• Title/Summary/Keyword: Ring of Polynomials

Search Result 68, Processing Time 0.024 seconds

ANNIHILATORS IN ONE-SIDED IDEALS GENERATED BY COEFFICIENTS OF ZERO-DIVIDING POLYNOMIALS

  • Kwak, Tai Keun;Lee, Dong Su;Lee, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.495-507
    • /
    • 2014
  • Nielsen and Rege-Chhawchharia called a ring R right McCoy if given nonzero polynomials f(x), g(x) over R with f(x)g(x) = 0, there exists a nonzero element r ${\in}$ R with f(x)r = 0. Hong et al. called a ring R strongly right McCoy if given nonzero polynomials f(x), g(x) over R with f(x)g(x) = 0, f(x)r = 0 for some nonzero r in the right ideal of R generated by the coefficients of g(x). Subsequently, Kim et al. observed similar conditions on linear polynomials by finding nonzero r's in various kinds of one-sided ideals generated by coefficients. But almost all results obtained by Kim et al. are concerned with the case of products of linear polynomials. In this paper we examine the nonzero annihilators in the products of general polynomials.

IRREDUCIBILITY OF HURWITZ POLYNOMIALS OVER THE RING OF INTEGERS

  • Oh, Dong Yeol;Seo, Ye Lim
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.465-474
    • /
    • 2019
  • Let ${\mathbb{Z}}$ be the ring of integers and ${\mathbb{Z}}[X]$ (resp., $h({\mathbb{Z}})$) be the ring of polynomials (resp., Hurwitz polynomials) over ${\mathbb{Z}}$. In this paper, we study the irreducibility of Hurwitz polynomials in $h({\mathbb{Z}})$. We give a sufficient condition for Hurwitz polynomials in $h({\mathbb{Z}})$ to be irreducible, and we then show that $h({\mathbb{Z}})$ is not isomorphic to ${\mathbb{Z}}[X]$. By using a relation between usual polynomials in ${\mathbb{Z}}[X]$ and Hurwitz polynomials in $h({\mathbb{Z}})$, we give a necessary and sufficient condition for Hurwitz polynomials over ${\mathbb{Z}}$ to be irreducible under additional conditions on the coefficients of Hurwitz polynomials.

FACTORIZATION IN THE RING h(ℤ, ℚ) OF COMPOSITE HURWITZ POLYNOMIALS

  • Oh, Dong Yeol;Oh, Ill Mok
    • Korean Journal of Mathematics
    • /
    • v.30 no.3
    • /
    • pp.425-431
    • /
    • 2022
  • Let ℤ and ℚ be the ring of integers and the field of rational numbers, respectively. Let h(ℤ, ℚ) be the ring of composite Hurwitz polynomials. In this paper, we study the factorization of composite Hurwitz polynomials in h(ℤ, ℚ). We show that every nonzero nonunit element of h(ℤ, ℚ) is a finite *-product of quasi-primary elements and irreducible elements of h(ℤ, ℚ). By using a relation between usual polynomials in ℚ[x] and composite Hurwitz polynomials in h(ℤ, ℚ), we also give a necessary and sufficient condition for composite Hurwitz polynomials of degree ≤ 3 in h(ℤ, ℚ) to be irreducible.

GLIFT CODES OVER CHAIN RING AND NON-CHAIN RING Re,s

  • Elif Segah, Oztas
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1557-1565
    • /
    • 2022
  • In this paper, Glift codes, generalized lifted polynomials, matrices are introduced. The advantage of Glift code is "distance preserving" over the ring R. Then optimal codes can be obtained over the rings by using Glift codes and lifted polynomials. Zero divisors are classified to satisfy "distance preserving" for codes over non-chain rings. Moreover, Glift codes apply on MDS codes and MDS codes are obtained over the ring 𝓡 and the non-chain ring 𝓡e,s.

ON SOME TYPE ELEMENTS OF ZERO-SYMMETRIC NEAR-RING OF POLYNOMIALS

  • Hashemi, Ebrahim;Shokuhifar, Fatemeh
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.183-195
    • /
    • 2019
  • Let R be a commutative ring with unity. In this paper, we characterize the unit elements, the regular elements, the ${\pi}$-regular elements and the clean elements of zero-symmetric near-ring of polynomials $R_0[x]$, when $nil(R)^2=0$. Moreover, it is shown that the set of ${\pi}$-regular elements of $R_0[x]$ forms a semigroup. These results are somewhat surprising since, in contrast to the polynomial ring case, the near-ring of polynomials has substitution for its "multiplication" operation.

