• 제목/요약/키워드: Sampled-data control system

Search Result 114, Processing Time 0.029 seconds

Improving a Digital Redesign for Time-Varying Trackers (시변 추종제어기를 위한 디지털 재설계의 개선)

  • Song, Hyun-Seok;Lee, Ho-Jae;Kim, Do-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.289-294
    • /
    • 2011
  • Digital redesign is yet another efficient tool to convert a pre-designed analog controller into a sampled-data one to maintain the analog closed-loop performance in the sense of state matching. A rising difficulty in developing a digital redesign technique for trackers with time-varying references is the unavailability of a closed-form discrete-time model of a system, even if it is linear time-invariant. A way to resolve this is to approximate the time-varying reference as a piecewise constant one, which deteriorates the state matching performance. Another remedy may be to decrease a sampling period, which however could numerically destabilize the optimization-based digital redesign condition. In this paper, we develop a digital redesign condition for time-varying trackers by approximating the time-varying reference through a triangular hold and by introducing delta-operated discrete-time models. It is shown that the digitally redesigned sampled-data tracker recovers the performance of the pre-designed analog tracker under a fast sampling limit. Simulation results on the formation flying of satellites convincingly show the effectiveness of the development.

Discrete Representation Method of Nonlinear Time-Delay System in Control

  • Park, Ji-Hyang;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.327-332
    • /
    • 2003
  • A new discretization method for nonlinear system with time-delay is proposed. It is based on the well-known Taylor series expansion and the zero-order hold (ZOH) assumption. We know that a discretization of linear system can be obtained with the ZOH assumption and within the sampling interval. A similar line of thinking is available in nonlinear case. The mathematical structure of the new discretization method is explored and under the structure, the sampled-data representation of nonlinear system including time-delay is computed. Provided that the discrete form of the single input nonlinear system with time-delay is derived, this result is easily extended to nonlinear system with multi-input time-delay. For simplicity two inputs are considered in this study. It is enough to generalize that of multiple inputs. Finally, the time-discretization of non-affine nonlinear system with time-delay is investigated for apply all nonlinear system

  • PDF

Sampled-Data Fault Detection Observer Design of Takagi-Sugeno Fuzzy Systems (타카기-수게노 퍼지 시스템을 위한 샘플치 고장검출 관측기 설계)

  • Jee, Sung Chul;Lee, Ho Jae;Kim, Do Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.65-71
    • /
    • 2013
  • In this paper, we address fault detection observer design problem of T-S fuzzy systems with sensor fault. To detect fault, T-S fuzzy model-based observer is used. By introducing $\mathfrak{H}$_ performance index, an observer is designed as sensitive to fault as possible. The fault is then detected by a fault decision logic. The design conditions are derived in terms of linear matrix inequalities. An illustrative example is provided to verify the effectiveness of the proposed fault detection technique.

A Motion Control of a Two Degree of Freedom Inverted Pendulum with Passive Joint using Discrete-time Sliding Observer Based VSS Controller (슬라이딩 관측기를 갖는 가변구조제어기에 의한 도립진자의 운동제어)

  • Suh, Yong-Seok;You, Wan-Sik;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.468-471
    • /
    • 1994
  • This paper presents the digital implementation of an optimal and robust VSS controller with sliding observer. Firstly, a discrete-time VSS control law which enables the system state to move into a sliding sector where the closed-loop system is stable is designed. Then optimal control theory is used to design an optimal sliding sector. Secondly, a sliding observer which provide robust state estimation against model-plant mismatches due to parameter uncertainties is designed for the sampled-data multivariable systems. Finally, modified sliding observer which effectively reduce chattering of state variables in state estimation was proposed. The proposed scheme was applied 10 a two degree of freedom inverted pendulum with passive joint to verify robust motion control. Computer simulation results confirm the viability of the proposed observer-based controller.

  • PDF

Effects of Cardiopulmonary Resuscitation Education Using a PC Skill-Reporting System on the Knowledge, Self-Efficacy and Skill Performance Ability of Nursing Students (PC Skill-Reporting System을 활용한 심폐소생술 교육이 간호학생의 지식, 자기효능감, 술기수행능력에 미치는 효과)

