
Bull. Korean Math. Soc. 48 (2011), No. 1, pp. 157–167

DOI 10.4134/BKMS.2011.48.1.157

RIGIDNESS AND EXTENDED ARMENDARIZ PROPERTY

Muhittin Başer, Fatma Kaynarca, and Tai Keun Kwak

Abstract. For a ring endomorphism α of a ring R, Krempa called α a
rigid endomorphism if aα(a) = 0 implies a = 0 for a ∈ R, and Hong et

al. called R an α-rigid ring if there exists a rigid endomorphism α. Due
to Rege and Chhawchharia, a ring R is called Armendariz if whenever
the product of any two polynomials in R[x] over R is zero, then so is

the product of any pair of coefficients from the two polynomials. The
Armendariz property of polynomials was extended to one of skew poly-
nomials (i.e., α-Armendariz rings and α-skew Armendariz rings) by Hong
et al. In this paper, we study the relationship between α-rigid rings and

extended Armendariz rings, and so we get various conditions on the rings
which are equivalent to the condition of being an α-rigid ring. Several
known results relating to extended Armendariz rings can be obtained as
corollaries of our results.

Throughout this paper, all rings are associative with identity. Given a ring
R, the polynomial ring over R is denoted by R[x]. Recall that a ring R is
called reduced if it has no nonzero nilpotent elements. Armendariz [1, Lemma
1] showed that for a reduced ring R, if any polynomial f(x) = a0 + a1x+ · · ·+
amxm, g(x) = b0+b1x+ · · ·+bnx

n ∈ R[x] satisfies f(x)g(x) = 0, then aibj = 0
for each i, j. Since then, Rege and Chhawchharia [12] called R an Armendariz
ring if it satisfies this condition. Many properties of Armendariz rings have
been studied by many authors [2, 3, 5, 6, 8, 10, 11, 12].

The reducedness and Armendariz property of a ring were extended as follows.
For a ring R with a ring endomorphism α : R → R, a skew polynomial ring (also
called an Ore extension of endomorphism type) R[x; α] of R is the ring obtained
by giving the polynomial ring over R with the new multiplication xr = α(r)x
for all r ∈ R. Recall that an endomorphism α of a ring R is called rigid [9] if
aα(a) = 0 implies a = 0 for a ∈ R, and a ring R is called α-rigid [4] if there
exists a rigid endomorphism α of R. Note that any rigid endomorphism of a
ring is a monomorphism, and α-rigid rings are reduced rings [4, Proposition 5].
On the other hand, the Armendariz property with respect to polynomials was
extended to one of skew polynomials. A ring R is called α-Armendariz (resp.,
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α-skew Armendariz) [6, Definition 1.1] (resp., [5, Definition]) if for p(x) =
a0+a1x+ · · ·+amxm and q(x) = b0+ b1x+ · · ·+ bnx

n in R[x;α], p(x)q(x) = 0
implies aibj = 0 (resp., aiα

i(bj) = 0) for all 0 ≤ i ≤ m and 0 ≤ j ≤ n. It
can be easily checked that every subring S with α(S) ⊆ S of an α-Armendariz
ring (resp., an α-skew Armendariz ring) is also α-Armendariz (resp., α-skew
Armendariz). Note that every α-rigid ring is α-Armendariz [6, Proposition 1.7],
and every α-Armendariz ring is α-skew Armendariz [6, Theorem 1.8], but the
converses do not hold by [6, Example 1.6] and [6, Example 1.9], respectively.
Moreover R is an α-rigid ring if and only if R[x;α] is reduced [5, Proposition
3]. In [3], Chen and Tong showed the relationship between α-rigid rings and α-
skew Armendariz rings. Motivated by their results, in this paper, we continue
the study of α-Armendariz rings, improving several results in [3] and [6], and
moreover we obtain various rings which are equivalent to α-rigid rings. Several
known results relating to Armendariz rings can be obtained as corollaries of
our results.

In [12, Remark 3.1], Rege and Chhawchharia showed that every n × n full
matrix ring over any ring R is not IR-Armendariz for n ≥ 2 where IR is an
identity endomorphism of R. We also know that there exists a 2× 2 full (and
also upper triangular) matrix ring R with an endomorphism α such that R is
not α-Armendariz by [6, Theorem 1.8] and [5, Example 13] in general. Hence,
we consider the following.

