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A STRUCTURE ON COEFFICIENTS OF
NILPOTENT POLYNOMIALS

Young Cheol Jeon, Yang Lee, and Sung Ju Ryu

Abstract. We observe a structure on the products of coefficients of
nilpotent polynomials, introducing the concept of n-semi-Armendariz
that is a generalization of Armendariz rings. We first obtain a classi-
fication of reduced rings, proving that a ring R is reduced if and only if
the n by n upper triangular matrix ring over R is n-semi-Armendariz. It is
shown that n-semi-Armendariz rings need not be (n+1)-semi-Armendariz
and vice versa. We prove that a ring R is n-semi-Armendariz if and only
if so is the polynomial ring over R. We next study interesting proper-
ties and useful examples of n-semi-Armendariz rings, constructing various
kinds of counterexamples in the process.

1. n-semi-Armendariz rings

Throughout this paper all rings are associative with identity unless otherwise
stated. The polynomial ring with an indeterminate x over a ring R is denoted
by R[x].

A ring is called reduced if it has no nonzero nilpotent elements. For a reduced
ring R Armendariz [3, Lemma 1] proved that

(∗) aibj = 0 for all i, j whenever f(x)g(x) = 0,

where f(x) =
∑m

i=0 aix
i, g(x) =

∑n
j=0 bjx

j are in R[x]. Rege et al. [14] called
a ring (not necessarily reduced) Armendariz if it satisfies (∗). Reduced rings are
Armendariz by [3, Lemma 1]. The structure of Armendariz rings was observed
by many authors containing Anderson et al. [1], Hirano [4], Huh et al. [6],
Kim et al. [8], Lee et al. [11], Rege et al. [14], etc. A ring is called abelian if
every idempotent is central. Armendariz rings are abelian by the proof of [1,
Theorem 6] or [6, Corollary 8].
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A ring R is called n-semi-Armendariz provided that if f(x) = a0 + a1x +
· · · + amxm in R[x] satisfies f(x)n = 0, then ai1ai2 · · · ain

= 0 for any choice
of aij

’s in {a0, . . . , am}, where j = 1, . . . , n (of course n ≥ 2). A ring is called
semi-Armendariz if it is n-semi-Armendariz for all n ≥ 2. Armendariz rings are
semi-Armendariz by [1, Proposition 1], but the converse need not hold since
the 2 by 2 upper triangular matrix ring over a reduced ring is semi-Armendariz
by Theorem 1.2 below and it is non-abelian.

Let R be a ring and n be a positive integer. Let Matn(R) denote the n by
n matrix ring over R and In be the identity of Matn(R). We use Un(R) (resp.
Ln(R)) to denote the n by n upper (resp. lower) triangular matrix ring over
R. Eij denotes the n by n matrix with (i, j)-entry 1 and zero elsewhere. Next
define

Dn(R) = {M ∈ Un(R) | the diagonal entries of M are equal}.
According to [12], define RA = {rA | r ∈ R} for A ∈ Matn(R) and V =∑n−1

i=1 Ei(i+1) ∈ Un(R). N(R) denotes the set of all nilpotent elements in R.

Lemma 1.1. (1) Let R be a reduced ring, n be any positive integer and ri ∈ R
for i = 1, . . . , n. Then r1r2 · · · rn = 0 implies rσ(1)Rrσ(2)R · · ·Rrσ(n) = 0 for
any permutation σ of the set {1, 2, . . . , n}.

(2) The class of (n-semi-)Armendariz rings is closed under subrings.
(3) Any direct product of n-semi-Armendariz rings is n-semi-Armendariz.
(4) Any direct sum of n-semi-Armendariz rings is n-semi-Armendariz.
(5) Let R be a ring and n ≥ 2. Then R is reduced if and only if R[x]/(xn)

is Armendariz if and only if RIn + RV + · · · + RV n−1 (a subring of Dn(R))
is Armendariz if and only if D3(R) is Armendariz if and only if D2(R) is
Armendariz, where (xn) is the ideal of R[x] generated by xn.

(6) A ring R is Armendariz if and only if f1 · · · fn = 0 implies a1 · · · an = 0,
where f1, . . . , fn ∈ R[x] and ai is any coefficient of fi.

(7) If a ring R is semi-Armendariz, then N(R[x]) ⊆ N(R)[x].

Proof. (1) From the reducedness of R we obtain by [2, Theorem I.3] that
r1r2r3 = 0 implies rσ(1)rσ(2)rσ(3) = 0 for any permutation σ of the set {1, 2, 3},
and that ab = 0 implies aRb = 0 for a, b ∈ R. Thus the result is proved by [10,
Proposition 1] or [2, Theorem I.1].

(2) is obtained from the definition.
(3) For a polynomial f(x) ∈ R[x], Cf denotes the set of coefficients of f(x).

Let Ri be an n-semi-Armendariz ring for i ∈ I and let T =
∏

i∈I Ri be the
direct product of Ri’s. Consider f(x) =

∑m
j=0 ajx

j in T [x] such that f(x)n = 0,
where aj = (αij) ∈ T and αij ∈ Ri. And we put fi(x) =

∑m
j=0 αijx

j in Ri[x] for
i ∈ I. Then, from f(x)n = 0, fi(x)n = 0 for all i ∈ I. Since every Ri is n-semi-
Armendariz, αi1αi2 · · ·αin = 0 for any αij ’s in Cfi . Thus as1as2 · · · asn = 0 for
all ask

’s in {a0, . . . , am}, where k = 1, . . . , n.
(4) is obtained by (2) and (3).
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(5) It is proved by [1, Theorem 5] that R is reduced if and only if R[x]/(xn)
is Armendariz for any n ≥ 2. It is obtained from the corresponding x+(xn) 7→
V that R[x]/(xn) is Armendariz if and only if RIn + RV + · · · + RV n−1 is
Armendariz. It is proved by [8, Proposition 2] that D3(R) is Armendariz when
R is reduced. D2(R) is Armendariz by (2) when so is D3(R). R is reduced by
[11, Theorem 2.3] when D2(R) is Armendariz.