  • Kim, Ran;Chae, Min-Jeong
    • The Korean Journal of Health Service Management
    • /
    • v.9 no.1
    • /
    • pp.133-144
    • /
    • 2015
  • The Purpose of this study was to identify the educational effects of cardiopulmonary resuscitation using a PC skill-reporting system on the knowledge, Self-efficacy and skill performance ability of nursing students. The Participants were 57 nursing students from G metropolitan city, an experimental group of 29 subjects, and a control group of 28 students who were randomly sampled. Data were collected from 3 to 12 July of, 2013, and theory education and skill exposure programs for the experimental and control groups were conducted for 60 min. three times a week. The, PC skill-reporting system was used only with the experimental group. The collected data were analyzed with SPSS/WIN version 20.0 using ${\chi}^2$-tests, Fisher's exact probability tests, paired t-tests and t-tests. In the comparison of the two groups, the knowledge(t=-2.39, p=.022), self-efficacy (t=-3.45, p<.001) and skill performance ability(t=-2.52, p=.012) of the experiment group were significantly higher than those of the control group. Therefore, the adoption of instructional methods using a PC skill-reporting system is required to maximize the effects of cardiopulmonary resuscitation instruction.

A Study on Deadbeat Control Systme of DC Motro Driving a Rotational Mechanical System (회전기계 계통을 가동시키는 직류전동기의 데드비트제어시스템 연구)

  • 송자윤
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1999.12a
    • /
    • pp.477-483
    • /
    • 1999
  • This paper presents a design of deadbeat control system for DC motor driving such a rotational mechanical system with gear as a printing machine. The deadbeat response design developed for control system of a sampled continuous-data process does not guarantee zero intersampling ripples, but the proposed deadbeat control system that consists of the integral controller and the full-order state observer, has many advantages such as an output response without the ripples, and setting time than the optimal control system in the same sampling period. The results of case study through MATLAB simulation are shown that the efficiency of the proposed controller for DC motor driving a rotational system with gear is verified by comparing with optimal controller etc..

  • PDF

A Study on the Power Monitoring System using GPS for Accurate Time Synchronization (GPS 정밀시각동기를 이용한 전력계통 모니터링 시스템에 관한 연구)

  • 김혁수;전성준;김기택
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.285-285
    • /
    • 2000
  • A continuous and reliable electrical energy supply is the objective of any power system operation. A transmission line is the part of the power system where faults are most likely to happen. This paper describes the use of wavelet transform for analyzing power system fault transients in order to determine the fault location. Synchronized sampling was made possible by precise time receivers based on GPS time reference, and the sampled data were analyzed using wavelet transform. This paper describes a fault location monitoring system and fault locating algorithm with GPS, DSP processor, and data acquisition board, and presents some experimental results and error analysis.

  • PDF

Time Discretization of Nonlinear System with Variable Time-delay Input Using Taylor Series Expansion (Taylor series를 이용한 시변 지연 입력을 갖는 비선형 시스템의 이산화)

  • Choi Hyung Jo;Park Ji Hyang;Lee Su Young;Chong Kil To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • A new discretization algorithm for nonlinear systems with delayed input is proposed. The algorithm is represented by Taylor series expansion and ZOH assumption. This method is applied to the sampled-data representation of a nonlinear system with the time-delay input. Additionally, the delay in input is time varying and its amplitude is bounded. The maximum time-delay in input is assumed to be two sampling periods. The mathematical expressions of the discretization method are presented and the ability of the algorithm is tested for some of the examples. The computer simulation proves the proposed algorithm discretizes the nonlinear system with the variable time-delay input accurately.

Stability Analysis of Sampled-Data Fuzzy System (샘플치-데이터 퍼지 시스템의 안정도 분석)

  • Kim, Do-Wan;Lee, Ho-Jae;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2085-2086
    • /
    • 2006
  • This paper addresses the problem of stability analysis and control synthesis of a digital fuzzy control systems. The authors shows that the stability properties (in the Lyapunov sense) of a digital fuzzy control system can be deduced from the stability properties of the its approximate discretization in the sufficiently small sampling time.

  • PDF

Speed control and stability of 3-phase induction motor with DPLL (DPLL에 의한 삼상유도전동기의 속도제어 및 안정도에 관한 연구)

  • 박민호;현동석
    • 전기의세계
    • /
    • v.30 no.11
    • /
    • pp.717-727
    • /
    • 1981
  • The phase-locked loop technique developed in the 1930's has many advantages when applied to speed control. The speed control and analysis of a three phase induction motor using the PLL are described in this paper. In this system, the phase frequency detector (PFD) compares the actual motor speed from the pulses received from a shaft encoder and desired speed, and the difference adjusts the frequency of the inverter that feeds the motor, and excellent speed regulation in the order of 0.035(%) has been-obtained. A linear continuous model of the drive is developed and system response is analysed using conventional root locus techniques. Various compensating filters and feedback signals are considered and the need for addition of derivative feedback is shown. A sampled data model is used to study the effects of discrete PFD output. Stability limitson speed are predicted. A drive was implimented and experimental results are presented to verify theoretical predictions.

  • PDF