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AN ELABORATION OF ANNIHILATORS OF POLYNOMIALS

Jeoung Soo Cheon, Hong Kee Kim, Nam Kyun Kim, Chang Ik Lee,

Yang Lee, and Hyo Jin Sung

Abstract. In this note we elaborate first on well-known theorems for
annihilators of polynomials over IFP rings by investigating the concrete
shapes of nonzero constant annihilators. We consider next a generaliza-
tion of IFP which preserves Abelian property, in relation with annihila-

tors of polynomials, observing the basic structure of rings satisfying such
condition.

1. Annihilators of polynomials on IFP rings

IFP and Abelian ring property have important roles in noncommutative ring
theory and module theory. We continue in this section the studies of Nielsen [22]
and Shin [25], being concerned with the constant annihilators of polynomials,
and introduce a generalization of IFP which preserves Abelian property.

Throughout this note every ring is an associative ring with identity unless
otherwise stated. Given a ring R, let N(R), N∗(R), and J(R) denote the set
of all nilpotent elements, the prime radical, and the Jacobson radical in R,
respectively. The polynomial (resp., power series) ring with an indeterminate
x over R is denoted by R[x] (resp., R[[x]]). The right annihilator of S in R is
denoted by rR(S), and by rR(a) when S = {a}. The degree of a polynomial
f(x) is denoted by deg f(x). The n by n full (resp. upper triangular) matrix
ring over R is denoted by Matn(R) (resp. Un(R)), and denote by eij the matrix
with (i, j)-entry 1 and elsewhere zero. Z denotes the ring of integers, and Zn

denotes the ring of integers modulo n.
A ring R (possibly without identity) is called reduced if N(R) = 0. A well-

known property that unifies the commutativity and the reduced condition is
the insertion-of-factors-property. Due to Bell [4], a ring R (possibly without
identity) is called to satisfy the insertion-of-factors-property (simply, an IFP

ring) if ab = 0 implies aRb = 0 for a, b ∈ R. Narbonne [21] and Shin [25] used
the terms semicommutative and SI for the IFP, respectively. Commutative
rings are clearly IFP, and any reduced ring is IFP by a simple computation.
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There exist many non-reduced commutative rings (e.g., Znl for n, l ≥ 2), and
many noncommutative reduced rings (e.g., direct products of noncommutative
domains). A ring is usually called Abelian if each idempotent is central. A
simple computation yields that IFP rings are Abelian. It is also easily checked
that N(R) = N∗(R) for an IFP ring R.

In the following arguments, we study annihilators of polynomials by elabo-
rating upon Camillo and Nielsen’s interesting theorems for zero-dividing poly-
nomials on IFP rings. Recall the following two results:

[7, Theorem 5.5] (Camillo and Nielsen) Let R be an IFP ring, and let f(x),
g(x) ∈ R[x] be non-zero polynomials satisfying f(x)g(x) = 0. If rR[x](f(x)) ∩
R = (0), then deg(f(x)) > 2.

[22, Theorem 4] (Nielsen) Let R be an IFP ring. Given f(x)g(x) = 0 with
f(x), g(x) 6= 0 then (at least) one of rR[x](f(x)) ∩ R or rR[x](g(x)) ∩ R is
nonzero.

This work is able to give alternate ways to construct elements in the anni-
hilators as we see in Theorems 1.1, 1.2 and 1.4 to follow. We demonstrate the
differences between these methods via examples.

Now let R be an IFP ring, and f(x), g(x) ∈ R[x] be nonzero polynomials
satisfying f(x)g(x) = 0. In this situation, Camillo and Nielsen showed that if
rR[x](f(x)) ∩R = 0 then deg f(x) > 2 in [7, Theorem 5.5]. We here elaborate
upon this theorem by finding nonzero elements in R contained in the right
annihilator of f(x) when the degree of f(x) is ≤ 2. The following computation
is done for the case of deg f(x) = 1.

Theorem 1.1. Let R be a ring, and 0 6= f(x), 0 6= g(x) ∈ R[x] be such that

f(x)g(x) = 0 and deg f(x) = 1. If R is IFP, then there exists 0 6= r ∈ R with

f(x)r = 0.

Proof. Let f(x) = a0 + a1x and g(x) = b0 + b1x+ · · ·+ bn−1x
n−1 + bnx

n with
a1 6= 0, bn 6= 0.

If n = 1, then it was proved by [7, Proposition 5.3]. So assume n ≥ 2.
From f(x)g(x) = 0, we get a0b0 = a0b1 + a1b0 = · · · = a0bn−1 + a1bn−2 =
a1bn−1 + a0bn = a1bn = 0.

