• Title/Summary/Keyword: SCR Latch-up

Search Result 32, Processing Time 0.024 seconds

The novel NPLVTSCR ESD ProtectionCircuit without Latch-up Phenomenon for High-Speed I/O Interface (Latch-up을 방지한 고속 입출력 인터페이스용 새로운 구조의 NPLVTSCR ESD 보호회로)

  • Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.11 no.1 s.20
    • /
    • pp.54-60
    • /
    • 2007
  • In this study novel ESD protection device, namely, N/P-type Low Voltage Triggered SCR, has been proposed, for high speed I/O interface. Proposed device could lower high trigger voltage($\sim$20V) of conventional SCR and reduce latch-up phenomenon of protection device during the normal condition. In this Study, the proposed NPLVTSCR has been simulated using TMA MEDICI device simulator for electrical characteristic. Also the proposed device's test pattern was fabricated using 90nm TSMC's CMOS process and was measured electrical characteristic and robustness. In the result, NPLVTSCR has 3.2V $\sim$ 7.5V trigger voltage and 2.3V $\sim$ 3.2V holding voltage by changing PMOS gate length and it has about 2kV, 7.5A HBM ESD robustness(IEC61000-4-2).

  • PDF

Optimal P-Well Design for ESD Protection Performance Improvement of NESCR (N-type Embedded SCR) device (NESCR 소자에서 정전기 보호 성능 향상을 위한 최적의 P-Well 구조 설계)

  • Yang, Jun-Won;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.15-21
    • /
    • 2014
  • An electrostatic discharge (ESD) protection device, so called, N-type embedded silicon controlled rectifier (NESCR), was analyzed for high voltage operating I/O applications. A conventional NESCR standard device shows typical SCR-like characteristics with extremely low snapback holding voltage, which may cause latch-up problem during normal operation. However, our modified NESCR_CPS_PPW device with proper junction/channel engineering such as counter pocket source (CPS) and partial P-well structure demonstrates highly latch-up immune current-voltage characteristics with high snapback holding voltage and on-resistance.

The SCR-based ESD Protection Circuit with High Latch-up Immunity for Power Clamp (파워 클램프용 래치-업 면역 특성을 갖는 SCR 기반 ESD 보호회로)

  • Choi, Yong-Nam;Han, Jung-Woo;Nam, Jong-Ho;Kwak, Jae-Chang;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • In this paper, SCR(Silicon Controlled Rectifier)-based ESD(Electrostatic Discharge) protection circuit for power clamp is proposed. In order to improve latch-up immunity caused by low holding voltage of the conventional SCR, it is modified by inserting n+ floating region and n-well, and extending p+ cathode region in the p-well. The resulting ESD capability of our proposed ESD protection circuit reveals a high latch-up immunity due to the high holding voltage. It is verified that electrical characteristics of proposed ESD protection circuit by Synopsys TCAD simulation tool. According to the simulation results, the holding voltage is increased from 4.61 V to 8.75 V while trigger voltage is increased form 27.3 V to 32.71 V, respectively. Compared with the conventional SCR, the proposed ESD protection circuit has the high holding voltage with the same triggering voltage characteristic.

A Study on the Electrical Characteristic of SCR-based Dual-Directional ESD Protection Circuit According to Change of Design Parameters (SCR 기반 양방향성 ESD보호회로의 설계 변수 변화에 따른 전기적 특성의 관한 연구)

  • Kim, Hyun-Young;Lee, Chung-Kwang;Nam, Jong-Ho;Kwak, Jae-Chang;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.265-270
    • /
    • 2015
  • In this paper, we proposed a dual-directional SCR (silicon-controlled rectifier) based ESD (electrostatic discharge) protection circuit. In comparison with conventional SCR, this ESD protection circuit can provide an effective protection against ESD pulses in the two opposite directions, so the ESD protection circuit can be discharged in two opposite direction. The proposed circuit has a higher holding voltage characteristic than conventional SCR. These characteristic enable to have latch-up immunity under normal operating conditions as well as superior full chip ESD protection. it was analyzed to figure out electrical characteristics in term of individual design parameters. They are investigated by using the Synopsys TCAD simulator. In the simulation results, it has trigger voltage of 6.5V and holding voltage increased with different design parameters. The holding voltage of the proposed circuit changes from 2.1V to 6.3V and the proposed circuit has symmetrical I-V characteristic for positive and negative ESD pulse.

Experimental Analysis and Suppression Method of CMOS Latch-Up Phenomena (CMOS Latch-Up 현상의 실험적 해석 및 그 방지책)

  • Go, Yo-Hwan;Kim, Chung-Gi;Gyeong, Jong-Min
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.50-56
    • /
    • 1985
  • A common failure mechanism in bulk CMOS integrated circuits is the latch-up of parasitic SCR structure inherent in the bulk CMOS structure. Latch-up triggering and holding charac-teristics have been measured in the test devicrs which include conventional and Schottky-damped CMOS structures with various well depths and n+/p+ spacings. It is demonstrated that Schottky-clamped CMOS is more latch-up immune than conventional bulk CMOS. Finally, the simulation results by circuit simulation program (SPICE) are compared with measured results in order to verify the validity of the latch-up modal composed of nan, pnp transistors and two external resistors.