A ring R can be extended to a ring

S3(R) =


 a b c

0 a d
0 0 a

 | a, b, c, d ∈ R


and an endomorphism α of R can also be extended to the endomorphism ᾱ :
S3(R) → S3(R) defined by ᾱ((aij)) = (α(aij)). Recall that the trivial extension
T (R,M) = R ⊕M of R by M is isomorphic to the ring of all matrices ( r m

0 r ),
where r ∈ R and m ∈ M and the usual matrix operations are used. Hong
et al. [6, Proposition 2.1] proved that, if R is an α-rigid ring, then S3(R) is
ᾱ-Armendariz and so the trivial extension T (R,R) of R is ᾱ-Armendariz. Now,
we show that these are equivalent. First we state the following lemma.

Lemma 1. Let α be an endomorphism of a ring R.
(1) [6, Proposition 1.3(ii)] If R is an α-Armendariz ring, then α is a mono-

morphism.
(2) [6, Proposition 2.4] R is an α-rigid ring if and only if for each a ∈ R,

αa(a)a = 0 implies a = 0.

Theorem 2. Let α be an endomorphism of a ring R. Then the following are
equivalent:

(1) R is an α-rigid ring.

(2) S3(R) =
{(

a b c
0 a d
0 0 a

)
| a, b, c, d ∈ R

}
is an ᾱ-Armendariz ring.

(3) The trivial extension T (R,R) of R is an ᾱ-Armendariz ring.
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Proof. Note that T (R,R) is isomorphic to the subring
 a b 0

0 a 0
0 0 a

 | a, b ∈ R


of a ring S3(R) and each subring of an α-Armendariz ring is also α-Armendariz.
Hence, it is enough to show that (3)⇒(1). Let T (R,R) be ᾱ-Armendariz.
Assume on the contrary that R is not α-rigid. By Lemma 1, there exists

0 ̸= a ∈ R such that α(a)a = 0 and α(a) ̸= 0. For p(x) =
(

α(a) 0
0 α(a)

)
+

( 0 1
0 0 )x, q(x) = ( a 0

0 a ) +
(
0 −1
0 0

)
x ∈ T (R,R)[x; ᾱ], we have p(x)q(x) = 0, but(

α(a) 0
0 α(a)

) (
0 −1
0 0

)
̸= 0; which is a contradiction. Thus R is α-rigid. □

If we take α as the identity endomorphism IR of a ring R, then we have the
following corollary which generalizes the results in [8, Proposition 2] and [10,
Theorem 2.3].

Corollary 3. For a ring R, the following are equivalent:
(1) R is a reduced ring.

(2) S3(R) =
{(

a b c
0 a d
0 0 a

)
| a, b, c, d ∈ R

}
is an Armendariz ring.

(3) The trivial extension T (R,R) of R is an Armendariz ring.

Hong et al. [5, p. 261] showed that the ring

Sn(R) =




a a12 a13 · · · a1n
0 a a23 · · · a2n
0 0 a · · · a3n
...

...
...

. . .
...

0 0 0 · · · a

 | a, aij ∈ R


cannot be ᾱ-Armendariz for n ≥ 4, even if R is an α-rigid ring. However, we
obtain subrings of Sn(R) for n ≥ 4 which are ᾱ-Armendariz as follows.

From [11], RA = {rA | r ∈ R} for any A ∈ Matn(R) where Matn(R) is the

n× n full matrix ring and for n ≥ 2, let V =
∑n−1

i=1 Ei(i+1) where Eij ’s are the
matrix units. For an even number n = 2k(≥ 2), let

Ae
n(R) =

k∑
i=1

n∑
j=k+i

REij , and Be
n(R) =

k+1∑
i=1

n∑
j=k+i−1

REij ;

and for an odd number n = 2k + 1(≥ 3), let

Ao
n(R) =

k+1∑
i=1

n∑
j=k+i

REij , and Bo
n(R) =

k+2∑
i=1

n∑
j=k+i−1

REij .

In addition, for n ≥ 2 put
An(R) = RIn +RV + · · ·+RV k−1 +Ae

n(R) and
Bn(R) = RIn +RV + · · ·+RV k−2 +Be

n(R) for n = 2k;
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An(R) = RIn +RV + · · ·+RV k−1 +Ao
n(R) and

Bn(R) = RIn + RV + · · · + RV k−2 + Bo
n(R) for n = 2k + 1, where In is

the unit matrix of Matn(R).