If a0bn = 0, then f(x)bn = 0.
If a0bn 6= 0, then a1bn−1 6= 0. But a1bn = 0, and hence by IFP property we

get a1(a1bn−1+a0bn) = a21bn−1 = 0. Here if a0(a0bn) = 0, then f(x)(a0bn) = 0.
So suppose a0(a0bn) 6= 0. But we have an+1

0 bn = 0 by [7, Lemma 5.4], and so

there exists l > 1 such that al0bn 6= 0 and al+1
0 bn = 0. Then a0(a

l
0bn) = 0. We

also get a1(a
l
0bn) = 0 by IFP property. These yield f(x)(al0bn) = 0. �

The following computation is done for the case of deg f(x) = 2.

Theorem 1.2. Let R be a ring, and f(x) = a0+a1x+a2x
2, g(x) =

∑n
j=0 bjx

j ∈
R[x] be such that f(x)g(x) = 0 and a2 6= 0, bn 6= 0. If R is IFP, then there

exists 0 6= r ∈ R with f(x)r = 0.
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Proof. We will proceed by induction on n. We first compute the case of n = 1.
Let R be IFP and g(x) = b0 + b1x with f(x)g(x) = 0. From f(x)g(x) = 0,
we get a0b0 = 0, a0b1 + a1b0 = 0, a1b1 + a2b0 = 0, a2b1 = 0. If b0 = 0, then
f(x)b1 = 0. So assume b0 6= 0. We apply the proof of [7, Proposition 5.3 and
Theorem 5.5].

If a1b0 = a2b0 = 0, then f(x)b0 = 0.
If a1b0 = 0, a2b0 6= 0, then a0b1 = 0 and a1b1 6= 0. By IFP property,

a0(a1b1) = 0, a1(a1b1) = a1(−a2b0) = 0 and a2(a1b1) = 0, entailing f(x)a1b1 =
0.

If a1b0 6= 0, a2b0 = 0, then a0b1 6= 0 and a1b1 = 0. By IFP property,
a0(a0b1) = a0(−a1b0) = 0, a1(a0b1) = 0 and a2(a0b1) = 0.

If a1b0 6= 0, a2b0 6= 0, then a0b1 6= 0 and a1b1 6= 0. From f(x)g(x) = 0 we
have (a0 + a1 + a2)(b0 + b1) = 0. Here if b0 + b1 = 0, then f(x)b0(1 − x) = 0
and so f(x)b0 = 0. So we assume b0 + b1 6= 0. Then, by IFP property,
0 = (a0+a1+a2)a0(b0+b1) = (a0+a1+a2)a0b1 = a0(−a1b0)+a1a0b1+a2a0b1 =
a1a0b1, so f(x)(a0b1) = 0.

Suppose n ≥ 2. Note that g(x) = (x− 1)g′(x) + b for some 0 6= g′(x) ∈ R[x]
and b ∈ R. If b = g(1) = 0, then 0 = f(x)g(x) = f(x)g′(x)(x − 1) implies
f(x)g′(x) = 0. Since deg g′(x) < deg g(x), there exists 0 6= r ∈ R such that
f(x)r = 0 by the induction hypothesis. So assume b = b0+ · · ·+ bn = g(1) 6= 0.
We have 0 = f(1)g(1) = (a0 + a1 + a2)b, from f(x)g(x) = 0.

Let a1b = 0. We already have an+1
0 g(x) = 0 = an+1

2 g(x) (hence an+1
0 b = 0 =

an+1
2 b) by [7, Lemma 5.4]. So there exists h ≥ 1 such that ah0b = 0 and ah−1

0 b 6=
0. If a2(a

h−1
0 b) = 0, then f(x)(ah−1

0 b) = 0 by IFP property. If a2(a
h−1
0 b) 6= 0,

then there exists k ≥ 1 such that ak2(a
h−1
0 b) = 0 and ak−1

2 (ah−1
0 b) 6= 0 since

an+1
2 (ah−1

0 b) = 0 by IFP property. So f(x)(ak−1
2 ah−1

0 b) = 0 by IFP property.
Let a1b 6= 0. We have (a0 + a1 + a2)a1b = 0 by IFP property. Through a

similar process to the preceding computation, we can find s, t ≥ 1 such that
as0(a1b) = 0, as−1