(6) is obtained from [1, Proposition 1] and the definition.
(7) Let f(x) =

∑m
i=0 aix

i ∈ R[x] with f(x)n = 0. Since R is n-semi-
Armendariz, an

i = 0 for all i. ¤

Due to Marks [13], a ring R is called NI if N(R) forms an ideal of R.
Note that R is NI if and only if R/N∗(R) is a reduced ring, where N∗(R)
is the upper nilradical of R. If R is NI, then R/N(R)[x] ∼= R[x]/N(R)[x]
implies N(R[x]) ⊆ N(R)[x]. The converse of Lemma 1.1(7) need not be true
by Example 1.6 below as can be seen by Un(R) (n ≥ 4) over a reduced ring R
since Un(R) is NI. [7, Example 1.2] shows that there is an NI ring that is not
n-semi-Armendariz for any n, with the help of Example 1.6 below. If a ring R
is Armendariz and NI, then N(R) is the sum of all nilpotent ideals in R by [9,
Lemma 2.3(5)]. While if a ring R is semi-Armendariz and NI, then N(R[x]) is
contained in a proper ideal of R[x] by Lemma 1.1(7).

For a ring R and a positive integer n define

Nn(R) = {A ∈ Un(R) | each diagonal entry of A is zero}.
Theorem 1.2. Let R be a ring and n be a positive integer. Then the following
conditions are equivalent:

(1) R is reduced;
(2) Uh(R) is n-semi-Armendariz for h = 1, 2, . . . , n + 1;
(3) Un(R) is n-semi-Armendariz;
(4) Lh(R) is n-semi-Armendariz for h = 1, 2, . . . , n + 1;
(5) Ln(R) is n-semi-Armendariz.

Proof. (1)⇒(2): Suppose that R is reduced. It suffices to prove that Un+1(R)
is n-semi-Armendariz by Lemma 1.1(2). Let f(x) = A0 + A1x + · · ·+ Amxm ∈
Un+1(R)[x] with f(x)n = 0 (n ≥ 2). Write

Ai = (a(i)uv) for i = 0, 1, . . . ,m with a(i)uv = 0 for u > v.

We will use the reducedness of R freely. From f(x)n = 0, we have the system
of equations

∑

s1+s2+···+sn=k

As1As2 · · ·Asn = 0 for k = 0, 1, . . . , mn.

From An
0 = 0 and An

m = 0, we have a(0)11 = · · · = a(0)(n+1)(n+1) = 0
and a(m)11 = · · · = a(m)(n+1)(n+1) = 0, entailing A0, Am ∈ Nn+1(R). In∑

s1+···+sn=n As1As2 · · ·Asn , any term, except An
1 , contains A0 as a factor,

and so it is contained in Nn+1(R) from A0 ∈ Nn+1(R). Consequently An
1 ∈
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Nn+1(R) and so we get A1 ∈ Nn+1(R). We proceed by induction on i =
0, 1, . . . ,m − 1. In

∑
s1+···+sn=in As1As2 · · ·Asn

, any term (except An
i ) con-

tains Aj with j < i as a factor, and so it is contained in Nn+1(R) by the
induction hypothesis. Consequently An

i ∈ Nn+1(R) and then Ai ∈ Nn+1(R).
Therefrom we have

a(i)11 = a(i)22 = · · · = a(i)(n+1)(n+1) = 0

for i = 0, 1, . . . , m and it follows that

As1As2 · · ·Asn
= (a(s1)12a(s2)23 · · · a(sn)n(n+1))E1(n+1)

for any choice of si’s. This result implies the system of equations
∑

s1+s2+···+sn=k

a(s1)12a(s2)23 · · · a(sn)n(n+1) = 0 for k = 0, 1, . . . , mn.

If we multiply the equation
∑

s1+s2+···+sn=1 a(s1)12a(s2)23 · · · a(sn)n(n+1) = 0
on the right side by a(0)12 · · · a(0)(i−1)ia(0)(i+1)(i+2) · · · a(0)n(n+1), then from
a(0)12 · · · a(0)n(n+1) = 0 and Lemma 1.1(1) we obtain

(a(0)12 · · · a(0)(i−1)ia(1)i(i+1)a(0)(i+1)(i+2) · · · a(0)n(n+1))

(a(0)12 · · · a(0)(i−1)ia(0)(i+1)(i+2) · · · a(0)n(n+1)) = 0

for i = 1, . . . , n since every other term contains a(0)i(i+1) for i = 1, 2, . . . , n as
factors. It then follows that

(a(0)12 · · · a(0)(i−1)ia(1)i(i+1)a(0)(i+1)(i+2) · · · a(0)n(n+1))2 = 0

by Lemma 1.1(1) and then

a(0)12 · · · a(0)(i−1)ia(1)i(i+1)a(0)(i+1)(i+2) · · · a(0)n(n+1) = 0.