Proposition 4. Let α be an endomorphism of a ring R. The following are
equivalent:

(1) R is an α-rigid ring.
(2) An(R) is an ᾱ-Armendariz ring for n = 2k + 1 ≥ 3.
(3) An(R) +RE1k is an ᾱ-Armendariz ring for n = 2k ≥ 4.
(4) Vn(R) = RIn +RV +RV 2 + · · ·+RV n−1 is an ᾱ-Armendariz ring for

n ≥ 2.

Proof. Assume that R is an α-rigid ring. First, let S = An(R) if n = 2k+1 ≥ 3
and S = An(R) +RE1k if n = 2k ≥ 4, and let P (x) = C0 + C1x+ · · ·+ Cux

u

and Q(x) = D0 +D1x + · · · +Dvx
v in S[x; ᾱ] with P (x)Q(x) = 0. We show

that CiDj = 0 for 0 ≤ i ≤ u, 0 ≤ j ≤ v. Let pst(x) = c
(0)
st + c

(1)
st x+ · · ·+ c

(u)
st xu

and qst(x) = d
(0)
st + d

(1)
st x + · · · + d

(v)
st xv, where c

(i)
st and d

(j)
st are the (s, t)-

entries of Ci and Dj , respectively for 0 ≤ i ≤ u and 0 ≤ j ≤ v. Then, we
can write that P (x) = (pst(x)) and Q(x) = (qst(x)) for 1 ≤ s, t ≤ n and
then (pst(x))(qst(x)) = 0 in S. Since R is α-rigid, R[x;α] is reduced by [5,
Proposition 3]. From [3, Lemma 2.4], we have ((pst(x))(qst(x)))st = 0 for
1 ≤ s, t ≤ n. So psl(x)qlt(x) = 0 in R[x;α] for 1 ≤ l ≤ n. That is,

(c
(0)
sl + c

(1)
sl x+ · · ·+ c

(u)
sl xu)(d

(0)
lt + d

(1)
lt x+ · · ·+ d

(v)
lt xv) = 0.

Since R is an α-rigid, R is α-Armendariz by [6, Proposition 1.7]. Hence

c
(i)
sl d

(j)
lt = 0 for 1 ≤ s, t, l ≤ n, 0 ≤ i ≤ u and 0 ≤ j ≤ v, and so CiDj =

(c
(i)
st )(d

(j)
st ) = 0. Therefore S is ᾱ-Armendariz. This proves that (1) ⇒(2) and

(1) ⇒(3).
Next, assume that R is an α-rigid ring. For n = 2, 3, Vn(R) is ᾱ-Armendariz

by Theorem 2 and for n ≥ 4, Vn(R) is also ᾱ-Armendariz since Vn(R) is a
subring of An(R) or An(R) +RE1k and α(Vn(R)) ⊆ Vn(R).

The converses follow the proof of Theorem 2, respectively. □

Corollary 5. The following are equivalent for a ring R.
(1) R is a reduced ring.
(2) An(R) is an Armendariz ring for n = 2k + 1 ≥ 3.
(3) An(R) +RE1k is an Armendariz ring for n = 2k ≥ 4.
(4) Vn(R) = RIn + RV + RV 2 + · · · + RV n−1 is an Armendariz ring for

n ≥ 2.

If we define ρ : Vn(R) → R[x]/⟨xn⟩ by ρ(a0In + a1V + · · · + an−1V
n−1) =

a0 + a1x+ · · ·+ an−1x
n−1 + ⟨xn⟩, then ρ is a ring isomorphism, where ⟨xn⟩ is

an ideal of R[x] generated by xn and n ≥ 2. So we have the following corollary.
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Corollary 6 ([6, Proposition 2.4]). Let α be an endomorphism of a ring R.
Then the factor ring R[x]/⟨xn⟩ is ᾱ-Armendariz if and only if R is an α-rigid
ring.

Remark 7. Observe that Be
n(R) for n = 2k ≥ 2, Bo

n(R) for n = 2k+1 ≥ 3 and
Bn(R) for n ≥ 2 are not ᾱ-Armendariz rings, even thoughR is an α-Armendariz
ring by the same method as in [11, Example 1.1], since the endomorphism α of
an α-Armendariz ring R preserves identity by [6, Corollary 1.4(i)].

The following example shows that there exists an Armendariz ring R with
an endomorphism α such that R is not α-skew Armendariz.