0 (a1b) 6= 0, and at2(a
s−1
0 a1b) = 0, at−1

2 (as−1
0 a1b) 6= 0. This

yields

0 = (a0 + a1 + a2)(a
t−1
2 as−1

0 a1)b = a1(a
t−1
2 as−1

0 a1)b

with the help of IFP property. So we now have f(x)(at−1
2 as−1

0 a1b) = 0.
Therefore there exists nonzero r ∈ R such that f(x)r = 0 in any case. �

In [22, Section 3], Nielsen constructed an IFP ring R and found polynomials
f(x), g(x) ∈ R[x], with deg f(x) = 3, deg g(x) = 1, such as f(x)g(x) = 0
and there does not exists nonzero r ∈ R with f(x)r = 0. It is obvious that
rR[x](f(x)) = rR[x]((1 + xk)f(x)) for every k ≥ 1. So we can conclude that
given any h ≥ 3 and l ≥ 1, there exist f(x), g(x) ∈ R[x], with deg f(x) =
h, deg g(x) = l, such as f(x)g(x) = 0 and there does not exist nonzero r ∈ R

with f(x)r = 0, where R is the IFP ring in [22, Section 3].
We now construct a ring which we will use in later examples to demonstrate

the differences between our constructions and those in [7].
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Example 1.3. Let A = Z2〈α0, α1, α2, β0, β1, β2〉 be the free algebra generated
by noncommuting indeterminates α0, α1, α2, β0, β1, β2 over Z2. We apply the
ring construction and arguments in [15, Example 2.1]. Let B be the subalgebra
of A which consists of all polynomials with zero constant terms in A. Note
A = Z2 +B. Next consider an ideal I of A generated by

α0β0, α2β2, β
2
0 , β

2
1 , β

2
2 , α0β1 + α1β0, α1β2 + α2β1, α0β2 + α1β1 + α2β0,

α0rβ0, α2rβ2, β0rβ0, β1rβ1, β2rβ2,

and

(α0 + α1 + α2) (β0 + β1 + β2) , (α0 + α1 + α2) r (β0 + β1 + β2) , r1r2r3r4

with r, r1, r2, r3, r4 ∈ B.

Note B4 ⊆ I. Let R = A/I. First we prove that R is IFP. Each product
of indeterminates α0, α1, α2, β0, β1, β2 is called a monomial and we say that an
element of A is a monomial of degree n if it is a product of exactly n generators.
Let Hn be the set of all linear combinations of monomials of degree n over Z2.
Observe that Hn is finite for any n and that the ideal I of R is homogeneous
(i.e., if

∑s
i=1 ri ∈ I with ri ∈ Hi, then every ri is in I).

Claim 1. If u1v1 ∈ I with u1, v1 ∈ H1, then u1rv1 ∈ I for any r ∈ B.

Proof. By the definition of I we obtain the following cases:

(u1 = c1α0 + c2β0, v1 = β0), (u1 = d1α2 + d2β2, v1 = β2), (u1 = β1, v1 = β1),

or (u1 = α0 + α1 + α2, v1 = β0 + β1 + β2),

where c1, c2, d1, d2 ∈ Z2. So we complete the proof, using the definition of I
again. �

Claim 2. If uv ∈ I with u, v ∈ B, then urv ∈ I for any r ∈ B.

Proof. Observe that u = u1 + u2 + u3 + u4, v = v1 + v2 + v3 + v4 and r =
r1 + r2 + r3 + r4 for some u1, v1, r1 ∈ H1, u2, v2, r2 ∈ H2, u3, v3, r3 ∈ H3, and
some u4, v4, r4 ∈ I. Note that Hi ⊆ I for i ≥ 4. So urv = u1r1v1 + h for some
h ∈ I. uv ∈ I implies u1v1 ∈ I since I is homogeneous; hence u1r1v1 ∈ I by
Claim 1. Consequently urv ∈ I. �

Let y, z ∈ A with yz ∈ I and r ∈ A. Note that y = c + y′, z = d + z′ for
some c, d ∈ Z2 and some y′, z′ ∈ B. So yz = cd + cz′ + y′d + y′z′ ∈ I; hence
c = 0 or d = 0. Assume c = 0. Then y′d + y′z′ ∈ I. If d 6= 0, then y′ ∈ I

because I is homogeneous and d ∈ Z2, entailing y′z′ ∈ I. Moreover y′rz′ ∈ I

by Claim 2. Thus yrz = y′rd+ y′rz′ ∈ I. If d = 0, then y′z′ ∈ I, entailing that
y′rz′ ∈ I by Claim 2. Thus, yrz = y′rz′ ∈ I. The computation for the case of
d = 0 and c 6= 0 is similar. Therefore R is IFP.
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Next identify α0, α1, α2, β0, β1, β2 with their images in R for simplicity, and
consider nonzero polynomials f(x) = α0+α1x+α2x

2, g(x) = β0+β1x+β2x
2.

