1 |
E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123-145.
|
2 |
F. E. Browder, Fixed point theorems for noncompact mappings in Hilbert space, Proc. Natl. Acad. Sci. (USA) 53 (1965), 1272-1276.
DOI
|
3 |
L. C. Ceng, Q. H. Ansari, and J. C. Yao, Some iterative methods for finding fixed points and solving constrained convex minimization problems, Nonlinear Anal. 74 (2011), no. 16, 5286-5802.
DOI
|
4 |
L. C. Ceng, T. Tanaka, and J. C. Yao, Iterative construction of fixed points of nonself- mappings in Banach spaces, J. Comput. Appl. Math. 206 (2007), no. 2, 814-825.
DOI
|
5 |
F. Cianciaruso, G. Marino, and L. Muglia, Iterative methods for equilibrium and fixed point problems for nonexpansive semigroups in Hilbert space, J. Optim. Theory Appl. 146 (2010), no. 2, 491-509.
DOI
|
6 |
K. Fan, A generalization of Tychonoff's fixed-point theorem, Math. Ann. 142 (1961), 305-310.
DOI
|
7 |
K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, 28, Cambridge University Press, Cambridge, 1990.
|
8 |
K. R. Kazmi and S. H. Rizvi, A hybrid extragradient method for approximating the common solutions of a variational inequality, a system of variational inequalities, a mixed equilibrium problem and a fixed point problem, Appl. Math. Comput. 218 (2012), no. 9, 5439-5452.
DOI
|
9 |
K. R. Kazmi, Iterative approximation of a common solution of split generalized equilibrium problem and a fixed point problem for a nonexpansive semigroup, Math. Sci. 7 (2013), Article 1.
|
10 |
K. R. Kazmi, Implicit iterative method for approximating a common solution of split equi- librium problem and fixed point problem for a nonexpansive semigroup, Arab J. Math. Sci. 20 (2014), no. 1, 57-75.
DOI
|
11 |
G. Marino and H. K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006), no. 1, 43-52.
DOI
|
12 |
Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), no. 4, 595-597.
|
13 |
S. Plubtieng and R. Punpaeng, Fixed point solutions of variational inequalities for nonexpansive semigroups in Hilbert spaces, Math. Comput. Modelling 48 (2008), no. 1-2, 279-286.
DOI
|
14 |
T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), no. 1, 71-83.
DOI
|
15 |
X. Xiao, S. Li, L. Li, H. Song, and L. Zhang, Strong convergence of composite general iterative methods for one-parameter nonexpansive semigroup and equilibrium problems, J. Inequal. Appl. 2012 (2012), 131, 19 pp.
|
16 |
H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002), no. 1, 240-256.
DOI
|