1 |
B. Burgstaller, Equivariant KK-theory for semimultiplicative sets, New York J. Math., 15(2009), 505-531.
|
2 |
B. Burgstaller, Equivariant KK-theory of r-discrete groupoids and inverse semigroups, Rocky Mountain J. Math., 50(4)(2020), 1207-1220.
DOI
|
3 |
J. Cuntz, K-theory and C*-algebras, Algebraic K-theory, number theory, geometry and analysis (Bielefeld, 1982), 55-79, Lecture Notes in Math. 1046, Springer, Berlin, 1984.
|
4 |
N. Higson, A characterization of KK-theory, Pacific J. Math., 126(2)(1987), 253-276.
DOI
|
5 |
K. K. Jensen and K. Thomsen, Elements of KK-theory, Birkhauser, Boston, MA, 1991.
|
6 |
G. G. Kasparov, The operator K-functor and extensions of C*-algebras, Izv. Akad. Nauk SSSR Ser. Mat., 44(1980), 571-636, 719.
|
7 |
G. G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Invent. Math., 91(1)(1988), 147-201.
DOI
|
8 |
P.-Y. Le Gall, Equivariant Kasparov theory and groupoids. I. (Theorie de Kasparov equivariante et groupoides. I.), K-Theory, 16(4)(1999), 361-390.
DOI
|
9 |
R. Meyer, Equivariant Kasparov theory and generalized homomorphisms, K-Theory, 21(3)(2000), 201-228.
DOI
|
10 |
A. L. T. Paterson, Groupoids, inverse semigroups, and their operator algebras, Progress in Mathematics 170, Boston, MA: Birkhauser, 1999.
|
11 |
G. Skandalis, Exact sequences for the Kasparov groups of graded algebras, Can. J. Math., 37(1985), 193-216.
DOI
|
12 |
K. Thomsen, The universal property of equivariant KK-theory, J. Reine Angew. Math., 504(1998), 55-71.
DOI
|