Example 8. Let R = Z2⊕Z2 where Z2 is the ring of integers modulo 2. Then
R is a commutative reduced ring, and so it is Armendariz. Let α : R → R be an
endomorphism defined by α((a, b)) = (b, a). Then R is not α-skew Armendariz
by [5, Example 2], and so R is not α-Armendariz, either by [6, Theorem 1.8].

However, we have the following.

Proposition 9. Let α be an endomorphism of a ring R. If the skew polynomial
ring R[x;α] of R is an Armendariz ring, then R is α-skew Armendariz.

Proof. Assume that R[x;α] is Armendariz. Let p(x)q(x) = 0, where p(x) =
a0 + a1x + · · · + amxm and q(x) = b0 + b1x + · · · + bnx

n in R[x;α]. We
show that aiα

i(bj) = 0 for all i, j. Set f(y) = a0 + (a1x)y + · · · + (amxm)ym

and g(y) = b0 + (b1x)y + · · · + (bnx
n)yn in (R[x;α])[y]. Then f(y)g(y) = 0,

since p(x)q(x) = 0 and y commutes with x. Since R[x;α] is Armendariz, we
have aix

ibjx
j = 0, and so aiα

i(bj) = 0 for all i, j. Therefore R is an α-skew
Armendariz ring. □

Corollary 10 ([5, Corollary 4]). Let α be an endomorphism of a ring R. If R
is α-rigid, then R is an α-skew Armendariz ring.

Proof. Let R be an α-rigid ring. Then R[x;α] is reduced by [5, Proposition 3]
and so R[x;α] is Armendariz. Therefore R is an α-skew Armendariz ring by
Proposition 9. □

Observe that the conclusion of Proposition 9 cannot be replaced by the
condition “R is α-Armendariz” by the next example.

Example 11. Let R be the polynomial ring Z2[x] over Z2, the ring of integers
modulo 2, and let the endomorphism α of R be defined by α(f(x)) = f(0) for
f(x) ∈ Z2[x]. Then R is a reduced α-skew Armendariz ring by [5, Example 5],
but R is not α-Armendariz by [6, Example 1.9]. Now, we show that S = R[y;α]
is an Armendariz ring. Let f(T ) = f0 + f1T + · · · + fmTm and g(T ) = g0 +
g1T + · · · + gnT

n ∈ S[T ] with f(T )g(T ) = 0. We also let fi =
∑ui

s=0 fis(x)y
s

and gj =
∑vj

t=0 gjt(x)y
t where fis(x), gjt(x) ∈ Z2[x] for each 0 ≤ i ≤ m and

0 ≤ j ≤ n. Without loss of generality, assume that fis(x) ̸= 0 and gjt(x) ̸= 0
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in Z2[x] for all 1 ≤ s ≤ ui, 0 ≤ t ≤ vj , 0 ≤ i ≤ m and 0 ≤ j ≤ n. Then we
have the following system of equations:

(0) f0g0 = 0 ;
(1) f0g1 + f1g0 = 0 ;
...
(k) f0gk + f1gk−1 + · · ·+ fk−1g1 + fkg0 = 0 ;

(k + 1) f0gk+1 + f1gk + · · ·+ fkg1 + fk+1g0 = 0 ;
...

(m+ n) fmgn = 0 .

We claim that f00(x) = f10(x) = · · · = fm0(x) = 0 and each gjt(x) has no
constant term for 0 ≤ t ≤ vj and 0 ≤ j ≤ n. We proceed by induction on
i + j. Since R is α-skew Armendariz and f0g0 = 0 from Eq.(0), we obtain
f0s(x)α

s(g0t(x)) = 0 for all 0 ≤ s ≤ u0 and 0 ≤ t ≤ v0, and so f00(x) = 0
and g0t(0) = 0 for 0 ≤ t ≤ v0. So each g0t(x) has no constant term for
0 ≤ t ≤ v0. This proves for i + j = 0. Now suppose that our claim is true for
i+j ≤ k−1. By the induction hypothesis and Eq.(k), we get 0 = f0gk+fkg0 =
(f01(x)y + f02(x)y

2 + · · ·+ f0u0
(x)yu0)(gk0(x) + gk1(x)y + · · ·+ gkvk

(x)yvk) +

fk0(x)(g00(x) + g01(x)y + · · · + g0v0 (x)y
v0) = fk0(x)g00(x) + [fk0(x)g01(x) +

f01(x)α(gk0(x))]y+[fk0(x)g02(x)+f01(x)α(gk1(x))+f02(x)α
2(gk0(x))]y

2+· · ·+
f0u0

(x)αu0(gkvk
(x))yu0+vk . Then fk0

(x) = 0, and so we have the following:

(i) f01(x)α(gk0(x)) = 0 ;
(ii) f01(x)α(gk1(x)) + f02(x)α

2(gk0(x)) = 0 ;
...
(iii) f01(x)α(gki−1(x)) + f02(x)α

2(gki−2(x)) + · · ·+ f0i(x)α
i(gk0(x)) = 0 ;

...
(iv) f0u0

(x)αu0(gkvk
(x)) = 0 .

Hence, gk0(0) = gk1(0) = · · · = gkvk
(0) = 0, and so gkt(x) has no constant term

for all 0 ≤ t ≤ vk. Thus fi =
∑ui

s=1 fis(x)y
s, gj =

∑vj

t=0 gjt(x)y
t and each gjt

has no constant term for 0 ≤ i ≤ m, 0 ≤ t ≤ vj and 0 ≤ j ≤ n, and so figj = 0
for all i, j. Therefore S = R[y;α] = (Z2[x])[y;α] is Armendariz.

The following extends the result in [3, Lemma 3.8].

Proposition 12. Let α be an endomorphism of a ring R. If S is a ring and
σ : R → S is a ring isomorphism, then we have the following.

(1) R is an α-rigid ring if and only if S is a σασ−1-rigid ring.
(2) R is an α-Armendariz ring if and only if S is a σασ−1-Armendariz ring.
(3) R is an α-skew Armendariz ring if and only if S is a σασ−1-skew Ar-

mendariz ring.
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Proof. (1) For a ∈ R, there exists a′ ∈ S such that σ(a) = a′ since σ is
bijective, and so aα(a) = 0 if and only if σ(a)(σασ−1)σ(a) = 0 if and only if
a′(σασ−1)(a′) = 0. This yields that R is α-rigid if and only if S is σασ−1-rigid.

(2) and (3) Similarly, p(x) =
∑m

i=0 aix
i, q(x) =

∑n
j=0 bjx

j ∈ R[x;α] if

and only if p
′
(x) =

∑m
i=0 a

′

ix
i, q

′
(x) =

∑n
j=0 b

′

jx
j ∈ S[x;σασ−1], letting

σ(ai) = a
′

i, σ(bj) = b
′

j for all i, j since σ is bijective. Then p(x)q(x) = 0

in R[x;α] if and only if
∑

i+j=k aiα
i(bj) = 0 for each 0 ≤ k ≤ m + n if

and only if
∑

i+j=k σ(aiα
i(bj)) = 0 for each 0 ≤ k ≤ m + n if and only if∑

i+j=k σ(ai)(σασ
−1)iσ(bj) = 0 for each 0 ≤ k ≤ m + n, since (σασ−1)t =

σαtσ−1 for any positive integer t if and only if
∑

i+j=k a
′

i(σασ
−1)i(b

′

j) = 0

for each 0 ≤ k ≤ m + n if and only if p
′
(x)q

′
(x) = 0 in S[x;σασ−1]. Hence,

for all i, j, aibj = 0 if and only if a
′

ib
′

j = 0; and aiα
i(bj) = 0 if and only

if σ(ai)(σασ
−1)iσ(bj) = 0 if and only if a

′

i(σασ
−1)i(b

′

j) = 0. The proof is
completed. □

Recall that if α is an endomorphism of a ring R, then the map ᾱ : R[x] →
R[x] defined by ᾱ(

∑m
i=0 aix

i) =
∑m

i=0 α(ai)x
i is an endomorphism of the poly-

nomial ring R[x] and clearly this map extends α. The Laurent polynomial ring
R[x, x−1] with an indeterminate x, consists of all formal sums

∑n
i=k aix

i, where
ai ∈ R and k, n are (possibly negative) integers. The map ᾱ : R[x, x−1] →
R[x, x−1] defined by ᾱ(

∑n
i=k aix

i) =
∑n

i=k α(ai)x
i extends α and also is an

endomorphism of R[x, x−1].

Theorem 13. Let α be an endomorphism of a ring R. The following are
equivalent:

(1) R is an α-rigid ring.
(2) R[x] is an ᾱ-rigid ring.
(3) R[x, x−1] is an ᾱ-rigid ring.

