RIGIDNESS AND EXTENDED ARMENDARIZ PROPERTY

Muhittin Başer, Fatma Kaynarca, and Tai Keun Kwak

ABSTRACT. For a ring endomorphism α of a ring R, Krempa called α a rigid endomorphism if $a\alpha(a) = 0$ implies a = 0 for $a \in R$, and Hong et al. called R an α -rigid ring if there exists a rigid endomorphism α . Due to Rege and Chhawchharia, a ring R is called Armendariz if whenever the product of any two polynomials in R[x] over R is zero, then so is the product of any pair of coefficients from the two polynomials. The Armendariz property of polynomials was extended to one of skew polynomials (i.e., α -Armendariz rings and α -skew Armendariz rings) by Hong et al. In this paper, we study the relationship between α -rigid rings and extended Armendariz rings, and so we get various conditions on the rings which are equivalent to the condition of being an α -rigid ring. Several known results relating to extended Armendariz rings can be obtained as corollaries of our results.

Throughout this paper, all rings are associative with identity. Given a ring R, the polynomial ring over R is denoted by R[x]. Recall that a ring R is called *reduced* if it has no nonzero nilpotent elements. Armendariz [1, Lemma 1] showed that for a reduced ring R, if any polynomial $f(x) = a_0 + a_1x + \cdots + a_mx^m$, $g(x) = b_0 + b_1x + \cdots + b_nx^n \in R[x]$ satisfies f(x)g(x) = 0, then $a_ib_j = 0$ for each i, j. Since then, Rege and Chhawchharia [12] called R an Armendariz ring if it satisfies this condition. Many properties of Armendariz rings have been studied by many authors [2, 3, 5, 6, 8, 10, 11, 12].

The reducedness and Armendariz property of a ring were extended as follows. For a ring R with a ring endomorphism $\alpha : R \to R$, a skew polynomial ring (also called an Ore extension of endomorphism type) $R[x; \alpha]$ of R is the ring obtained by giving the polynomial ring over R with the new multiplication $xr = \alpha(r)x$ for all $r \in R$. Recall that an endomorphism α of a ring R is called rigid [9] if $a\alpha(a) = 0$ implies a = 0 for $a \in R$, and a ring R is called α -rigid [4] if there exists a rigid endomorphism α of R. Note that any rigid endomorphism of a ring is a monomorphism, and α -rigid rings are reduced rings [4, Proposition 5]. On the other hand, the Armendariz property with respect to polynomials was extended to one of skew polynomials. A ring R is called α -Armendariz (resp.,

Received June 2, 2009.

O2011 The Korean Mathematical Society

157

²⁰¹⁰ Mathematics Subject Classification. 16S36, 16U50,16W20.

Key words and phrases. reduced rings, skew polynomial rings, rigid rings, (extended) Armendariz rings, trivial extension, semiprime rings, semicommutative rings.

 α -skew Armendariz) [6, Definition 1.1] (resp., [5, Definition]) if for p(x) = $a_0 + a_1 x + \dots + a_m x^m$ and $q(x) = b_0 + b_1 x + \dots + b_n x^n$ in $R[x; \alpha], p(x)q(x) = 0$ implies $a_i b_j = 0$ (resp., $a_i \alpha^i(b_j) = 0$) for all $0 \le i \le m$ and $0 \le j \le n$. It can be easily checked that every subring S with $\alpha(S) \subseteq S$ of an α -Armendariz ring (resp., an α -skew Armendariz ring) is also α -Armendariz (resp., α -skew Armendariz). Note that every α -rigid ring is α -Armendariz [6, Proposition 1.7], and every α -Armendariz ring is α -skew Armendariz [6, Theorem 1.8], but the converses do not hold by [6, Example 1.6] and [6, Example 1.9], respectively. Moreover R is an α -rigid ring if and only if $R[x; \alpha]$ is reduced [5, Proposition 3]. In [3], Chen and Tong showed the relationship between α -rigid rings and α skew Armendariz rings. Motivated by their results, in this paper, we continue the study of α -Armendariz rings, improving several results in [3] and [6], and moreover we obtain various rings which are equivalent to α -rigid rings. Several known results relating to Armendariz rings can be obtained as corollaries of our results.

In [12, Remark 3.1], Rege and Chhawchharia showed that every $n \times n$ full matrix ring over any ring R is not I_R -Armendariz for $n \ge 2$ where I_R is an identity endomorphism of R. We also know that there exists a 2×2 full (and also upper triangular) matrix ring R with an endomorphism α such that R is not α -Armendariz by [6, Theorem 1.8] and [5, Example 13] in general. Hence, we consider the following.