We proceed by induction on k = 0, 1, . . . , mn−1. Let v be maximal in the set of
si’s satisfying s1+s2+· · ·+sn =k. Consider a term a(s1)12a(s2)23· · · a(sn)n(n+1)

with si = v and s1 + s2 + · · ·+ sn = k. Note that not all sj ’s are equal. Mul-
tiplying

∑
s1+s2+···+sn=k a(s1)12a(s2)23 · · · a(sn)n(n+1) = 0 on the right side

by
a(s1)12 · · · a(si−1)(i−1)ia(si+1)(i+1)(i+2) · · · a(sn)n(n+1),

then we have
(a(s1)12 · · · a(si−1)(i−1)ia(si)i(i+1)a(si+1)(i+1)(i+2) · · · a(sn)n(n+1))

(a(s1)12 · · · a(si−1)(i−1)ia(si+1)(i+1)(i+2) · · · a(sn)n(n+1)) = 0

by the induction hypothesis and Lemma 1.1(1) since every other term (after
multiplying) contains a(t1)12, . . . , a(tn)n(n+1), with t1 + · · · + tn ≤ k − 1, as
factors. Thus we have

(a(s1)12 · · · a(si−1)(i−1)ia(si)i(i+1)a(si+1)(i+1)(i+2) · · · a(sn)n(n+1))2 = 0

by Lemma 1.1(1), entailing a(s1)12 · · · a(sn)n(n+1) = 0. Next take such v in the
remaining terms and apply the same computation method. Proceeding in this
manner we finally get to a(u1)12 a(u2)23 · · · a(un)n(n+1) = 0 for any choice of
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ui’s such that u1 + u2 + · · ·+ un = k and not all ui’s are equal. In this situa-
tion, if k is divisible by n, then we have a( k

n )12a( k
n )23 · · · a( k

n )n(n+1) = 0 as a
consequence. Thus all terms in

∑
s1+s2+···+sn=k a(s1)12a(s2)23 · · · a(sn)n(n+1)

are zero, and consequently a(s1)12a(s2)23 · · · a(sn)n(n+1) = 0 for any k ∈
{1, 2, . . . ,mn− 1} and any choice of si’s with s1 + s2 + · · ·+ sn = k.

Seeing that a(s1)12 · · · a(sn)n(n+1) = 0 is equivalent to As1 · · ·Asn
= 0, we

get As1 · · ·Asn
= 0 for any k ∈ {0, 1, 2, . . . , mn} and any choice of si’s with

s1 + · · ·+ sn = k. Therefore Un+1(R) is n-semi-Armendariz.
(3)⇒(1): Assume on the contrary that there is 0 6= a ∈ R with a2 = 0.

Let A = (aij) ∈ Nn(R) with ai(i+1) = 1 for all i and elsewhere zero, and
B = (bij) ∈ Un(R) with b11 = a, bnn = −a and elsewhere zero. Then we have
the following computation:

(†) ABA = BAhB = B2 = 0, An−kB = (−a)Ekn, BAk = aE1(k+1)

for k = 1, . . . , n− 1 and all h. Consider f(x) = A + Bx ∈ Un(R)[x]. Then

f(x)n = (An−1B + BAn−1)x = ((−a)E1n + aE1n)x = 0

by (†) but An−1B, BAn−1 are both nonzero. Thus Un(R) is not n-semi-
Armendariz, a contradiction.

(2)⇒(3) is obtained from Lemma 1.1(2) and the proofs of (1)⇒(4)⇒(5)⇒(1)
are similar to the case of Un(R). ¤

By Theorem 1.2 and Lemma 1.1(2),(5) we get the following.

Corollary 1.3. A ring R is reduced if and only if U3(R) is semi-Armendariz
if and only if U2(R) is semi-Armendariz if and only if D3(R) is Armendariz if
and only if D2(R) is Armendariz.

Proof. Let R be reduced. Then by Theorem 1.2, Uk(R) is (k − 1)-semi-
Armendariz for k ≥ 3. Since Uk(R) is a subring of Uk+1(R), Uk(R) is `-semi-
Armendariz for all ` ≥ k − 1 by Lemma 1.1(2), entailing that U3(R) is semi-
Armendariz. It then by Lemma 1.1(2) follows that if U3(R) is semi-Armendariz,
then so is U2(R). Remaining directions are obtained from Lemma 1.1(2),
(5). ¤

Actually let U2(R) be semi-Armendariz and assume on the contrary that
there is 0 6= a ∈ R with a2 = 0. Consider A = ( 0 1

0 0 ) and B =
(

a 0
0 −a

)
in U2(R).

Then A2 = B2 = 0 and AB + BA = 0. So letting f(x) = A + Bx ∈ U2(R)[x]
we get f(x)2 = 0, but AB and BA are both nonzero. Thus U2(R) is not
semi-Armendariz, a contradiction.

If D2(R) is Armendariz, then R is Armendariz (hence semi-Armendariz) by
Lemma 1.1(2) or Corollary 1.3. In the following we see a non-semi-Armendariz
D2(R) when the given ring R is Armendariz but not reduced.
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Example 1.4. Let Z2 be the ring of integers modulo 2. Then R = D3(Z2) is
an Armendariz ring by Corollary 1.3. Let S = {( A B

0 A ) | A,B ∈ R}. Consider

f(x) = ( C 0
0 C ) + ( 0 D

0 0 )x with C =
(

0 0 1
0 0 0
0 0 0

)
and D =

(
1 0 0
0 1 0
0 0 1

)

in S[x]. Then f(x)2 = 0, but ( C 0
0 C )( 0 D

0 0 ) 6= 0. Thus S is not 2-semi-Armendariz
and so not semi-Armendariz.