Then

f(x)g(x) = α0β0 + (α0β1 + α1β0)x+ (α0β2 + α1β1 + α2β0)x
2

+ (α1β2 + α2β1)x
3 + α2β2x

4 = 0.

We can find a nonzero constant right annihilator of f(x) by help of the proof of
Theorem 1.2. Say g(x) = (x− 1) g1(x)+β, where 0 6= g1(x) ∈ R[x] and β ∈ R.
Then β(= g(1)) = β0+β1+β2 6= 0, α1β 6= 0, and (α0 + α1 + α2)α1β = 0 (from
f(1)g(1) = 0) by IFP property. Thus, we consider two sequences {αs

0α1β | s ≥
1} and {αt

2α
s
0α1β | t ≥ 1, s ≥ 1}. Then

α2
0α1β = 0 6= α1

0α1β and α1
2α

1
0α1β = 0 6= α0

2α
1
0α1β.

Therefore we can find a nonzero element r = α0
2α

1
0α1β such that f(x)r = 0 by

help of the proof of Theorem 1.2.

McCoy proved in [20] that if two polynomials annihilate each other over a
commutative ring, then each polynomial has a nonzero annihilator in the base
ring. However Nielsen showed in [22, Section 3] that McCoy’s result need not
hold over IFP rings (of course noncommutative), and next proved the following
through [22, Lemmas 1, 3 and Theorem 4]. We here find another direct proof
of this result independently.

Theorem 1.4. (1) Let R be an IFP ring. Given f(x)g(x) = 0 with f(x), g(x) ∈
R[x], we have that rR[x](f(x)) ∩ R 6= 0 or rR[x](g(x)) ∩ R 6= 0. (Similarly, for

the left annihilators.)
(2) Let R be an IFP ring. Given f(x)g(x) = 0 with f(x), g(x) ∈ R[x], we

have that (at least) one of rR[x](f(x)) or rR[x](g(x)) contains a nonzero ideal

of R. (Similarly, for the left annihilators.)

Proof. (1) Let R be an IFP ring and 0 6= f(x) =
∑m

i=0 aix
i, 0 6= g(x) =

∑n
j=0 bjx

j ∈ R[x] such that f(x)g(x) = 0. For our purpose of the proof, we

can suppose a0, am, b0, bn ∈ R\{0} without loss of generality.
Now assume on the contrary that rR[x](f(x))∩R = 0 and rR[x](g(x))∩R = 0.

Since rR[x](f(x)) ∩R = 0 and bn 6= 0, f(x)bn 6= 0 and so we can find ak1 such
that ak1bn 6= 0. Next since rR[x](g(x)) ∩ R = 0 and ak1bn 6= 0, g(x)ak1bn 6= 0
and so we can find bk2 such that bk2ak1bn 6= 0. Note g(x)bk2ak1bn 6= 0. We
proceed alternatively in this manner. Then for any s ≥ 0 we can find

cs+1 = aks+1bks
· · · ak3bk2ak1bk0 6= 0

such that g(x)cs+1 6= 0, where bk0 = bn. From

f(x)g(x) =

m+n
∑

k=0

∑

i+j=k

aibjx
i+j = 0,
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we have the following equalities:

(1) a0b0 = 0,

(2) a0b1 + a1b0 = 0,

(3) asbk−s + as+1bk−s−1 + · · ·+ ak−t−1bt+1 + ak−tbt = 0,

(4) am−1bn + ambn−1 = 0,

(5) ambn = 0,

where 0 ≤ s, . . . , k − t ≤ m and 0 ≤ k − s, . . . , t ≤ n. Since R is IFP, we have
a0Rb0 = 0 from the equality (1). Multiplying the equality (2) by b0 on the
right side, we get a1b0b0 = 0 since a0Rb0 = 0, entailing a1b0a1b0 = 0 since R

is IFP. This yields a1b0, a0b1 ∈ N(R). Summarizing, we have that

aibj ∈ N(R) (equivalently, RaiRbjR ⊆ N(R) since R is IFP) for i+ j = 0, 1.