A ring R can be extended to a ring

$$S_{3}(R) = \left\{ \left(\begin{array}{ccc} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{array} \right) \mid a, b, c, d \in R \right\}$$

and an endomorphism α of R can also be extended to the endomorphism $\bar{\alpha}$: $S_3(R) \to S_3(R)$ defined by $\bar{\alpha}((a_{ij})) = (\alpha(a_{ij}))$. Recall that the trivial extension $T(R, M) = R \oplus M$ of R by M is isomorphic to the ring of all matrices $\begin{pmatrix} r & m \\ 0 & r \end{pmatrix}$, where $r \in R$ and $m \in M$ and the usual matrix operations are used. Hong et al. [6, Proposition 2.1] proved that, if R is an α -rigid ring, then $S_3(R)$ is $\bar{\alpha}$ -Armendariz and so the trivial extension T(R, R) of R is $\bar{\alpha}$ -Armendariz. Now, we show that these are equivalent. First we state the following lemma.

Lemma 1. Let α be an endomorphism of a ring R.

(1) [6, Proposition 1.3(ii)] If R is an α -Armendariz ring, then α is a monomorphism.

(2) [6, Proposition 2.4] R is an α -rigid ring if and only if for each $a \in R$, $\alpha^a(a)a = 0$ implies a = 0.

Theorem 2. Let α be an endomorphism of a ring R. Then the following are equivalent:

(1) R is an α -rigid ring. (2) $S_3(R) = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix} \mid a, b, c, d \in R \right\}$ is an $\bar{\alpha}$ -Armendariz ring. (3) The trivial extension T(R, R) of R is an $\bar{\alpha}$ -Armendariz ring.

Proof. Note that T(R, R) is isomorphic to the subring

$$\left\{ \left(\begin{array}{ccc} a & b & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{array}\right) \mid a, b \in R \right\}$$

of a ring $S_3(R)$ and each subring of an α -Armendariz ring is also α -Armendariz. Hence, it is enough to show that (3) \Rightarrow (1). Let T(R, R) be $\bar{\alpha}$ -Armendariz. Assume on the contrary that R is not α -rigid. By Lemma 1, there exists $0 \neq a \in R \text{ such that } \alpha(a)a = 0 \text{ and } \alpha(a) \neq 0. \text{ For } p(x) = \begin{pmatrix} \alpha(a) & 0 \\ 0 & \alpha(a) \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x, \quad q(x) = \begin{pmatrix} a & 0 \\ 0 & \alpha \end{pmatrix} + \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} x \in T(R, R)[x; \bar{\alpha}], \text{ we have } p(x)q(x) = 0, \text{ but } \begin{pmatrix} \alpha(a) & 0 \\ 0 & \alpha(a) \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} \neq 0; \text{ which is a contradiction. Thus } R \text{ is } \alpha\text{-rigid.} \square$

If we take α as the identity endomorphism I_R of a ring R, then we have the following corollary which generalizes the results in [8, Proposition 2] and [10, Theorem 2.3].

Corollary 3. For a ring R, the following are equivalent:

- (1) R is a reduced ring.
- (2) $S_3(R) = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix} \mid a, b, c, d \in R \right\} \text{ is an Armendariz ring.}$ (3) The trivial extension T(R, R) of R is an Armendariz ring.

Hong et al. [5, p. 261] showed that the ring

$$S_n(R) = \left\{ \begin{pmatrix} a & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a \end{pmatrix} \mid a, a_{ij} \in R \right\}$$

cannot be $\bar{\alpha}$ -Armendariz for $n \geq 4$, even if R is an α -rigid ring. However, we obtain subrings of $S_n(R)$ for $n \ge 4$ which are $\bar{\alpha}$ -Armendariz as follows.

From [11], $RA = \{rA \mid r \in R\}$ for any $A \in Mat_n(R)$ where $Mat_n(R)$ is the $n \times n$ full matrix ring and for $n \ge 2$, let $V = \sum_{i=1}^{n-1} E_{i(i+1)}$ where E_{ij} 's are the matrix units. For an even number $n = 2k(\ge 2)$, let

$$A_n^e(R) = \sum_{i=1}^k \sum_{j=k+i}^n RE_{ij}, \text{ and } B_n^e(R) = \sum_{i=1}^{k+1} \sum_{j=k+i-1}^n RE_{ij};$$

and for an odd number $n = 2k + 1 \geq 3$, let

$$A_n^o(R) = \sum_{i=1}^{k+1} \sum_{j=k+i}^n RE_{ij}, \text{ and } B_n^o(R) = \sum_{i=1}^{k+2} \sum_{j=k+i-1}^n RE_{ij}.$$

In addition, for $n \ge 2$ put

 $A_n(R) = RI_n + RV + \dots + RV^{k-1} + A_n^e(R) \text{ and}$ $B_n(R) = RI_n + RV + \dots + RV^{k-2} + B_n^e(R) \text{ for } n = 2k;$

 $A_n(R) = RI_n + RV + \dots + RV^{k-1} + A_n^o(R)$ and

 $B_n(R) = RI_n + RV + \dots + RV^{k-2} + B_n^o(R)$ for n = 2k + 1, where I_n is the unit matrix of $Mat_n(R)$.

