• 제목/요약/키워드: Scan cells

검색결과 167건 처리시간 0.025초

Master-Slave 기법을 적용한 System Operation의 동작 검증 (Verification of System using Master-Slave Structure)

  • 김인수;민형복
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.199-202
    • /
    • 2009
  • Scan design is currently the most widely used structured Design For Testability approach. In scan design, all storage elements are replaced with scan cells, which are then configured as one or more shift registers(also called scan chains) during the shift operation. As a result, all inputs to the combinational logic, including those driven by scan cells, can be controlled and all outputs from the combinational logic, including those driving scan cells, can be observed. The scan inserted design, called scan design, is operated in three modes: normal mode, shift mode, and capture mode. Circuit operations with associated clock cycles conducted in these three modes are referred to as normal operation, shift operation, and capture operation, respectively. In spite of these, scan design methodology has defects. They are power dissipation problem and test time during test application. We propose a new methodology about scan shift clock operation and present low power scan design and short test time.

A New Scan Partition Scheme for Low-Power Embedded Systems

  • Kim, Hong-Sik;Kim, Cheong-Ghil;Kang, Sung-Ho
    • ETRI Journal
    • /
    • 제30권3호
    • /
    • pp.412-420
    • /
    • 2008
  • A new scan partition architecture to reduce both the average and peak power dissipation during scan testing is proposed for low-power embedded systems. In scan-based testing, due to the extremely high switching activity during the scan shift operation, the power consumption increases considerably. In addition, the reduced correlation between consecutive test patterns may increase the power consumed during the capture cycle. In the proposed architecture, only a subset of scan cells is loaded with test stimulus and captured with test responses by freezing the remaining scan cells according to the spectrum of unspecified bits in the test cubes. To optimize the proposed process, a novel graph-based heuristic to partition the scan chain into several segments and a technique to increase the number of don't cares in the given test set have been developed. Experimental results on large ISCAS89 benchmark circuits show that the proposed technique, compared to the traditional full scan scheme, can reduce both the average switching activities and the average peak switching activities by 92.37% and 41.21%, respectively.

  • PDF

스캔셀의 Clock과 Reset핀에서의 스캔 설계 Rule Violations 방지를 위한 설계 변경 (A Study on Repair of Scan Design Rule Violations at Clock and Reset Pins of Scan Cells)

  • 김인수;민형복
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권2호
    • /
    • pp.93-101
    • /
    • 2003
  • Scan design is a structured design-for-testability technique in which flip-flops are re-designed so that the flip-flops are chained in shift registers. The scan design cannot be used in a design with scan design rule violations without modifying the design. The most important scan design rule is concerning clock and reset signals to pins of the flip-flops or scan cells. Clock and Reset pins of every scan cell must be controllable from top-level ports. We propose a new technique to re-design gated clocks and resets which violate the scan design rule concerning the clock and reset pins. This technique substitutes synchronous sequential circuits for gated clock and reset designs, which removes the clock and reset rule violations and improves fault coverage of the design. The fault coverage is improved from $90.48\%$ to $100.00\%$, from $92.31\%$ to $100.00\%$, from $95.45\%$ to $100.00\%$, from $97.50\%$ to $100.00\%$ in a design with gated clocks and resets.

배선 길이 최소화를 위한 그룹화된 스캔 체인 재구성 방법 (A Grouped Scan Chain Reordering Method for Wire Length Minimization)

  • 이정환;임종석
    • 대한전자공학회논문지SD
    • /
    • 제39권8호
    • /
    • pp.74-83
    • /
    • 2002
  • 대규모 VLSI 시스템을 설계하는 경우 스캔 플립플롭(이하 셀)을 채택한 스캔 테스트 방법을 사용하여 IC 칩의 테스트를 용이하게 한다. 이러한 경우 스캔체인에서의 스캔 셀들의 연결 순서는 물리적 설계과정인 셀들의 배치가 완료된 후 결정하여도 무방하다. 본 논문에서는 이러한 사실을 이용하여 스캔 셀간의 연결선의 길이가 작도록 이들의 순서를 조정하는 방법을 제안한다. 특히 본 논문에서 제안하는 방법은 스캔 셀들이 클럭 도메인별로 그룹화되어 있을 경우 이들의 순서를 결정하기 위하여 새롭게 제시되는 방법으로 기존의 재구성 방법에 비하여 약 13.6%의 배선길이를 절약할 수 있다. 또한, 스캔 셀 순서에 대한 여러 다양한 제약에 대하여 효율적으로 셀들의 순서를 재구성할 수 있다.