Inductively we assume that aibj ∈ N(R) for i+j = 0, 1, . . . , k−1 with k ≤ m+n.
Since R is IFP, we also get RaiRbjR ⊆ N(R) for i+ j = 0, 1, . . . , k−1. We will
use freely the elementary fact that N(R) = N∗(R). Multiplying the equality
(3) on the right side by bt, we get

ak−tbtbt = −(asbk−sbt + as+1bk−s−1bt + · · ·+ ak−t−1bt+1bt) ∈ N(R)

since RaiRbjR ⊆ N(R) for i + j = 0, 1, . . . , k − 1. Say (ak−tbtbt)
l = 0. Since

R is IFP, we also get (ak−tbtak−tbt)
l = 0 and this yields ak−tbt ∈ N(R). Next

multiplying the equality (3) on the right side by bt+1, . . . , and bk−s−1 in turn,
we can similarly obtain

(6) ak−t−1bt+1bt+1, . . . , as+1bk−s−1bk−s−1 ∈ N(R)

since RaiRbjR ⊆ N(R) for i + j = 0, 1, . . . , k − 1. Since R is IFP, it can be
obtained from (6) that

Rak−tRbtR, Rak−t−1Rbt+1R, . . . , Ras+1Rbk−s−1R

are all contained in N(R), entailing RasRbk−sR ⊆ N(R). This implies that
RaiRbjR ⊆ N(R) for all i and j with i + j = k, and so the induction process
gives us the following:

RaiRbjR ⊆ N(R) for all i and j with 0 ≤ i+ j ≤ m+ n.

Then there exists v ≥ 1 such that (aibj)
v = 0 for all i, j. Further, we get

(RaiRbjR)v = 0 for all i, j since R is IFP.
Now let t = (2mn+2)(v+1). Then we can find ct+1 such that g(x)ct+1 6= 0

as above. Here some ai0bj0 occurs at least v-times in the nonzero product ct+1

since there are mn numbers of aibj ’s. But since (RaiRbjR)v = 0 for all i, j,
we also have ct+1 = 0 and g(x)ct+1 = 0, a contradiction. This completes the
proof.

(1) is equivalent to (2) when R is an IFP ring. �
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Note that we can construct cs+1 starting by am 6= 0 in the proof of Theorem
1.4. Analyzing the proof of Theorem 1.4, we can also obtain a kind of direct
method to find constant annihilators of zero-dividing polynomials over IFP
rings, in relation with coefficients of the polynomials. Let R be an IFP ring
and f(x)g(x) = 0 for 0 6= f(x)

∑m
i=0 aix

i, 0 6= g(x) =
∑n

j=0 bjx
j ∈ R[x].

(Method 1. (start by f(x)bn)) We first start from bk0 = bn, and take largest
k1 such that ak1bk0 6= 0 (if any from f(x)bn). Note k1 < m since ambn = 0.
Next take largest k2 such that bk2ak1bk0 6= 0 (if any from g(x)ak1bk0). Proceed
in this manner. Then we can find 0 6= c ∈ R such that f(x)c = 0 or 0 6= d ∈ R

such that g(x)d = 0, where

c = bkt
akt−1 · · ·ak3bk2ak1bk0 and g(x)(akt−1 · · ·ak3bk2ak1bk0) 6= 0

and

d = akt+1bkt
· · · ak3bk2ak1bk0 and f(x)(bkt

· · · ak3bk2ak1bk0) 6= 0

with t ≥ 0, respectively.

(Method 2. (start by g(x)am)) We first start from ak0 = am, and take largest
k1 such that bk1ak0 6= 0 (if any from g(x)am). Next take largest k2 such that
ak2bk1ak0 6= 0 (if any from f(x)bk1ak0). Proceed in this manner. Then we can
find 0 6= c ∈ R such that f(x)c = 0 or 0 6= d ∈ R such that g(x)d = 0, where

c = bkt+1akt
· · · bk3ak2bk1ak0 and g(x)(akt

· · · bk3ak2bk1ak0) 6= 0

and

d = akt
bkt−1 · · · bk3ak2bk1ak0 and f(x)(bkt−1 · · · bk3ak2bk1ak0) 6= 0

with t ≥ 0, respectively.

(Nielsen’s method) By [22, Lemma 3] and the proof of [22, Theorem 4], there

exist nonnegative integers l0, . . . , ln such that bsb
ln
n · · · bl00 6= 0 and f(x)bsb

ln
n · · ·

bl00 = 0 for some s ∈ {0, . . . , n}, or blnn · · · bl00 6= 0 and g(x)blnn · · · bl00 = 0.

In the following we actually apply the preceding three methods.

Example 1.5. Let R and f(x) = α0 +α1x+α2x
2, g(x) = β0 + β1x+ β2x

2 be
as in Example 1.3. Then R is IFP and

f(x)g(x) = α0β0 + (α0β1 + α1β0)x+ (α0β2 + α1β1 + α2β0)x
2

+ (α1β2 + α2β1)x
3 + α2β2x

4 = 0.