Proposition 4. Let α be an endomorphism of a ring R. The following are equivalent:

(1) R is an α -rigid ring.

(2) $A_n(R)$ is an $\bar{\alpha}$ -Armendariz ring for $n = 2k + 1 \ge 3$.

(3) $A_n(R) + RE_{1k}$ is an $\bar{\alpha}$ -Armendariz ring for $n = 2k \ge 4$.

(4) $V_n(R) = RI_n + RV + RV^2 + \dots + RV^{n-1}$ is an $\bar{\alpha}$ -Armendariz ring for $n \ge 2$.

Proof. Assume that R is an α -rigid ring. First, let $S = A_n(R)$ if $n = 2k+1 \ge 3$ and $S = A_n(R) + RE_{1k}$ if $n = 2k \ge 4$, and let $P(x) = C_0 + C_1x + \dots + C_ux^u$ and $Q(x) = D_0 + D_1x + \dots + D_vx^v$ in $S[x;\bar{\alpha}]$ with P(x)Q(x) = 0. We show that $C_iD_j = 0$ for $0 \le i \le u, 0 \le j \le v$. Let $p_{st}(x) = c_{st}^{(0)} + c_{st}^{(1)}x + \dots + c_{st}^{(u)}x^u$ and $q_{st}(x) = d_{st}^{(0)} + d_{st}^{(1)}x + \dots + d_{st}^{(v)}x^v$, where $c_{st}^{(i)}$ and $d_{st}^{(j)}$ are the (s, t)entries of C_i and D_j , respectively for $0 \le i \le u$ and $0 \le j \le v$. Then, we can write that $P(x) = (p_{st}(x))$ and $Q(x) = (q_{st}(x))$ for $1 \le s, t \le n$ and then $(p_{st}(x))(q_{st}(x)) = 0$ in S. Since R is α -rigid, $R[x;\alpha]$ is reduced by [5, Proposition 3]. From [3, Lemma 2.4], we have $((p_{st}(x))(q_{st}(x)))_{st} = 0$ for $1 \le s, t \le n$. So $p_{sl}(x)q_{lt}(x) = 0$ in $R[x;\alpha]$ for $1 \le l \le n$. That is,

$$(c_{sl}^{(0)} + c_{sl}^{(1)}x + \dots + c_{sl}^{(u)}x^{u})(d_{lt}^{(0)} + d_{lt}^{(1)}x + \dots + d_{lt}^{(v)}x^{v}) = 0.$$

Since R is an α -rigid, R is α -Armendariz by [6, Proposition 1.7]. Hence $c_{sl}^{(i)}d_{lt}^{(j)} = 0$ for $1 \leq s, t, l \leq n, 0 \leq i \leq u$ and $0 \leq j \leq v$, and so $C_iD_j = (c_{st}^{(i)})(d_{st}^{(j)}) = 0$. Therefore S is $\bar{\alpha}$ -Armendariz. This proves that (1) \Rightarrow (2) and (1) \Rightarrow (3).

Next, assume that R is an α -rigid ring. For $n = 2, 3, V_n(R)$ is $\bar{\alpha}$ -Armendariz by Theorem 2 and for $n \ge 4, V_n(R)$ is also $\bar{\alpha}$ -Armendariz since $V_n(R)$ is a subring of $A_n(R)$ or $A_n(R) + RE_{1k}$ and $\alpha(V_n(R)) \subseteq V_n(R)$.

The converses follow the proof of Theorem 2, respectively.

Corollary 5. The following are equivalent for a ring R.

(1) R is a reduced ring.

(2) $A_n(R)$ is an Armendariz ring for $n = 2k + 1 \ge 3$.

(3) $A_n(R) + RE_{1k}$ is an Armendariz ring for $n = 2k \ge 4$.

(4) $V_n(R) = RI_n + RV + RV^2 + \dots + RV^{n-1}$ is an Armendariz ring for $n \ge 2$.

If we define $\rho: V_n(R) \to R[x]/\langle x^n \rangle$ by $\rho(a_0I_n + a_1V + \dots + a_{n-1}V^{n-1}) = a_0 + a_1x + \dots + a_{n-1}x^{n-1} + \langle x^n \rangle$, then ρ is a ring isomorphism, where $\langle x^n \rangle$ is an ideal of R[x] generated by x^n and $n \ge 2$. So we have the following corollary.