Proof. (1)⇒(2) Assume that R is α-rigid, but R[x] is not ᾱ-rigid. Then there
exists a nonzero f(x) =

∑n
i=0 aix

i ∈ R[x] such that f(x)ᾱ(f(x)) = 0. Sup-
pose that ak ̸= 0 and a0 = · · · = ak−1 = 0 where 0 ≤ k ≤ n. Then
0 = f(x)ᾱ(f(x)) = (akx

k + · · · + anx
n)(α(ak)x

k + · · · + α(an)x
n) yields

akα(ak) = 0, and so ak = 0; which is a contradiction. Thus R[x] is ᾱ-rigid.
(2)⇒(3) Let f(x) ∈ R[x, x−1] with f(x)ᾱ(f(x)) = 0. Then there exists a

positive integer n such that f1(x) = f(x)xn ∈ R[x], and so f1(x)ᾱ(f1(x)) = 0.
Since R[x] is ᾱ-rigid, we obtain f1(x) = 0, and hence f(x) = 0. Thus R[x, x−1]
is ᾱ-rigid.

(3)⇒(1) R is α-rigid as a subring of R[x, x−1] when R is ᾱ-rigid. □

Corollary 14. (1) Let R be a reduced ring with an endomorphism α. Then R
is α-Armendariz if and only if R[x] is ᾱ-Armendariz.

(2) [2, Proposition 6] Let R be a reduced ring and α be a monomorphism of
R. Then R is α-skew Armendariz if and only if R[x] is ᾱ-skew Armendariz.
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Proof. It follows from [2, Theorem 1], [6, Proposition 1.7] and Theorem 13. □
Related to Corollary 14, notice that there exists a reduced α-skew Armen-

dariz ring which is not α-Armendariz (Example 11).
Let αγ be an endomorphism of a ring Rγ for each γ ∈ Γ. For the product∏
γ∈Γ Rγ of Rγ and the endomorphism ᾱ :

∏
γ∈Γ Rγ →

∏
γ∈Γ Rγ defined by

ᾱ((aγ)) = (αγ(aγ)), it can be easily checked that
∏

γ∈Γ Rγ is ᾱ-rigid if and
only if each Rγ is αγ-rigid.

Recall that for an endomorphism α and an ideal I of a ring R, I is called an
α-ideal if α(I) ⊆ I, and if I is an α-ideal of R, then ᾱ : R/I → R/I defined by
ᾱ(a+ I) = α(a) + I for a ∈ R is an endomorphism of the factor ring R/I. The
homomorphic image of an α-rigid ring is not ᾱ-rigid, in general. The following
example shows that there exists a ring R with an automorphism α such that
R/I is ᾱ-rigid for a non-zero α-ideal I of R, but R is not α-rigid.

Example 15. Let R = ( F F
0 F ) where F is a field, and α be defined by α (( a b

0 c ))

=
(
a −b
0 c

)
. Note that R is not α-Armendariz by [6, Example 1.12], and so it

is not α-rigid. However, for a nonzero proper ideal I = ( 0 F
0 0 ) of R, it can be

easily checked that α(I) ⊆ I and R/I is ᾱ-rigid.

Let α be an automorphism of a ring R. Suppose that there exists the classical
right quotient ring Q(R) of R. Then for any ab−1 ∈ Q(R) where a, b ∈ R with
b regular, the induced map ᾱ : Q(R) → Q(R) defined by ᾱ(ab−1) = α(a)α(b)−1

is also an endomorphism. Note that R is α-rigid if and only if Q(R) is ᾱ-rigid.
Let R be an algebra over a commutative ring S. Recall that the Dorroh

extension of R by S is the ring D = R×S with operations (r1, s1) + (r2, s2) =
(r1+r2, s1+s2) and (r1, s1)(r2, s2) = (r1r2+s1r2+s2r1, s1s2), where r1, r2 ∈ R
and s1, s2 ∈ S. For an endomorphism α of R and the Dorroh extension D of R
by S, ᾱ : D → D defined by ᾱ(r, s) = (α(r), s) is an S-algebra homomorphism.

In the following, we give some other example of α-rigid rings. Observe that
for an α-rigid ring R, every subring S of R with α(S) ⊆ S is clearly α-rigid,
and R is reduced with α(e) = e for e2 = e ∈ R by [4, Proposition 5].