Now we construct a nonzero annihilator of f(x) or one of g(x) over R using
three given methods.

Method 1: Take bk0 = β2. Then f(x)bk0 = α0β2 + α1β2x 6= 0. Now we turn
to next stage.

g(x)α1β2 = β0α1β2 + β1α1β2x

is a nonzero polynomial. So we multiply f(x) by new nonzero element β1α1β2

on the right side. Then it is zero since A4 ⊆ I. Thus β1α1β2 ∈ rR[x] (f(x))∩R 6=
0.
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Method 2: Take ak0 = α2. Then g(x)ak0 6= 0. In particular, β2α2 6= 0. Now
we turn to next stage. f(x)β2α2 = α0β2α2 + α1β2α2x 6= 0. So we multiply
g(x) by new nonzero element α1β2α2 on the right side. Then it is zero since
A4 ⊆ I. Thus α1β2α2 ∈ rR[x] (g(x)) ∩R 6= 0.

Nielsen’s method: We first find nonnegative integers l0, l1, and l2, according
to [22, Lemma 3]. Since β2

0 = 0, we have f(x)β2
0 = 0 6= f(x)β0. Thus, l0 = 1.

To find nonnegative integer l1 we multiply f(x) on the right side by β1β0, β
2
1β0,

. . . in turn. Then f(x)β1
1β0 6= 0 = f(x)β2

1β0, since β2
1 = 0. This means that

l1 = 1. We also obtain l2 = 0 from f(x)β0
2β

1
1β0 6= 0 = f(x)β1

2β
1
1β0. Next we

consider second stage. To determine the annihilator element, we multiply g(x)

by βl2
2 βl1

1 βl0
0 then

g(x)βl2
2 βl1

1 βl0
0 = g(x)β0

2β
1
1β

1
0 = β2β1β0x

2 6= 0.

Thus, there exists nonzero element β2β1β0 in R such that f(x)β2β1β0 = 0, that
is β2β1β0 ⊆ rR[x] (f(x)) ∩R 6= 0.

Computing other kinds of examples, one may notice that each of the pre-
ceding methods has cases for which it is convenient to find nonzero constant
annihilators of zero-dividing polynomials over an IFP ring.

We consider next a generalization of IFP which preserves Abelian property,
based on the following.

Proposition 1.6. For a ring R the following conditions are equivalent:
(1) R is IFP;
(2) If xm1ym2 = 0 for x, y ∈ R and some positive integers m1,m2, then

xn1Ryn2 = 0 for some positive integers n1, n2 with n1 ≤ m1, n2 ≤ m2;
(3) If xm1ym2 = 0 for x, y ∈ R and some positive integers m1,m2, then

xn1Ryn2 = 0 for some integers n1, n2 with 0 ≤ n1 ≤ m1, 0 ≤ n2 ≤ m2.

Proof. (1)⇒(2) and (2)⇒(3) are obvious.
(3)⇒(1): Suppose that the condition (3) holds. Let xy = 0 for x, y ∈ R.

Then xn1Ryn2 = 0 for some integers n1, n2 with 0 ≤ n1 ≤ 1, 0 ≤ n2 ≤ 1. If
n1 = 0, then n2 = 1 and this yields y = 0. If n2 = 0, then n1 = 1 and this
yields x = 0. If n1 = n2 = 1, then xRy = 0. Thus we get xRy = 0 in any
case. �

We here introduce a generalization of the IFP condition, deleting the condi-
tion “n1 ≤ m1, n2 ≤ m2” in Proposition 1.6.

Definition 1.7. A ring R (possibly without identity) is called π-IFP if xmRyn

= 0 for some positive integers m,n whenever xy = 0 for x, y ∈ R.

IFP rings are π-IFP evidently, but the converse need not hold by the follow-
ing. Let A be a ring and n ≥ 2. Following the literature, we consider a subring
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of Matn(A) by

Dn(A) =









































a a12 a13 · · · a1n
0 a a23 · · · a2n
0 0 a · · · a3n
...

...
...

. . .
...

0 0 0 · · · a















∈ Matn(A) | a, aij ∈ A



























.

Let A be a division ring and R = Dn(A) for n ≥ 4. Suppose xy = 0 for
x, y ∈ R. Then the diagonal entries of x, y are both zero and so xn = yn = 0,
entailing xnRyn = 0. Thus R is π-IFP. However R is not IFP by [15, Example
1.7].

Lemma 1.8. (1) Any π-IFP ring is Abelian.

(2) Every nil ring is π-IFP as a ring without identity.