From Theorem 1.2 one may ask whether a ring R is reduced when Dn(R)
is n-semi-Armendariz. We do not know the answer, but have an affirmative
situation when the characteristic of given rings are n ≥ 2.

Proposition 1.5. Let R be a ring of characteristic n ≥ 2. Then R is reduced
if and only if Dn(R) is n-semi-Armendariz.

Proof. It suffices, by Theorem 1.2 and Lemma 1.1(2), to show that R is reduced
when Dn(R) is n-semi-Armendariz. Assume on the contrary that there is
0 6= a ∈ R with a2 = 0. Consider f(x) = A+Bx in Dn(R)[x] where A = (aij) ∈
Nn(R) with ai(i+1) = 1 for all i and elsewhere zero, and B = (bij) ∈ Dn(R) with
bii = a and elsewhere zero. Then An = B2 = 0 and AB = BA, so that f(x)n =
nAn−1Bx = naE1nx = 0 because R is of characteristic n. But An−1B =
aE1n 6= 0 and so Dn(R) is not n-semi-Armendariz, a contradiction. ¤

Also from Theorem 1.2, one may conjecture that Un+2(R) is n-semi-Armend-
ariz over a reduced ring R. However there exists a counterexample as follows.

Example 1.6. Consider Un+2(R) (n ≥ 3) over any ring R and set

A = E12 + · · ·+ E(n−2)(n−1) + E(n−1)(n+1) + En(n+2)

and
B = E(n−1)n + E(n−1)(n+1) + En(n+2) − E(n+1)(n+2)

in Nn+2(R). Then we have the following computation:

AB = E(n−2)n + E(n−2)(n+1) − E(n−1)(n+2), BA = E(n−1)(n+2),

B2 = BA2 = BAB = 0,

AkBA = E(n−k−1)(n+2) 6= 0 for k = 1, . . . , n− 2,

AtB = E(n−t−1)n + E(n−t−1)(n+1) − E(n−t)(n+2) 6= 0 for t = 1, . . . , n− 2,

An−1B = −E1(n+2).

Thus we get

(A + Bx)n = (An−2BA + An−1B)x = (E1(n+2) + (−E1(n+2)))x = 0.

However Un+2(R) is not n-semi-Armendariz from An−2BA 6= 0 and An−1B 6=
0.
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By Lemma 1.1(2), Theorem 1.2 and Example 1.6 we now can say that

m-semi-Armendariz rings need not be n-semi-Armendariz for m ≥ n + 1.

For, assuming that m-semi-Armendariz rings are n-semi-Armendariz for some
m ≥ n + 1, then Un+2(R) is n-semi-Armendariz by Lemma 1.1(2) and Theo-
rem 1.2 over any reduced ring R, a contradiction to Example 1.6.

Next conversely one may ask whether n-semi-Armendariz rings are (n +
1)-semi-Armendariz. However the answer is also negative by the following
example.

Example 1.7. Consider a positive integer v ≥ 3 with the primary decomposi-
tion v = pr1

1 · · · prα
α , where pi’s are distinct prime numbers and ri’s are positive

integers. Put w = p1 · · · pα.
Let Zw be the ring of integers modulo w, and Zw[x, y] be the polynomial

ring with commuting indeterminates x, y over Zw. Note that Zw is reduced
(hence so are the polynomial rings over Zw). Set R = Zw[x, y]/I, where I is
the ideal of Zw[x, y] generated by xv, x2y2 and yv. We will show that R is
(v − 1)-semi-Armendariz but not v-semi-Armendariz. For simplicity, we use x
and y for x + I and y + I, respectively. Next let R[t] be the polynomial ring
with an indeterminate t over R.

Since the characteristic of R is w and w divides v, we have (x + yt)v =
xv + vxv−1y + vxyv−1 + yvtv = 0. But xv−1y 6= 0, so that R is not v-semi-
Armendariz.

Now put (f0 + f1t + · · ·+ fmtm)v−1 = 0 in R[t] with

fi = ai0 + ai1x + · · ·+ ai(v−1)x
v−1 + bi1y + · · ·+ bi(v−1)y

v−1

+ ci1xy + · · ·+ ci(v−1)x
v−1y + di2xy2 + · · ·+ di(v−1)xyv−1

for i = 0, 1, . . . , m. Then we can convert (f0 + f1t + · · ·+ fmtm)v−1 = 0 into

(g0 + g1x + · · ·+ gv−1x
v−1 + h1y + · · ·+ hv−1y

v−1

+ k1xy + · · ·+ kv−1x
v−1y + q2xy2 + · · ·+ qv−1xyv−1)v−1 = 0

with gj =
∑m

i=0 aijt
i, h` =

∑m
i=0 bi`t

i, k` =
∑m

i=0 ci`t
i and qs =

∑m
i=0 dist

i ∈
Zw[t] and for j = 0, . . . , v−1, ` = 1, . . . , v−1, s = 2, . . . , v−1. We concentrate
on the expansion of the preceding equality. Since Zw[t] is reduced, gv−1

0 = 0
implies g0 = 0. In the coefficients of xv−1 (resp. yv−1) any term except gv−1

1

(resp. hv−1
1 ) contains g0 as a factor, so that gv−1

1 = hv−1
1 = 0; hence g1 =

h1 = 0 since Zw[t] is reduced. Consequently each monomial occurring in fi (for
i = 0, 1, . . . ,m) has degree ≥ 2. Let fσ1fσ2 · · · fσv−1 be any product of (v− 1)-
number of fσi ’s taken in {f0, f1, . . . , fm}. Notice that any term in the expansion
of fσ1fσ2 · · · fσv−1 contains the product of (v − 1)-number of monomials taken
in {x2, y2, xy} by the preceding result, so that fσ1fσ2 · · · fσv−1 = 0. Therefore
R is (v − 1)-semi-Armendairz.
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With the help of Example 1.7 we can also conclude that

n-semi-Armendariz rings need not be (n + 1)-semi-Armendariz,

letting n + 1 = pr1
1 · · · prα

α .
It is also natural to ask whether Theorem 1.2 holds for the full matrix ring

case. However the following answers negatively.

