AN ELABORATION OF ANNIHILATORS OF POLYNOMIALS |
Cheon, Jeoung Soo
(Department of Mathematics Pusan National University)
Kim, Hong Kee (Department of Mathematics and RINS Gyeongsang National University) Kim, Nam Kyun (Faculty of Liberal Arts and Sciences Hanbat National University) Lee, Chang Ik (Department of Mathematics Pusan National University) Lee, Yang (Department of Mathematics Pusan National University) Sung, Hyo Jin (Department of Mathematics Pusan National University) |
1 | N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295. DOI |
2 | L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies, pp. 71-73, (Perpignan, 1981), Bib. Nat., Paris, 1982. |
3 | P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141. DOI |
4 | M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. DOI |
5 | L. H. Rowen, Ring Theory, Academic Press, Inc., San Diego, 1991. |
6 | G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. DOI |
7 | A. Smoktunowicz, Polynomial rings over nil rings need not be nil, J. Algebra 233 (2000), no. 2, 427-436. DOI |
8 | G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), no. 17, 1709-1724. DOI |
9 | R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. DOI |
10 | D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. DOI |
11 | E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. DOI |
12 | H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. DOI |
13 | K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noether-ian Rings, Cambridge University Press, Cambridge-New York-Port Chester-Melbourne-Sydney, 1989. |
14 | G. M. Bergman, Coproducts and some universal ring constructions, Trans. Amer. Math. Soc. 200 (1974), 33-88. DOI |
15 | G. M. Bergman, Modules over coproducts of rings, Trans. Amer. Math. Soc. 200 (1974), 1-32. DOI |
16 | V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615. DOI |
17 | C.Y. Hong and T. K. Kwak, On minimal strongly prime ideals, Comm. Algebra 28 (2000), no. 10, 4867-4878. DOI |
18 | C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), no. 1, 37-52. DOI |
19 | C. Huh, N. K. Kim, and Y. Lee, Examples of strongly -regular rings, J. Pure Appl. Algebra 189 (2004), no. 1-3, 195-210. DOI |
20 | C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. DOI |
21 | Y. C. Jeon, H. K. Kim, Y. Lee, and J. S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), no. 1, 135-146. DOI |
22 | N. K. Kim, K. H. Lee, and Y. Lee, Power series rings satisfying a zero divisor property, Comm. no. 1-3, Algebra 34 (2006), no. 6, 2205-2218. DOI |
23 | G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123. DOI |
24 | N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3 207-223. DOI |
25 | J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966. |
26 | J. Lambek, On the representations of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. DOI |