(3) R is π-IFP if and only if xnRyn = 0 for some positive integer n whenever

xy = 0 for x, y ∈ R.

(4) If R is a reduced ring and x1x2 · · ·xn = 0 for x1, . . . , xn ∈ R, then

xσ(1)Rxσ(2)R · · ·Rxσ(n) = 0 for any permutation σ of {1, 2, . . . , n}.
(5) Subrings of π-IFP rings (possibly without identity) are π-IFP.

(6) Let R be a π-IFP ring. If a2 = 0 for a ∈ R, then aR and Ra are both

nil.

Proof. (1) Let R be a π-IFP ring and e2 = e ∈ R. Then from e(1 − e) = 0 we
obtain emR(1−e)n = 0 for some positive integers m,n, entailing eR(1−e) = 0.
Similarly we get (1− e)Re = 0 from (1 − e)e = 0.

(2) Let R be a nil ring and suppose that xy = 0 for x, y ∈ R. Then there
exist m = m(x), n = n(y) such that xm = 0 = yn. This yields xmRyn = 0.

(3) It suffices to show the sufficiency. Let xy = 0 for x, y ∈ R. Then since
R is π-IFP, xmRyn = 0 for some positive integers m,n. Say m ≤ n. Then
xnRyn = xn−mxmRyn = 0.

(4) is obtained with the help of [17, 19] and (5) is obvious.
(6) Let a ∈ R with a2 = 0. Then raar = 0 for all r ∈ R. Since R is π-IFP,

(ra)mR(ar)n = 0 for some m,n ≥ 1. This yields (ra)m+n+1 = (ra)mr(ar)na =
0, entailing that Ra is nil. This also yields that aR is nil. �

However there exist π-IFP rings which are not Abelian when they do not
have the identity. Let A be any domain and consider the subring B = (A A

0 0 ) of
U2(A). Then B is π-IFP but non-Abelian as can be seen by the computation
that ( a b

0 0 )
(

a1 b1
0 0

)

= 0 if and only if a = 0, where 0 6= ( a b
0 0 ) ,

(

a1 b1
0 0

)

∈ B.
We will use Lemma 1.8(3, 5) freely. For any ring A, Matn(A) and Un(A) are

both non-Abelian when n ≥ 2, and so they cannot be π-IFP by Lemma 1.8(1).
Homomorphic images of a π-IFP ring need not be π-IFP, in contrast to

Lemma 1.8(5). In fact, considering the domain R = Z+Zi+Zj+Zk, the ring
of quaternions with integer coefficients, R/pR is isomorphic to the Mat2(Zp)
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by the argument in [8, Exercise 2A], where p is any odd prime integer. But
Mat2(Zp) is non-Abelian and so is not π-IFP by Lemma 1.8(1).

In the following we see that the converse of Lemma 1.8(1) is not true in
general. Armendariz [3, Lemma 1] proved that a reduced ring R satisfies the
property that aibj = 0 for all i, j whenever f(x)g(x) = 0 for f(x) =

∑m
i=0 aix

i,
g(x) =

∑n
j=0 bjx

j ∈ R[x]. Rege et al. [23] called a ring (not necessarily re-

duced) Armendariz if it satisfies this property. So reduced rings are clearly
Armendariz. Armendariz rings are Abelian by the proof of [1, Theorem 6] or
[12, Corollary 8]. Following [14], a ring R is called power-serieswise Armendariz

if it satisfies the property that aibj = 0 for all i, j whenever f(x)g(x) = 0 for
f(x) =

∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j ∈ R[[x]]. Power-serieswise Armendariz

rings are clearly Armendariz but the converse need not hold by [14, Exam-
ple 2.1]. Power-serieswise Armendariz rings are IFP by [14, Lemma 2.3(2)].
Armendariz and IFP are independent of each other by [12, Examples 2, 14]
and [23, Proposition 4.6]. So one may conjecture that Armendariz are π-IFP.
However the following example provides counterexamples.

Let K be a field and R1, R2 be K-algebras. Use R1 ∗K R2 to denote the
ring coproduct of R1 and R2 (see Antoine [2] and Bergman [5, 6] for details).
Given a ring R, U (R) means the group of units in R.

Example 1.9. There exist Abelian rings which are not π-IFP. Let K be a
field and A = K〈a, b, c〉 be the free algebra with noncommuting indeterminates
a, b, c over K. We give subalgebras of A the following relations.