Example 1.8. Let S be any ring and R = Matn(S). We first compute the
cases of n = 2, 3. Take

f(x) =
(

0 1
0 0

)
+

(
1 0
0 −1

)
x +

(
0 0
−1 0

)
x2 ∈ Mat2(S)[x].

Then f(x)2 = 0. But f(x) /∈ N(R)[x] and so by Lemma 1.1(7) Mat2(S) is not
2-semi-Armendariz.

Take

f(x) =




0 1 0
0 0 1
0 0 0


 +




0 0 0
1 0 0
0 −1 0


 x ∈ Mat3(S)[x] and g(x) = f(x)2.

Then we have

f(x)3 = 0, g(x) =




0 0 1
0 0 0
0 0 0


+




1 0 0
0 0 0
0 0 −1


 x+




0 0 0
0 0 0
−1 0 0


x2, g(x)2 = 0.

But 


0 1 0
0 0 1
0 0 0




2 


0 0 0
1 0 0
0 −1 0


 = −E12 and




1 0 0
0 0 0
0 0 −1




2

are both nonzero. So Mat3(S) is neither 2-semi-Armendariz (by g(x) and
Lemma 1.1(7)) nor 3-semi-Armendariz (by f(x)).

Next we consider the general case of n ≥ 4. Consider g(x) = A + Bx ∈ R[x]
with

A = E12 + E23 + · · ·+ E(n−2)(n−1) + E(n−1)n and B = E(n−1)1 + (−En2).

We first show g(x)n = 0. Use φ(s,t) to denote the sum of all products of s-
number of A’s and t-number of B’s. Then we have (A+Bx)n =

∑n
i=0 φ(n−i,i)x

i.
Note that

(∗) φ(n,0) = An = 0 and BA`B = 0 for ` = 0, 1, . . . , n− 4.

Setting fk = An−k−1BAk to compute φ(n−1,1), we have

f0 = −E12,

fk = Ek(k+1) + (−E(k+1)(k+2)) (for k = 1, 2, . . . , n− 2) and
fn−1 = E(n−1)n.

So φ(n−1,1) =
∑n−1

i=0 fi = 0. Next by (∗), φ(n−2,2) = BAn−3BA + BAn−2B +
ABAn−3B = (−En2) + (E(n−1)1 + En2) + (−E(n−1)1) = 0. In case of φ(n−k,k)
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(k ≥ 3), every term contains B2 or BAhB (h ≤ n − 4), so that φ(n−k,k)=0
for all k ≥ 3 by (∗). Therefore g(x)n = (A + Bx)n =

∑n
i=0 φ(n−i,i)x

i = 0 but
An−1B = −E12 6= 0, entailing that R is not n-semi-Armendariz.

2. Properties and more examples

In this section we examine the interesting properties of the class of n-semi-
Armendariz rings, finding various kinds of examples of n-semi-Armendariz
rings. Use X to denote a nonempty set of commuting indeterminates over
rings and let R[X] be the polynomial ring with X over a ring R.

Theorem 2.1. (1) A ring R is n-semi-Armendariz if and only if so is R[X].
(2) A ring R is semi-Armendariz if and only if so is R[X].
(3) If a ring R is semi-Armendariz, then N(R[X]) ⊆ N(R)[X].

Proof. (1) It suffices by Lemma 1.1(2) to prove that R[x] is n-semi-Armendariz
if so is R. Suppose that R is n-semi-Armendariz for a positive integer n ≥ 2
and let f(T ) = f0 + f1T + · · ·+ fmTm ∈ R[x][T ] with f(T )n = 0, where fi =∑ki

j=0 aijx
j in R[x] for i = 0, 1, . . . , m. We apply the proof of [1, Theorem 2],

letting k = k0+k1+· · ·+km. Then f(xk) = f0+f1x
k +· · ·+fmxkm ∈ R[x] and

the set of coefficients of the fi’s equals the set of coefficients of f(xk). Since
f(T )n = 0 and x commutes with elements of R, f(xk)n = 0 in R[x]. Since R is
n-semi-Armendariz, ai1ai2 · · · ain = 0 for any choice of aij ’s with j = 1, . . . , n.
Thus fs1fs2 · · · fsn = 0 for any choice of fs`

’s in {f0, f1, . . . , fm}.
Next letting g ∈ R[X] with gn = 0, there is a finite subset X0 of X such

that g ∈ R[X0]; hence it suffices to consider the case of X being finite. Then
the induction enables us to decide that R[X0] is also n-semi-Armendariz, with
the help of the result above. Thus R[X] is n-semi-Armendariz.