160

Corollary 6 ([6, Proposition 2.4]). Let α be an endomorphism of a ring R. Then the factor ring $R[x]/\langle x^n \rangle$ is $\bar{\alpha}$ -Armendariz if and only if R is an α -rigid ring.

Remark 7. Observe that $B_n^e(R)$ for $n = 2k \ge 2$, $B_n^o(R)$ for $n = 2k + 1 \ge 3$ and $B_n(R)$ for $n \ge 2$ are not $\bar{\alpha}$ -Armendariz rings, even though R is an α -Armendariz ring by the same method as in [11, Example 1.1], since the endomorphism α of an α -Armendariz ring R preserves identity by [6, Corollary 1.4(i)].

The following example shows that there exists an Armendariz ring R with an endomorphism α such that R is not α -skew Armendariz.

Example 8. Let $R = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ where \mathbb{Z}_2 is the ring of integers modulo 2. Then R is a commutative reduced ring, and so it is Armendariz. Let $\alpha : R \to R$ be an endomorphism defined by $\alpha((a, b)) = (b, a)$. Then R is not α -skew Armendariz by [5, Example 2], and so R is not α -Armendariz, either by [6, Theorem 1.8].

However, we have the following.

Proposition 9. Let α be an endomorphism of a ring R. If the skew polynomial ring $R[x; \alpha]$ of R is an Armendariz ring, then R is α -skew Armendariz.

Proof. Assume that $R[x; \alpha]$ is Armendariz. Let p(x)q(x) = 0, where $p(x) = a_0 + a_1x + \cdots + a_mx^m$ and $q(x) = b_0 + b_1x + \cdots + b_nx^n$ in $R[x; \alpha]$. We show that $a_i\alpha^i(b_j) = 0$ for all i, j. Set $f(y) = a_0 + (a_1x)y + \cdots + (a_mx^m)y^m$ and $g(y) = b_0 + (b_1x)y + \cdots + (b_nx^n)y^n$ in $(R[x; \alpha])[y]$. Then f(y)g(y) = 0, since p(x)q(x) = 0 and y commutes with x. Since $R[x; \alpha]$ is Armendariz, we have $a_ix^ib_jx^j = 0$, and so $a_i\alpha^i(b_j) = 0$ for all i, j. Therefore R is an α -skew Armendariz ring.

Corollary 10 ([5, Corollary 4]). Let α be an endomorphism of a ring R. If R is α -rigid, then R is an α -skew Armendariz ring.

Proof. Let R be an α -rigid ring. Then $R[x; \alpha]$ is reduced by [5, Proposition 3] and so $R[x; \alpha]$ is Armendariz. Therefore R is an α -skew Armendariz ring by Proposition 9.

Observe that the conclusion of Proposition 9 cannot be replaced by the condition "R is α -Armendariz" by the next example.

Example 11. Let R be the polynomial ring $\mathbb{Z}_2[x]$ over \mathbb{Z}_2 , the ring of integers modulo 2, and let the endomorphism α of R be defined by $\alpha(f(x)) = f(0)$ for $f(x) \in \mathbb{Z}_2[x]$. Then R is a reduced α -skew Armendariz ring by [5, Example 5], but R is not α -Armendariz by [6, Example 1.9]. Now, we show that $S = R[y; \alpha]$ is an Armendariz ring. Let $f(T) = f_0 + f_1T + \cdots + f_mT^m$ and $g(T) = g_0 + g_1T + \cdots + g_nT^n \in S[T]$ with f(T)g(T) = 0. We also let $f_i = \sum_{s=0}^{u_i} f_{i_s}(x)y^s$ and $g_j = \sum_{t=0}^{v_j} g_{j_t}(x)y^t$ where $f_{i_s}(x), g_{j_t}(x) \in \mathbb{Z}_2[x]$ for each $0 \leq i \leq m$ and $0 \leq j \leq n$. Without loss of generality, assume that $f_{i_s}(x) \neq 0$ and $g_{j_t}(x) \neq 0$

in $\mathbb{Z}_2[x]$ for all $1 \leq s \leq u_i$, $0 \leq t \leq v_j$, $0 \leq i \leq m$ and $0 \leq j \leq n$. Then we have the following system of equations:

(0) $f_0g_0 = 0$; (1) $f_0g_1 + f_1g_0 = 0$; : (k) $f_0g_k + f_1g_{k-1} + \dots + f_{k-1}g_1 + f_kg_0 = 0$; (k+1) $f_0g_{k+1} + f_1g_k + \dots + f_kg_1 + f_{k+1}g_0 = 0$; : (m+n) $f_mg_n = 0$.

