 5, 2015.
 2010 Mathematics Subject Classification. Primary 47A10, 47D06; Secondary 35K05.
 Key words and phrases. C_{0}-semigroup, evolution semigroup, monodromy operator, normal eigenvalue, order of pole, ascent.

 The first author was partially supported by the National Research Foundation of Korea (NRF-2012R1A1A2003264).

 The second author was financially supported by JSPS KAKENHI Grant Number 22540223.