(2) is obtained from (1).
(3) Let R be a semi-Armendariz ring. Letting f ∈ N(R[X]), there is a finite

subset X0 of X such that f ∈ N(R[X0]), say X0 = {x1, . . . , xk}. N(R[x1]) ⊆
N(R)[x1] by Lemma 1.1(7). R[x1] and R[x1, x2] are semi-Armendariz by (2)
and so Lemma 1.1(7) gives

N(R[x1, x2]) = N(R[x1][x2]) ⊆ N(R[x1])[x2] ⊆ N(R)[x1][x2] = N(R)[x1, x2].

Inductively we can get N(R[X0]) ⊆ N(R)[X0], entailing N(R[X]) ⊆ N(R)[X].
¤

There can be a natural conjecture that R is an n-semi-Armendariz ring if
R/I and I are n-semi-Armendariz for a nonzero proper ideal I of R, where I
is considered as an n-semi-Armendariz ring without identity. However there is
a counterexample as in the following. Let R be an algebra over a commutative
ring S. The Dorroh extension of R by S, written by R⊕D S, is the ring R⊕S
with operations (r1, s1) + (r2, s2) = (r1 + r2, s1 + s2) and (r1, s1)(r2, s2) =
(r1r2 + s1r2 + s2r1, s1s2) for ri ∈ R and si ∈ S.
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Example 2.2. Let D be the Dorroh extension
(

0 Zm
0 0

)⊕DZm, where Zm is the
ring of integers modulo m and the exponents of distinct primes in the primary
decomposition of m are all 1. Then Zm is reduced. Consider R = Un(D) for
n ≥ 2. Then, by Theorem 1.2, R is not n-semi-Armendariz since D is not
reduced. Set

I = Un

((
0 Zm

0 0

)
⊕D 0

)
.

Then I is an ideal of R such that R
I
∼= Un(Zm). So R/I is n-semi-Armendariz

by Theorem 1.2 and I is n-semi-Armendariz from In = 0.

But we have an affirmative answer to the preceding conjecture, taking a
stronger condition “I is reduced” instead of the one “I is n-semi-Armendariz”.

Theorem 2.3. For a ring R and a positive integer n ≥ 2 suppose that R/I is
an n-semi-Armendariz ring for some ideal I of R. If I is reduced, then R is
n-semi-Armendariz.

Proof. From the condition that I is reduced, we first have bIa ⊆ I, (bIa)2 = 0,
and bIa = 0 whenever ab = 0 for a, b ∈ R. Applying this result we also get
aI1aI2a · · · aIn−1a = 0 when an = 0 for a ∈ R and some positive integer n ≥ 2,
where Ik = I for all k = 1, 2, . . . n − 1. For, an = 0 implies an−1Ia = 0, and
then we have aIaIan−2 = 0, and so on.

Let f(x) =
∑m

i=0 aix
i ∈ R[x] such that f(x)n = 0 for a positive integer

n ≥ 2. R/I is n-semi-Armendariz by hypothesis and so we have

(1) ai1ai2 · · · ain ∈ I

for all aij ’s in {a0, a1, . . . , am}, where j = 1, . . . , n. If m = 0 we are done, and
so assume m ≥ 1. We proceed by induction on m.

From f(x)n = 0, we have an
0 = 0 and so

(2) a0I1a0I2a0 · · · a0In−1a0 = 0.

Let as1as2 · · · asn be a product, in a term in f(x)n, containing a0; say ast = a0.
Then

(as1as2 · · · asn)2n−1 ∈ (as1 · · · ast−1)(a0I1a0I2a0 · · · a0In−1a0)(ast+1 · · · asn)

by (1) and so (as1as2 · · · asn)2n−1 = 0 by (2). But I is reduced and so
as1as2 · · · asn = 0. Consequently we get (

∑m
i=1 aix

i)n = 0 and moreover
(
∑m−1

i=0 ai+1x
i)n = 0. Now, by the induction hypothesis, ai1ai2 · · · ain = 0

for all aij ’s in {a1, . . . , am}, where j = 1, . . . , n. Consequently we obtain
ai1ai2 · · · ain = 0 for all aij ’s in {a0, a1, . . . , am}, where j = 1, . . . , n. Therefore
R is n-semi-Armendariz. ¤

However the n-semi-Armendarizness need not be preserved by factor rings.
In Example 1.7, Zw[x, y] is reduced (hence v-semi-Armendariz) but

Zw[x, y]/(Rxv + Rx2y2 + Ryv)

is not v-semi-Armendariz.



A STRUCTURE ON COEFFICIENTS OF NILPOTENT POLYNOMIALS 729

Armendariz rings are abelian by the proof of [1, Theorem 6], but semi-
Armendariz rings need not be abelian as can be seen by the 2 by 2 upper trian-
gular matrix ring over a reduced ring. Since reduced rings are semiprime and
Armendariz, one may ask whether abelian semiprime rings are semi-Armend-
ariz. In a similar point of view, one may also conjecture that commutative
rings are semi-Armendariz. However the following answers them negatively.

Example 2.4. (1) Let S be a reduced ring and n be a positive integer.
Next consider D2n(S) over S and let Rn = D2n(S). Each Rn is a 2n-semi-
Armendariz ring by Theorem 1.2 and Lemma 1.1(2). Define a map σ : Rn →
Rn+1 by A 7→ ( A 0

0 A ) . Then Rn can be considered as a subring of Rn+1 via σ
(i.e., A = σ(A) for A ∈ Rn). Notice that D = {Rn, σnm}, with σnm = σm−n

whenever n ≤ m, is a direct system over I = {1, 2, . . .}. Set R = lim−→Rn be the
direct limit of D, where n goes to infinity. With the help of Example 1.6, there
exists a positive integer N such that Rn is not N -semi-Armendariz for some n;
hence R is not semi-Armendariz. But every nonzero idempotent in Rn is such
that the diagonal is an idempotent in S and elsewhere is zero by [5, Lemma 2].
Thus R is abelian. Next letting S be a domain, we get that R is prime by [7,
Proposition 1.3].