We claim that $f_{0_0}(x) = f_{1_0}(x) = \cdots = f_{m_0}(x) = 0$ and each $g_{j_t}(x)$ has no constant term for $0 \leq t \leq v_j$ and $0 \leq j \leq n$. We proceed by induction on i + j. Since R is α -skew Armendariz and $f_{0g_0} = 0$ from Eq.(0), we obtain $f_{0_s}(x)\alpha^s(g_{0_t}(x)) = 0$ for all $0 \leq s \leq u_0$ and $0 \leq t \leq v_0$, and so $f_{0_0}(x) = 0$ and $g_{0_t}(0) = 0$ for $0 \leq t \leq v_0$. So each $g_{0_t}(x)$ has no constant term for $0 \leq t \leq v_0$. This proves for i + j = 0. Now suppose that our claim is true for $i+j \leq k-1$. By the induction hypothesis and Eq.(k), we get $0 = f_0g_k + f_kg_0 = (f_{0_1}(x)y + f_{0_2}(x)y^2 + \cdots + f_{0_{u_0}}(x)y^{u_0})(g_{k_0}(x) + g_{k_1}(x)y + \cdots + g_{k_{v_k}}(x)y^{v_k}) + f_{k_0}(x)(g_{0_0}(x) + g_{0_1}(x)y + \cdots + g_{0_{v_0}}(x)y^{v_0}) = f_{k_0}(x)g_{0_0}(x) + [f_{k_0}(x)g_{0_1}(x) + f_{0_1}(x)\alpha(g_{k_0}(x))]y + [f_{k_0}(x)g_{0_2}(x) + f_{0_1}(x)\alpha(g_{k_1}(x)) + f_{0_2}(x)\alpha^2(g_{k_0}(x))]y^2 + \cdots + f_{0_{u_0}}(x)\alpha^{u_0}(g_{k_{v_k}}(x))y^{u_0+v_k}$. Then $f_{k_0}(x) = 0$, and so we have the following:

(i)
$$f_{0_1}(x)\alpha(g_{k_0}(x)) = 0$$
;
(ii) $f_{0_1}(x)\alpha(g_{k_1}(x)) + f_{0_2}(x)\alpha^2(g_{k_0}(x)) = 0$;
:
(iii) $f_{0_1}(x)\alpha(g_{k_{i-1}}(x)) + f_{0_2}(x)\alpha^2(g_{k_{i-2}}(x)) + \dots + f_{0_i}(x)\alpha^i(g_{k_0}(x)) = 0$;
:
(iv) $f_{0_{u_0}}(x)\alpha^{u_0}(g_{k_{v_k}}(x)) = 0$.

Hence, $g_{k_0}(0) = g_{k_1}(0) = \cdots = g_{k_{v_k}}(0) = 0$, and so $g_{k_t}(x)$ has no constant term for all $0 \le t \le v_k$. Thus $f_i = \sum_{s=1}^{u_i} f_{i_s}(x)y^s$, $g_j = \sum_{t=0}^{v_j} g_{j_t}(x)y^t$ and each g_{j_t} has no constant term for $0 \le i \le m$, $0 \le t \le v_j$ and $0 \le j \le n$, and so $f_i g_j = 0$ for all i, j. Therefore $S = R[y; \alpha] = (\mathbb{Z}_2[x])[y; \alpha]$ is Armendariz.

The following extends the result in [3, Lemma 3.8].

Proposition 12. Let α be an endomorphism of a ring R. If S is a ring and $\sigma: R \to S$ is a ring isomorphism, then we have the following.

(1) R is an α -rigid ring if and only if S is a $\sigma \alpha \sigma^{-1}$ -rigid ring.

(2) R is an α -Armendariz ring if and only if S is a $\sigma \alpha \sigma^{-1}$ -Armendariz ring.

(3) R is an α -skew Armendariz ring if and only if S is a $\sigma\alpha\sigma^{-1}$ -skew Armendariz ring.

162

Proof. (1) For $a \in R$, there exists $a' \in S$ such that $\sigma(a) = a'$ since σ is bijective, and so $a\alpha(a) = 0$ if and only if $\sigma(a)(\sigma\alpha\sigma^{-1})\sigma(a) = 0$ if and only if $a'(\sigma\alpha\sigma^{-1})(a') = 0$. This yields that R is α -rigid if and only if S is $\sigma\alpha\sigma^{-1}$ -rigid.