  • PDF

Simulation-based P-well design for improvement of ESD protection performance of P-type embedded SCR device

  • Seo, Yong-Jin
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.196-204
    • /
    • 2022
  • Electrostatic discharge (ESD) protection devices of P-type embedded silicon-controlled rectifier (PESCR) structure were analyzed for high-voltage operating input/output (I/O) applications. Conventional PESCR standard device exhibits typical SCR characteristics with very low-snapback holding voltages, resulting in latch-up problems during normal operation. However, the modified device with the counter pocket source (CPS) surrounding N+ source region and partially formed P-well (PPW) structures proposed in this study could improve latch-up immunity by indicating high on-resistance and snapback holding voltage.

Simulation-based ESD protection performance of modified DDD_NSCR device with counter pocket source structure for high voltage operating I/O application (고전압 동작용 I/O 응용을 위해 Counter Pocket Source 구조를 갖도록 변형된 DDD_NSCR 소자의 ESD 보호성능 시뮬레이션)

  • Seo, Yong-Jin;Yang, Jun-Won
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.27-32
    • /
    • 2016
  • A conventional double diffused drain n-type MOSFET (DDD_NMOS) device shows SCR behaviors with very low snapback holding voltage and latch-up problem during normal operation. However, a modified DDD_NMOS-based silicon controlled rectifier (DDD_NSCR_CPS) device with a counter pocket source (CPS) structure is proven to increase the snapback holding voltage and on-resistance compare to standard DDD_NSCR device, realizing an excellent electrostatic discharge protection performance and the stable latch-up immunity.

A Study on PMOS Embedded ESD Protection circuit with Improved Robustness for High Voltage Applications. (향상된 감내특성을 갖는 PMOS 삽입형 고전압용 ESD 보호회로에 관한 연구)

  • Park, Jong-Joon
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.234-239
    • /
    • 2017
  • In this paper, we propose an ESD (Electrostatic Discharge) protection circuit based on a new structure of SCR (Silicon Controlled Rectifier) embedded with PMOS structure. The proposed ESD protection circuit has a built-in PMOS structure and has a latch-up immunity characteristic and an improved tolerance characteristic. To verify the characteristics of the proposed ESD protection circuit and to analyze its operating characteristics, we compared and analyzed the characteristics of the existing ESD protection circuit using TCAD simulation. Simulation results show that the proposed protection ESD protection circuit has superior latch-up immunity characteristics like the existing SCR-based ESD protection device HHVSCR (High Holding Voltage SCR). Also, according to the results of the HBM (Human Body Model) maximum temperature test, the proposed ESD protection circuit has a maximum temperature value of 355K, which is about 20K lower than the existing HHVSCR 373K. In addition, the proposed ESD protection circuit with improved electrical characteristics is designed by applying N-STACK technology. As a result of the simulation, the proposed ESD protection circuit has a holding voltage characteristic of 2.5V in a single structure, and the holding voltage increased to 2-STACK 4.2V, 3-STACK 6.3V, 4-STACK 9.1V.

A Study on ESD Protection Circuit with Bidirectional Structure with Latch-up Immunity due to High Holding Voltage (높은 홀딩 전압으로 인한 래치업 면역을 갖는 양방향 구조의 ESD 보호회로에 관한 연구)

  • Jung, Jang-Han;Do, Kyung-Il;Jin, Seung-Hoo;Go, Kyung-Jin;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.376-380
    • /
    • 2021
  • In this paper, we propose a novel ESD protection device with Latch-up immunity properties due to high holding voltages by improving the structure of a typical SCR. To verify the characteristics of the proposed ESD circuit, simulations were conducted using Synopsys TCAD and presented compared to existing ESD protection circuits. Furthermore, the variation of electrical properties was verified using the design variable D1. Simulation results confirm that the proposed ESD protective circuit has higher holding voltage properties and bidirectional discharge properties compared to conventional ESD protective circuits. We validate the electrical properties with post-design TLP measurements using Samsung's 0.13um BCD process. And we verify that the proposed ESD protection circuit in this paper is well suited for high voltage applications in that it has a latch-up immunity due to improved holding voltage through optimization of design variables.

Improvement of Electrostatic Discharge (ESD) Protection Performance through Structure Modification of N-Type Silicon Controlled Rectifier Device (N형 실리콘 제어 정류기 소자의 구조 변형을 통한 정전기 보호성능의 향상에 대한 연구)

  • Yang, Jun-Won;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.124-129
    • /
    • 2013
  • An electrostatic discharge (ESD) protection device, so called, N-type SCR with P-type MOSFET pass structure (NSCR_PPS), was analyzed for high voltage I/O applications. A conventional NSCR_PPS device shows typical SCR-like characteristics with extremely low snapback holding voltage, which may cause latch-up problem during normal operation. However, a modified NSCR_PPS device with counter pocket source(CPS) and partial p-type well(PPW) structure demonstrates highly latch-up immune current-voltage characteristics.