Proposition 16. Let α be an endomorphism of a ring R.
(1) R is an α-rigid ring if and only if eR and (1 − e)R are α-rigid for

e2 = e ∈ R.
(2) If R is an α-rigid ring and S is a reduced ring, then the Dorroh extension

D of R by S is ᾱ-rigid.

Proof. (1) It is enough to show that R is α-rigid. Suppose that eR and (1−e)R
are α-rigid. Let aα(a) = 0 for a ∈ R. Then 0 = eaα(ea) and 0 = (1−e)aα((1−
e)a). By hypothesis, we get ea = 0 and (1− e)a = 0, and so a = 0. Thus R is
α-rigid.

(2) Let (r, s) ∈ D with (r, s)ᾱ(r, s) = 0. Then rα(r) + sα(r) + sr = 0 and
s2 = 0. Since S is reduced, we get s = 0. Thus rα(r) = 0, and so r = 0
since R is α-rigid. Hence, (r, s) = 0, and therefore the Dorroh extension D is
ᾱ-reduced. □
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For any endomorphism α of a ring R, R is α-rigid if and only if R[x;α]
is reduced by [5, Proposition 3], but there exists a semiprime ring R with an
automorphism α such that the skew polynomial ring R[x;α] is not semiprime
by the following example.

Example 17. Let F be a field and Fi = F for i ∈ Z. Let R be a F -subalgebra
of

∏
i∈Z Fi generated by ⊕i∈ZFi and 1∏

i∈Z Fi
. Let α be an automorphism of R

defined by α((ai)) = (ai+1). Then

R = {(ai) ∈
∏
i∈Z

Fi | ai is eventually constant}

is reduced and von Neumann regular, but R[x;α] is not semiprime by [7, Ex-
ample 4.3].

Lemma 18. For a ring R, the following are equivalent:
(1) R is a semiprime ring.
(2) For a, b ∈ R, aRb = 0 implies aR ∩Rb = 0.

Proof. Suppose that R is semiprime and aRb = 0 for a, b ∈ R. Let c ∈ aR∩Rb.
Then c = ar = sb for some r, s ∈ R. So cRc = (ar)R(sb) ⊆ aRb = 0, and thus
c = 0. The converse is obvious. □

A ring R is called semicommutative if ab = 0 implies aRb = 0 for a, b ∈ R;
and so every reduced ring is semicommutative.

Theorem 19. Let α be an endomorphism of a ring R. The following are
equivalent:

(1) R is an α-rigid ring.
(2) For p(x), q(x) ∈ R[x;α], p(x)q(x) = 0 implies p(x)R[x;α]∩R[x;α]q(x) =

0.

Proof. Assume thatR is α-rigid. By [5, Proposition 3], R[x;α] is reduced and so
it is semiprime and semicommutative. If p(x)q(x) = 0 for p(x), q(x) ∈ R[x;α],
then p(x)R[x;α]q(x) = 0, and thus p(x)R[x;α] ∩ R[x;α]q(x) = 0 by Lemma
18. Conversely, assume (2). Let aα(a) = 0 for a ∈ R. For p(x) = ax =
q(x) ∈ R[x;α], p(x)q(x) = aα(a)x2 = 0 and so (ax)R[x;α] ∩ R[x;α](ax) = 0
by hypothesis. Then ax = 0, and hence a = 0. Therefore R is α-rigid. □
Corollary 20. For a ring R, the following are equivalent:

(1) R is a reduced ring.
(2) R[x] is a reduced ring.
(3) For a, b ∈ R, ab = 0 implies aR ∩Rb = 0.
(4) For f(x), g(x) ∈ R[x], f(x)g(x) = 0 implies f(x)R[x] ∩R[x]g(x) = 0.

Proof. It follows from Theorem 13 and Theorem 19. □
Paralleled to Theorem 2 and Proposition 4 in this paper, Chen and Tong

[3] proved the relationship between α-rigid rings and ᾱ-skew Armendariz rings.
However, we note that Theorem 19 shows that the results in [3, Theorems 3.11
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and 3.12(15)] is meaningless: In [3, Theorem 3.11], Chen and Tong claimed
that the trivial extension T (R,R) of a ring R is ᾱ-skew Armendariz (equiv-
alently, R is an α-rigid ring by [3, Theorem 3.4]) if and only if R is an
α-skew Armendariz ring and for p(x), q(x) ∈ R[x;α], p(x)q(x) = 0 implies
p(x)R[x;α] ∩R[x;α]q(x) = 0.
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