(2) and (3) Similarly, $p(x) = \sum_{i=0}^{m} a_i x^i$, $q(x) = \sum_{j=0}^{n} b_j x^j \in R[x; \alpha]$ if and only if $p'(x) = \sum_{i=0}^{m} a'_i x^i$, $q'(x) = \sum_{j=0}^{n} b'_j x^j \in S[x; \sigma \alpha \sigma^{-1}]$, letting $\sigma(a_i) = a'_i, \sigma(b_j) = b'_j$ for all i, j since σ is bijective. Then p(x)q(x) = 0in $R[x; \alpha]$ if and only if $\sum_{i+j=k} a_i \alpha^i(b_j) = 0$ for each $0 \le k \le m+n$ if and only if $\sum_{i+j=k} \sigma(a_i \alpha^i(b_j)) = 0$ for each $0 \le k \le m+n$ if and only if $\sum_{i+j=k} \sigma(a_i)(\sigma \alpha \sigma^{-1})^i \sigma(b_j) = 0$ for each $0 \le k \le m+n$, since $(\sigma \alpha \sigma^{-1})^t =$ $\sigma \alpha^t \sigma^{-1}$ for any positive integer t if and only if $\sum_{i+j=k} a'_i (\sigma \alpha \sigma^{-1})^i (b'_j) = 0$ for each $0 \le k \le m+n$ if and only if p'(x)q'(x) = 0 in $S[x; \sigma \alpha \sigma^{-1}]$. Hence, for all $i, j, a_i b_j = 0$ if and only if $a'_i (\sigma \alpha \sigma^{-1})^i (b'_j) = 0$. The proof is completed. \Box

Recall that if α is an endomorphism of a ring R, then the map $\bar{\alpha} : R[x] \to R[x]$ defined by $\bar{\alpha}(\sum_{i=0}^{m} a_i x^i) = \sum_{i=0}^{m} \alpha(a_i) x^i$ is an endomorphism of the polynomial ring R[x] and clearly this map extends α . The Laurent polynomial ring $R[x, x^{-1}]$ with an indeterminate x, consists of all formal sums $\sum_{i=k}^{n} a_i x^i$, where $a_i \in R$ and k, n are (possibly negative) integers. The map $\bar{\alpha} : R[x, x^{-1}] \to R[x, x^{-1}]$ defined by $\bar{\alpha}(\sum_{i=k}^{n} a_i x^i) = \sum_{i=k}^{n} \alpha(a_i) x^i$ extends α and also is an endomorphism of $R[x, x^{-1}]$.

Theorem 13. Let α be an endomorphism of a ring R. The following are equivalent:

- (1) R is an α -rigid ring.
- (2) R[x] is an $\bar{\alpha}$ -rigid ring.
- (3) $R[x, x^{-1}]$ is an $\bar{\alpha}$ -rigid ring.

Proof. $(1) \Rightarrow (2)$ Assume that R is α -rigid, but R[x] is not $\bar{\alpha}$ -rigid. Then there exists a nonzero $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$ such that $f(x)\bar{\alpha}(f(x)) = 0$. Suppose that $a_k \neq 0$ and $a_0 = \cdots = a_{k-1} = 0$ where $0 \leq k \leq n$. Then $0 = f(x)\bar{\alpha}(f(x)) = (a_k x^k + \cdots + a_n x^n)(\alpha(a_k) x^k + \cdots + \alpha(a_n) x^n)$ yields $a_k \alpha(a_k) = 0$, and so $a_k = 0$; which is a contradiction. Thus R[x] is $\bar{\alpha}$ -rigid.

 $(2)\Rightarrow(3)$ Let $f(x) \in R[x, x^{-1}]$ with $f(x)\bar{\alpha}(f(x)) = 0$. Then there exists a positive integer n such that $f_1(x) = f(x)x^n \in R[x]$, and so $f_1(x)\bar{\alpha}(f_1(x)) = 0$. Since R[x] is $\bar{\alpha}$ -rigid, we obtain $f_1(x) = 0$, and hence f(x) = 0. Thus $R[x, x^{-1}]$ is $\bar{\alpha}$ -rigid.

(3) \Rightarrow (1) R is α -rigid as a subring of $R[x, x^{-1}]$ when R is $\bar{\alpha}$ -rigid.

Corollary 14. (1) Let R be a reduced ring with an endomorphism α . Then R is α -Armendariz if and only if R[x] is $\overline{\alpha}$ -Armendariz.

(2) [2, Proposition 6] Let R be a reduced ring and α be a monomorphism of R. Then R is α -skew Armendariz if and only if R[x] is $\overline{\alpha}$ -skew Armendariz.

164

Proof. It follows from [2, Theorem 1], [6, Proposition 1.7] and Theorem 13. \Box

Related to Corollary 14, notice that there exists a reduced α -skew Armendariz ring which is not α -Armendariz (Example 11).