(2) Let F be the Galois field of order 2n, where n is any positive integer
and F [x, y] be the polynomial ring with commuting indeterminates x, y over
F . Next consider R = F [x,y]

(x2,y2) with (x2, y2) the ideal of S generated by x2 and
y2. Then R is commutative and (x + yT )2 = 0, where T is an indeterminate
over R. But xy 6= 0 implies that R is not semi-Armendariz.

For given an abelian ring R the following may be a useful method to check
whether R is n-semi-Armendariz, if it is available.

Proposition 2.5. For an abelian ring R the following conditions are equivalent:
(1) R is n-semi-Armendariz;
(2) eR and (1− e)R are n-semi-Armendariz for every idempotent e of R;
(3) eR and (1− e)R are n-semi-Armendariz for some idempotent e of R.

Proof. (1)⇒(2) is obtained by Lemma 1.1(2) since eR and (1−e)R are subrings
of R. (2)⇒(3) is obvious.

(3)⇒(1): Suppose that eR and (1 − e)R are n-semi-Armendariz for some
idempotent e of R, and consider f(x) =

∑m
i=0 aix

i ∈ R[x] with f(x)n = 0
for a positive integer n ≥ 2. Next let f1(x) = ef(x) ∈ eR[x] and f2(x) =
(1−e)f(x) ∈ (1−e)R[x]. Since R is abelian, f1(x)n = ef(x)n = 0 and f2(x)n =
(1 − e)f(x)n = 0. By the condition (3), we obtain that eas1as2 · · · asn =
eas1eas2e · · · easne = 0 and (1 − e)as1as2 · · · asn = (1 − e)as1(1 − e)as2(1 −
e) · · · (1−e)asn(1−e) = 0 for all asj ’s in {a0, a1, . . . , am}, where j = 1, 2, . . . , n;
hence every as1as2 · · · asn = 0, concluding that R is n-semi-Armendariz. ¤

An element a in a ring R is called regular if a is neither left nor right zero-
divisor. [−] means the Gauss function.
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Proposition 2.6. Let R be a ring and J be an ideal of R such that every
element in R\J is regular and Jn = 0. Then R is `-semi-Armendariz for
` ≥ n.

Proof. We use freely the condition that every element in R\J is regular. Let
f(x) =

∑m
i=0 aix

i ∈ R[x] and suppose f(x)n = 0. Then an
0 = 0 = an

m, so that
a0, am ∈ J .

In the coefficient · · · + an
1 + · · · = 0 of xn, every term (except an

1 ) contains
a0 and thus is contained in J , entailing an

1 ∈ J . We then get a1 ∈ J . We
proceed by induction on k = 0, 1, . . . , [m

2 ]. In the coefficient · · ·+ an
k + · · · = 0

of xkn, every term (except an
k ) contains ah with h < k and so is contained in

J , entailing an
k ∈ J . Thus ak ∈ J . The computation, based on am ∈ J , from

am to a[ m
2 ]+1 is similar. Therefore ai ∈ J for i = 0, . . . ,m. Now since Jn = 0,

we have that ai1ai2 · · · ain
= 0 for any choice of aij

’s in {a0, . . . , am}, where
j = 1, . . . , n, concluding that R is n-semi-Armendariz.

Next since J` = 0 for every ` ≥ n, we obtain that R is `-semi-Armendariz
by the same computation as above. ¤

Any local ring R with J(R)n = 0 is `-semi-Armendariz for ` ≥ n by Propo-
sition 2.6, where J(R) is the Jacobson radical of R.

Corollary 2.7. Let p be a prime and Zp be the ring of integers modulo p.
Consider

R =
(

0 Zp

0 0

)
⊕D Zp.

Then Dn(R) is m-semi-Armendariz for m ≥ n + 1.

Proof. Let I =
(

0 Zp

0 0

)⊕D 0 and J = {(aij) ∈ Dn(R) | aii ∈ I}. Since Dn(R)/J

is isomorphic to Zp and Jn+1 = 0, Dn(R) is local. Thus every element in
Dn(R)\J is regular and then Dn(R) is m-semi-Armendariz (for m ≥ n + 1) by
Proposition 2.6. ¤

In the following we have a similar result to [1, Theorem 5].

Proposition 2.8. Let h, k, m be integers ≥ 2 such that h divides k and k
divides m. Suppose that R is a ring of characteristic h. Then R is reduced if
and only if R[x]/(xm) is semi-Armendariz, where (xm) = R[x]xm.

Proof. If R is reduced, then R[x]/(xm) is Armendariz by [1, Theorem 5]. Con-
versely let R[x]/(xm) be semi-Armendariz and assume on the contrary that
there exists 0 6= r ∈ R with r2 = 0. We use x̄ for x + (xm). If h = k = m = 2
or h = k = m = 3, then (r + x̄)k = 0 and rx̄k−1 6= 0; hence R[x]/(xm) is
not k-semi-Armendariz, a contradiction. Suppose m ≥ 4 and k ≤ m − 1. Say
m = `k. Since R is of characteristic h,

(r+ x̄` + x̄m−1)k = rk + · · ·+kr(x̄` + x̄m−1)k−1 +(x̄` + x̄m−1)k = x̄`k = x̄m = 0.