Low Power Test for SoC(System-On-Chip)

  • 정준모
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.892-895
    • /
    • 2011
  • SoC(System-On-Chip)을 테스트 하는 동안 소모하는 전력소모는 SoC내의 IP 코어가 증가됨에 따라 매우 중요한 요소가 되었다. 본 논문에서는 Scan Latch Reordering과 Clock Gating 기법을 적용하여 scan-in 전력소모를 줄이는 알고리즘을 제안한다. Scan vector들의 해밍거리를 최소로 하는 새로운 Scan Latch Reordering을 적용하였으며 Gated scan 셀을 사용하여 저전력을 구현하였다. ISCAS 89 벤치마크 회로에 적용하여 실험한 결과 모든 회로에 대하여 향상된 전력소모를 보였다.

  • PDF

Low Power Test for SoC(System-On-Chip)

  • Jung, Jun-Mo
    • Journal of information and communication convergence engineering
    • /
    • 제9권6호
    • /
    • pp.729-732
    • /
    • 2011
  • Power consumption during testing System-On-Chip (SOC) is becoming increasingly important as the IP core increases in SOC. We present a new algorithm to reduce the scan-in power using the modified scan latch reordering and clock gating. We apply scan latch reordering technique for minimizing the hamming distance in scan vectors. Also, during scan latch reordering, the don't care inputs in scan vectors are assigned for low power. Also, we apply the clock gated scan cells. Experimental results for ISCAS 89 benchmark circuits show that reduced low power scan testing can be achieved in all cases.

Scan Cell Grouping Algorithm for Low Power Design

  • Kim, In-Soo;Min, Hyoung-Bok
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.130-134
    • /
    • 2008
  • The increasing size of very large scale integration (VLSI) circuits, high transistor density, and popularity of low-power circuit and system design are making the minimization of power dissipation an important issue in VLSI design. Test Power dissipation is exceedingly high in scan based environments wherein scan chain transitions during the shift of test data further reflect into significant levels of circuit switching unnecessarily. Scan chain or cell modification lead to reduced dissipations of power. The ETC algorithm of previous work has weak points. Taking all of this into account, we therefore propose a new algorithm. Its name is RE_ETC. The proposed modifications in the scan chain consist of Exclusive-OR gate insertion and scan cell reordering, leading to significant power reductions with absolutely no area or performance penalty whatsoever. Experimental results confirm the considerable reductions in scan chain transitions. We show that modified scan cell has the improvement of test efficiency and power dissipations.

A New Scan Chain Fault Simulation for Scan Chain Diagnosis

  • Chun, Sung-Hoon;Kim, Tae-Jin;Park, Eun-Sei;Kang, Sung-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제7권4호
    • /
    • pp.221-228
    • /
    • 2007
  • In this paper, we propose a new symbolic simulation for scan chain diagnosis to solve the diagnosis resolution problem. The proposed scan chain fault simulation, called the SF-simulation, is able to analyze the effects caused by faulty scan cells in good scan chains. A new scan chain fault simulation is performed with a modified logic ATPG pattern. In this simulation, we consider the effect of errors caused by scan shifting in the faulty scan chain. Therefore, for scan chain diagnosis, we use the faulty information in good scan chains which are not contaminated by the faults while unloading scan out responses. The SF-simulation can tighten the size of the candidate list and achieve a high diagnosis resolution by analyzing fault effects of good scan chains, which are ignored by most previous works. Experimental results demonstrate the effectiveness of the proposed method.

멀티 드롭 멀티 보드 시스템을 위한 새로운 IEEE 1149.1 경계 주사 구조 (New IEEE 1149.1 Boundary Scan Architecture for Multi-drop Multi-board System)

  • 배상민;송동섭;강성호;박영호
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권11호
    • /
    • pp.637-642
    • /
    • 2000
  • IEEE 1149.1 boundary scan architecture is used as a standard in board-level system testing. The simplicity of this architecture is an advantage in system testing, but at the same time, it it makes a limitation of applications. Because of several problems such as 3-state net conflicts, or ambiguity issues, interconnect testing for multi-drop multi-board systems is more difficult than that of single board systems. A new approach using IEEE 1149.1 boundary scan architecture for multi-drop multi-board systems is developed in this paper. Adding boundary scan cells on backplane bus lines, each board has a complete scan-chain for interconnect test. This new scan-path insertion method on backplane bus using limited 1149.1 test bus less area overhead and mord efficient than previous approaches.

  • PDF

경계 주사 환경에서의 상호연결 테스트 방법론에 대한 연구 (A New Method for the Test Scheduling in the Boundary Scan Environment)

  • 김현진;신종철;강성호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.669-671
    • /
    • 1998
  • Due to the serial nature of scan chains, the use of the boundary scan chain leads the high application costs. And with 3-state net, it is important to avoid enabling the two drivers in a net. In this paper, the new test method for 3-state nets in the multiple boundary scan chains is presented. This method configures the boundary scan cells as multiple scan chains and the test application time can be reduced. Also three efficient algorithms are proposed for testing the interconnects in a board without the collision of the test data in 3-state nets.

  • PDF