Let α_{γ} be an endomorphism of a ring R_{γ} for each $\gamma \in \Gamma$. For the product $\prod_{\gamma \in \Gamma} R_{\gamma}$ of R_{γ} and the endomorphism $\bar{\alpha} : \prod_{\gamma \in \Gamma} R_{\gamma} \to \prod_{\gamma \in \Gamma} R_{\gamma}$ defined by $\bar{\alpha}((a_{\gamma})) = (\alpha_{\gamma}(a_{\gamma}))$, it can be easily checked that $\prod_{\gamma \in \Gamma} R_{\gamma}$ is $\bar{\alpha}$ -rigid if and only if each R_{γ} is α_{γ} -rigid.

Recall that for an endomorphism α and an ideal I of a ring R, I is called an α -*ideal* if $\alpha(I) \subseteq I$, and if I is an α -ideal of R, then $\bar{\alpha} : R/I \to R/I$ defined by $\bar{\alpha}(a+I) = \alpha(a) + I$ for $a \in R$ is an endomorphism of the factor ring R/I. The homomorphic image of an α -rigid ring is not $\bar{\alpha}$ -rigid, in general. The following example shows that there exists a ring R with an automorphism α such that R/I is $\bar{\alpha}$ -rigid for a non-zero α -ideal I of R, but R is not α -rigid.

Example 15. Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$ where F is a field, and α be defined by $\alpha \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$) $= \begin{pmatrix} a & -b \\ 0 & c \end{pmatrix}$. Note that R is not α -Armendariz by [6, Example 1.12], and so it is not α -rigid. However, for a nonzero proper ideal $I = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$ of R, it can be easily checked that $\alpha(I) \subseteq I$ and R/I is $\overline{\alpha}$ -rigid.

Let α be an automorphism of a ring R. Suppose that there exists the classical right quotient ring Q(R) of R. Then for any $ab^{-1} \in Q(R)$ where $a, b \in R$ with b regular, the induced map $\bar{\alpha} : Q(R) \to Q(R)$ defined by $\bar{\alpha}(ab^{-1}) = \alpha(a)\alpha(b)^{-1}$ is also an endomorphism. Note that R is α -rigid if and only if Q(R) is $\bar{\alpha}$ -rigid.

Let R be an algebra over a commutative ring S. Recall that the Dorroh extension of R by S is the ring $D = R \times S$ with operations $(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2)$ and $(r_1, s_1)(r_2, s_2) = (r_1 r_2 + s_1 r_2 + s_2 r_1, s_1 s_2)$, where $r_1, r_2 \in R$ and $s_1, s_2 \in S$. For an endomorphism α of R and the Dorroh extension D of R by S, $\bar{\alpha} : D \to D$ defined by $\bar{\alpha}(r, s) = (\alpha(r), s)$ is an S-algebra homomorphism.

In the following, we give some other example of α -rigid rings. Observe that for an α -rigid ring R, every subring S of R with $\alpha(S) \subseteq S$ is clearly α -rigid, and R is reduced with $\alpha(e) = e$ for $e^2 = e \in R$ by [4, Proposition 5].

Proposition 16. Let α be an endomorphism of a ring R.

(1) R is an α -rigid ring if and only if eR and (1 - e)R are α -rigid for $e^2 = e \in R$.

(2) If R is an α -rigid ring and S is a reduced ring, then the Dorroh extension D of R by S is $\bar{\alpha}$ -rigid.

Proof. (1) It is enough to show that R is α -rigid. Suppose that eR and (1-e)R are α -rigid. Let $a\alpha(a) = 0$ for $a \in R$. Then $0 = ea\alpha(ea)$ and $0 = (1-e)a\alpha((1-e)a)$. By hypothesis, we get ea = 0 and (1-e)a = 0, and so a = 0. Thus R is α -rigid.

(2) Let $(r, s) \in D$ with $(r, s)\overline{\alpha}(r, s) = 0$. Then $r\alpha(r) + s\alpha(r) + sr = 0$ and $s^2 = 0$. Since S is reduced, we get s = 0. Thus $r\alpha(r) = 0$, and so r = 0 since R is α -rigid. Hence, (r, s) = 0, and therefore the Dorroh extension D is $\overline{\alpha}$ -reduced.

For any endomorphism α of a ring R, R is α -rigid if and only if $R[x; \alpha]$ is reduced by [5, Proposition 3], but there exists a semiprime ring R with an automorphism α such that the skew polynomial ring $R[x; \alpha]$ is not semiprime by the following example.

Example 17. Let *F* be a field and $F_i = F$ for $i \in \mathbb{Z}$. Let *R* be a *F*-subalgebra of $\prod_{i \in \mathbb{Z}} F_i$ generated by $\bigoplus_{i \in \mathbb{Z}} F_i$ and $1_{\prod_{i \in \mathbb{Z}} F_i}$. Let α be an automorphism of *R* defined by $\alpha((a_i)) = (a_{i+1})$. Then

$$R = \{(a_i) \in \prod_{i \in \mathbb{Z}} F_i \mid a_i \text{ is eventually constant} \}$$

is reduced and von Neumann regular, but $R[x; \alpha]$ is not semiprime by [7, Example 4.3].