But rx̄`(k−1) 6= 0 and so R[x]/(xm) is not k-semi-Armendariz, a contradiction.
¤
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3. Commutative n-semi-Armendariz rings

We observe in this section the structure of commutative n-semi-Armendariz
rings, applying the arguments in [1]. Let R be a commutative ring and f ∈ R[x].
Let Af be the content of f , i.e., the ideal of R generated by the coefficients of
f . It is obvious that Afg ⊆ AfAg for f, g ∈ R[x]. Note that R is Armendariz
if and only if for f, g ∈ R[x] with Afg = 0 we have AfAg = 0. The following is
obtained from the definition.

Lemma 3.1. A commutative ring R is n-semi-Armendariz if and only if for
f ∈ R[x] with Afn = 0 we have (Af )n = 0.

It is shown by [1, Theorem 8 and Corollary 9] that Afg = AfAg for all
f, g ∈ R[X] if and only if for f1, . . . , fn ∈ R[X] we get Af1···fn = Af1 · · ·Afn if
and only if every homomorphic image of R is Armendariz. By [14, Theorem 2.2]
every homomorphic image of a PID is Armendariz. In the following we see
similar results for n-semi-Armendariz rings.

Theorem 3.2. (1) Let R be a commutative ring. Then Afn = (Af )n for each
f ∈ R[x] if and only if every homomorphic image of R is n-semi-Armendariz.

(2) Let R be a ring and S be a multiplicative monoid in R consisting of
central regular elements. Then R is n-semi-Armendariz if and only if so is
S−1R.

Proof. (1) Assume that Afn = (Af )n for each f ∈ R[x]. Then every factor
ring R̄ of R also satisfies this condition, so that R̄ is n-semi-Armendariz by
Lemma 3.1. Conversely assume that every homomorphic image of R is n-semi-
Armendariz. Consider S = R

Afn
[x] for f ∈ R[x]. Then (f̄)n = 0 in S, and since

R/Afn is n-semi-Armendariz we have (Af )n/Afn = 0, entailing (Af )n = Afn .
(2) It suffices to prove by Lemma 1.1(2) that S−1R is n-semi-Armendariz

when so is R. Suppose that R is n-semi-Armendariz. Consider

f(x) =
m∑

i=0

αix
i ∈ S−1R[x]

with f(x)n = 0. We can assume that αi = aiu
−1 with ai ∈ R for all i and

regular u ∈ S. Setting f1(x) =
∑m

i=0 aix
i, we have 0 = f(x)n = (f1(x)u−1)n =

f1(x)nu−n, entailing f1(x)n = 0. Since R is n-semi-Armendariz, ai1 · · · ain = 0
for any choice of aij ’s with j = 1, . . . , n; hence αi1 · · ·αin = ai1 · · · ainu−n = 0
for any choice of αij ’s with j = 1, . . . , n. Therefore S−1R is n-semi-Armendariz.

¤

About Theorem 3.2(1), there exist commutative reduced rings whose homo-
morphic images need not be n-semi-Armendariz as can be seen by Example 1.7.

For a commutative ring R let T (R) be the total quotient ring of R and
S be an overring of R (i.e., R ⊆ S ⊆ T (R)). The following is shown by
Theorem 3.2(2) and Lemma 1.1(2).
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Corollary 3.3. (1) Let R be a commutative ring and S be an overring of R.
Then R is n-semi-Armendariz if and only if S is n-semi-Armendariz if and
only if T (R) is n-semi-Armendariz.

(2) Let R be a commutative ring and P be a prime ideal of R such that R\P
contains no zero-divisors. Then R is n-semi-Armendariz if and only if so is
RP .

Let R be a commutative ring such that 0 is P -primary and P 2 = 0. Then
R is Armendariz by [1, Proposition 13]. We get a similar result for n-semi-
Armendariz rings in the following.

Proposition 3.4. Let R be a commutative ring and Q be an ideal of R such
that Q is P -primary and Pn ⊆ Q. Then R/Q and R[X]/Q[X] are `-semi-
Armendariz for ` ≥ n.

Proof. Let f =
∑m

i=0 aix
i ∈ R

Q [x] with fn = 0. Since Q is P -primary, Q[x]
is P [x]-primary in R[x] and so R[x]/P [x] is a commutative domain, entailing
f ∈ P [x]. Then ai ∈ P for all i, and so R/Q is n-semi-Armendariz since
Pn ⊆ Q. Also since P ` ⊆ Q for every ` ≥ n, we obtain that R/Q is `-
semi-Armendariz by the same computation as above. Next by Theorem 2.1(1)
R[X]/Q[X](∼= R

Q [X]) is `-semi-Armendariz. ¤

Example 3.5. Use (r) to denote the ideal of a ring R generated by r.
(1) Let Z be the ring of integers and p be a prime. Since (pn) (n ≥ 2) is

primary for (p) and (p)n = (pn), Z/(pn) is `-semi-Armendariz for ` ≥ n by
Proposition 3.4. This result is also shown by [14, Theorem 2.2].

(2) Let S = Z[x, y] be the polynomial ring with commuting indeterminates
x, y over Z. Since Q =(xn, yn, xiyj) (n ≥ 2 and i + j = n) is primary for (x, y)
and (x, y)n = Q, S/Q is `-semi-Armendariz for ` ≥ n by Proposition 3.4.
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