Browse > Article
http://dx.doi.org/10.4134/BKMS.b160160

AN ELABORATION OF ANNIHILATORS OF POLYNOMIALS  

Cheon, Jeoung Soo (Department of Mathematics Pusan National University)
Kim, Hong Kee (Department of Mathematics and RINS Gyeongsang National University)
Kim, Nam Kyun (Faculty of Liberal Arts and Sciences Hanbat National University)
Lee, Chang Ik (Department of Mathematics Pusan National University)
Lee, Yang (Department of Mathematics Pusan National University)
Sung, Hyo Jin (Department of Mathematics Pusan National University)
Publication Information
Bulletin of the Korean Mathematical Society / v.54, no.2, 2017 , pp. 521-541 More about this Journal
Abstract
In this note we elaborate first on well-known theorems for annihilators of polynomials over IFP rings by investigating the concrete shapes of nonzero constant annihilators. We consider next a generalization of IFP which preserves Abelian property, in relation with annihilators of polynomials, observing the basic structure of rings satisfying such condition.
Keywords
IFP ring; ${\pi}$-IFP ring; polynomial ring; constant annihilator of polynomial; Abelian ring; locally finite ring;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295.   DOI
2 L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies, pp. 71-73, (Perpignan, 1981), Bib. Nat., Paris, 1982.
3 P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141.   DOI
4 M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17.   DOI
5 L. H. Rowen, Ring Theory, Academic Press, Inc., San Diego, 1991.
6 G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60.   DOI
7 A. Smoktunowicz, Polynomial rings over nil rings need not be nil, J. Algebra 233 (2000), no. 2, 427-436.   DOI
8 G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), no. 17, 1709-1724.   DOI
9 R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140.   DOI
10 D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272.   DOI
11 E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473.   DOI
12 H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368.   DOI
13 K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noether-ian Rings, Cambridge University Press, Cambridge-New York-Port Chester-Melbourne-Sydney, 1989.
14 G. M. Bergman, Coproducts and some universal ring constructions, Trans. Amer. Math. Soc. 200 (1974), 33-88.   DOI
15 G. M. Bergman, Modules over coproducts of rings, Trans. Amer. Math. Soc. 200 (1974), 1-32.   DOI
16 V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615.   DOI
17 C.Y. Hong and T. K. Kwak, On minimal strongly prime ideals, Comm. Algebra 28 (2000), no. 10, 4867-4878.   DOI
18 C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), no. 1, 37-52.   DOI
19 C. Huh, N. K. Kim, and Y. Lee, Examples of strongly ${\pi}$-regular rings, J. Pure Appl. Algebra 189 (2004), no. 1-3, 195-210.   DOI
20 C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761.   DOI
21 Y. C. Jeon, H. K. Kim, Y. Lee, and J. S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), no. 1, 135-146.   DOI
22 N. K. Kim, K. H. Lee, and Y. Lee, Power series rings satisfying a zero divisor property, Comm. no. 1-3, Algebra 34 (2006), no. 6, 2205-2218.   DOI
23 G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123.   DOI
24 N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3 207-223.   DOI
25 J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.
26 J. Lambek, On the representations of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368.   DOI