Lemma 18. For a ring R, the following are equivalent:

- (1) R is a semiprime ring.
- (2) For $a, b \in R$, aRb = 0 implies $aR \cap Rb = 0$.

Proof. Suppose that R is semiprime and aRb = 0 for $a, b \in R$. Let $c \in aR \cap Rb$. Then c = ar = sb for some $r, s \in R$. So $cRc = (ar)R(sb) \subseteq aRb = 0$, and thus c = 0. The converse is obvious.

A ring R is called *semicommutative* if ab = 0 implies aRb = 0 for $a, b \in R$; and so every reduced ring is semicommutative.

Theorem 19. Let α be an endomorphism of a ring R. The following are equivalent:

(1) R is an α -rigid ring.

(2) For $p(x), q(x) \in R[x; \alpha], p(x)q(x) = 0$ implies $p(x)R[x; \alpha] \cap R[x; \alpha]q(x) = 0$.

Proof. Assume that R is α -rigid. By [5, Proposition 3], $R[x; \alpha]$ is reduced and so it is semiprime and semicommutative. If p(x)q(x) = 0 for $p(x), q(x) \in R[x; \alpha]$, then $p(x)R[x; \alpha]q(x) = 0$, and thus $p(x)R[x; \alpha] \cap R[x; \alpha]q(x) = 0$ by Lemma 18. Conversely, assume (2). Let $a\alpha(a) = 0$ for $a \in R$. For $p(x) = ax = q(x) \in R[x; \alpha], p(x)q(x) = a\alpha(a)x^2 = 0$ and so $(ax)R[x; \alpha] \cap R[x; \alpha](ax) = 0$ by hypothesis. Then ax = 0, and hence a = 0. Therefore R is α -rigid. \Box

Corollary 20. For a ring R, the following are equivalent:

- (1) R is a reduced ring.
- (2) R[x] is a reduced ring.
- (3) For $a, b \in R$, ab = 0 implies $aR \cap Rb = 0$.
- (4) For $f(x), g(x) \in R[x], f(x)g(x) = 0$ implies $f(x)R[x] \cap R[x]g(x) = 0$.

Proof. It follows from Theorem 13 and Theorem 19.

Paralleled to Theorem 2 and Proposition 4 in this paper, Chen and Tong [3] proved the relationship between α -rigid rings and $\bar{\alpha}$ -skew Armendariz rings. However, we note that Theorem 19 shows that the results in [3, Theorems 3.11

 \square

166

and 3.12(15)] is meaningless: In [3, Theorem 3.11], Chen and Tong claimed that the trivial extension T(R, R) of a ring R is $\bar{\alpha}$ -skew Armendariz (equivalently, R is an α -rigid ring by [3, Theorem 3.4]) if and only if R is an α -skew Armendariz ring and for $p(x), q(x) \in R[x; \alpha], p(x)q(x) = 0$ implies $p(x)R[x; \alpha] \cap R[x; \alpha]q(x) = 0.$

Acknowledgments. The third named author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(No. 2010-0022160).

References

- E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470–473.
- [2] W. Chen and W. Tong, A note on skew Armendariz rings, Comm. Algebra 33 (2005), no. 4, 1137–1140.
- [3] _____, On skew Armendariz rings and rigid rings, Houston J. Math. 33 (2007), no. 2, 341–353.
- [4] C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215–226.
- [5] _____, On skew Armendariz rings, Comm. Algebra **31** (2003), no. 1, 103–122.
- [6] C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Extensions of generalized Armendariz rings, Algebra Colloq. 13 (2006), no. 2, 253–266.
- [7] A. A. M. Kamal, Some remarks on Ore extension rings, Comm. Algebra 22 (1994), no. 10, 3637–3667.
- [8] N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477–488.
- [9] J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289–300.
- [10] T. K. Lee and T. L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), no. 3, 583–593.
- [11] T. K. Lee and Y. Q. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (2004), no. 6, 2287–2299.
- [12] M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14–17.

Muhittin Başer Department of Mathematics Kocatepe University Afyonkarahisar 03200, Turkey *E-mail address*: mbaser@aku.edu.tr

FATMA KAYNARCA DEPARTMENT OF MATHEMATICS KOCATEPE UNIVERSITY AFYONKARAHISAR 03200, TURKEY *E-mail address*: ferol@aku.edu.tr TAI KEUN KWAK DEPARTMENT OF MATHEMATICS DAEJIN UNIVERSITY POCHEON 487-711, KOREA *E-mail address*: tkkwak@daejin.ac.kr