Browse > Article
http://dx.doi.org/10.5666/KMJ.2021.61.1.111

The Universal Property of Inverse Semigroup Equivariant KK-theory  

Burgstaller, Bernhard (Departamento de Matematica, Universidade Federal de Santa Catarina)
Publication Information
Kyungpook Mathematical Journal / v.61, no.1, 2021 , pp. 111-137 More about this Journal
Abstract
Higson proved that every homotopy invariant, stable and split exact functor from the category of C⁎-algebras to an additive category factors through Kasparov's KK-theory. By adapting a group equivariant generalization of this result by Thomsen, we generalize Higson's result to the inverse semigroup and locally compact, not necessarily Hausdorff groupoid equivariant setting.
Keywords
universal property; stable split exact homotopy functor; KK-theory; inverse semigroup; locally compact groupoid; non-Hausdorf;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Burgstaller, Equivariant KK-theory for semimultiplicative sets, New York J. Math., 15(2009), 505-531.
2 B. Burgstaller, Equivariant KK-theory of r-discrete groupoids and inverse semigroups, Rocky Mountain J. Math., 50(4)(2020), 1207-1220.   DOI
3 J. Cuntz, K-theory and C*-algebras, Algebraic K-theory, number theory, geometry and analysis (Bielefeld, 1982), 55-79, Lecture Notes in Math. 1046, Springer, Berlin, 1984.
4 N. Higson, A characterization of KK-theory, Pacific J. Math., 126(2)(1987), 253-276.   DOI
5 K. K. Jensen and K. Thomsen, Elements of KK-theory, Birkhauser, Boston, MA, 1991.
6 G. G. Kasparov, The operator K-functor and extensions of C*-algebras, Izv. Akad. Nauk SSSR Ser. Mat., 44(1980), 571-636, 719.
7 G. G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Invent. Math., 91(1)(1988), 147-201.   DOI
8 P.-Y. Le Gall, Equivariant Kasparov theory and groupoids. I. (Theorie de Kasparov equivariante et groupoides. I.), K-Theory, 16(4)(1999), 361-390.   DOI
9 R. Meyer, Equivariant Kasparov theory and generalized homomorphisms, K-Theory, 21(3)(2000), 201-228.   DOI
10 A. L. T. Paterson, Groupoids, inverse semigroups, and their operator algebras, Progress in Mathematics 170, Boston, MA: Birkhauser, 1999.
11 G. Skandalis, Exact sequences for the Kasparov groups of graded algebras, Can. J. Math., 37(1985), 193-216.   DOI
12 K. Thomsen, The universal property of equivariant KK-theory, J. Reine Angew. Math., 504(1998), 55-71.   DOI