ON ANNIHILATOR IDEALS OF A NEARRING OF SKEW POLYNOMIALS OVER A RING

  • Hashemi, Ebrahim
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1267-1279
    • /
    • 2007
  • For a ring endomorphism ${\alpha}$ and an ${\alpha}-derivation\;{\delta}$ of a ring R, we study relation between the set of annihilators in R and the set of annihilators in nearring $R[x;{\alpha},{\delta}]\;and\;R_0[[x;{\alpha}]]$. Also we extend results of Armendariz on the Baer and p.p. conditions in a polynomial ring to certain analogous annihilator conditions in a nearring of skew polynomials. These results are somewhat surprising since, in contrast to the skew polynomial ring and skew power series case, the nearring of skew polynomials and skew power series have substitution for its "multiplication" operation.

AN ELABORATION OF ANNIHILATORS OF POLYNOMIALS

  • Cheon, Jeoung Soo;Kim, Hong Kee;Kim, Nam Kyun;Lee, Chang Ik;Lee, Yang;Sung, Hyo Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.521-541
    • /
    • 2017
  • In this note we elaborate first on well-known theorems for annihilators of polynomials over IFP rings by investigating the concrete shapes of nonzero constant annihilators. We consider next a generalization of IFP which preserves Abelian property, in relation with annihilators of polynomials, observing the basic structure of rings satisfying such condition.

RIGIDNESS AND EXTENDED ARMENDARIZ PROPERTY

  • Baser, Muhittin;Kaynarca, Fatma;Kwak, Tai-Keun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.157-167
    • /
    • 2011
  • For a ring endomorphism of a ring R, Krempa called $\alpha$ rigid endomorphism if $a{\alpha}(a)$ = 0 implies a = 0 for a $\in$ R, and Hong et al. called R an $\alpha$-rigid ring if there exists a rigid endomorphism $\alpha$. Due to Rege and Chhawchharia, a ring R is called Armendariz if whenever the product of any two polynomials in R[x] over R is zero, then so is the product of any pair of coefficients from the two polynomials. The Armendariz property of polynomials was extended to one of skew polynomials (i.e., $\alpha$-Armendariz rings and $\alpha$-skew Armendariz rings) by Hong et al. In this paper, we study the relationship between $\alpha$-rigid rings and extended Armendariz rings, and so we get various conditions on the rings which are equivalent to the condition of being an $\alpha$-rigid ring. Several known results relating to extended Armendariz rings can be obtained as corollaries of our results.

An Alternative Perspective of Near-rings of Polynomials and Power series

  • Shokuhifar, Fatemeh;Hashemi, Ebrahim;Alhevaz, Abdollah
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.437-453
    • /
    • 2022
  • Unlike for polynomial rings, the notion of multiplication for the near-ring of polynomials is the substitution operation. This leads to somewhat surprising results. Let S be an abelian left near-ring with identity. The relation ~ on S defined by letting a ~ b if and only if annS(a) = annS(b), is an equivalence relation. The compressed zero-divisor graph 𝚪E(S) of S is the undirected graph whose vertices are the equivalence classes induced by ~ on S other than [0]S and [1]S, in which two distinct vertices [a]S and [b]S are adjacent if and only if ab = 0 or ba = 0. In this paper, we are interested in studying the compressed zero-divisor graphs of the zero-symmetric near-ring of polynomials R0[x] and the near-ring of the power series R0[[x]] over a commutative ring R. Also, we give a complete characterization of the diameter of these two graphs. It is natural to try to find the relationship between diam(𝚪E(R0[x])) and diam(𝚪E(R0[[x]])). As a corollary, it is shown that for a reduced ring R, diam(𝚪E(R)) ≤ diam(𝚪E(R0[x])) ≤ diam(𝚪E(R0[[x]])).

A STRUCTURE ON COEFFICIENTS OF NILPOTENT POLYNOMIALS

  • Jeon, Young-Cheol;Lee, Yang;Ryu, Sung-Ju
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.719-733
    • /
    • 2010
  • We observe a structure on the products of coefficients of nilpotent polynomials, introducing the concept of n-semi-Armendariz that is a generalization of Armendariz rings. We first obtain a classification of reduced rings, proving that a ring R is reduced if and only if the n by n upper triangular matrix ring over R is n-semi-Armendariz. It is shown that n-semi-Armendariz rings need not be (n+1)-semi-Armendariz and vice versa. We prove that a ring R is n-semi-Armendariz if and only if so is the polynomial ring over R. We next study interesting properties and useful examples of n-semi-Armendariz rings, constructing various kinds of counterexamples in the process.