(1) Let R1 = K[b] = K〈b〉 and R2 = K〈a | a2 = 0〉. Then R1 ∗K R2
∼=

K〈a, b | a2 = 0〉 is Armendariz (hence Abelian) by [2, Theorem 4.7] since
U(K[b]) = K\{0}. But K〈a, b | a2 = 0〉 is not π-IFP as can be seen by the
computation that

baab = 0 but 0 6= (ba)mb(ab)n ∈ (ba)mR(ab)n for all m,n ≥ 1.

(2) Consider A1 = K〈a, b, c | a2 = 0〉 and A2 = K〈a, b, c | ab = 0〉. Note
that K〈a, b | ab = 0〉 can be viewed as a subring of K〈a, b | a2 = 0〉 through
the monomorphism with a 7→ ba and b 7→ ab, in the proof of [2, Example 4.10].
Then A1 is isomorphic to K〈b, c〉 ∗K K〈a | a2 = 0〉 which is Armendariz by [2,
Theorem 4.7] since U(K〈b, c〉) = K\{0}; and A2 is isomorphic to a subring of
A1. Note that A1 is not π-IFP by the same computations as in (1). A2 is also
not π-IFP since

ab = 0 but 0 6= amcbn ∈ amRbn for all m,n ≥ 1.

In the following we see a concrete computation that shows A2 being Armen-
dariz. This is applicable to find idempotents in A1.

Let R = A2, and 0 6= f(x) =
∑m

i=0 αix
i, 0 6= g(x) =

∑m
j=0 βjx

j ∈ R[x]

satisfying f(x)g(x) = 0. Then f(x) and g(x) can be rewritten by

f(x) = f0 + f1a+ f2b+ f3c+ af4a+ af5b+ af6c+ bf7a+ bf8b+ bf9c

+ cf10a+ cf11b+ cf12c
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and

g(x) = g0 + g1a+ g2b+ g3c+ ag4a+ ag5b + ag6c+ bg7a+ bg8b+ bg9c

+ cg10a+ cg11b + cg12c,

where f0, g0 ∈ K[x], f1, g1 ∈ K[a][x], f2, g2 ∈ K[b][x], f3, g3 ∈ K[c][x],
fh, gh ∈ K〈a, b, c〉[x] for h = 4, 5, . . . , 12, and every nonzero sum-factor (if
any) of coefficients of fk, gk (resp., fℓ, gℓ) must contain c (resp., a or b) for
k = 4, 5, 8 (resp., ℓ = 12).

We first get f0g0 = f1ag1a = f2bg2b = f3cg3c = 0 since each of them is
unique in the expansion of f(x)g(x). So we have

f0= 0 or g0= 0; f1a= 0 or g1a= 0; f2b= 0 or g2b= 0; and f3c= 0 or g3c= 0.

Note that f0g1a+ f1ag0 = 0, f0g2b+ f2bg0 = 0, and f0g3c+ f3cg0 = 0; hence

f0g1a = f1ag0 = f0g2b = f2bg0 = f0g3c = f3cg0 = 0(7)

since f0 = 0 or g0 = 0.
Assume f0 6= 0. Then g0 = g1a = g2b = g3c = 0 by the relation (1), and so

g(x) = ag4a+ ag5b+ ag6c+ bg7a+ bg8b+ bg9c+ cg10a+ cg11b+ cg12c.
Then, from f(x)g(x) = 0, we have

0 = f0ag4a+ f1a(ag4a+ bg7a+ cg10a) + af4a(ag4a+ bg7a+ cg10a)

+ af5b(ag4a+ bg7a+ cg10a) + af6c(ag4a+ bg7a+ cg10a).

But af4a(ag4a+ bg7a+ cg10a) is unique in the right hand side of this equality,
entailing 0 = af4a(ag4a + bg7a + cg10a) = af4aag4a + af4acg10a. Here we
similarly get af4aag4a = af4acg10a = 0. If ag4a 6= 0, then af4a = 0 and

0 = f0ag4a+ f1a(ag4a+ bg7a+ cg10a) + af5b(ag4a+ bg7a+ cg10a)(8)

+ af6c(ag4a+ bg7a+ cg10a)

= f0ag4a+ (f1a+ af5b + af6c)ag4a+ (f1a+ af5b+ af6c)bg7a(9)

+ (f1a+ af5b+ af6c)cg10a.

But (f1a + af5b + af6c)ag4a is unique in the right hand side of the equality
(3), entailing 0 = (f1a + af5b + af6c)ag4a = f1aag4a + af5bag4a + af6cag4a.
This also yields f1aag4a = af5bag4a = af6cag4a = 0. But since ag4a 6= 0
we obtain f1a = af5b = af6c = 0 and this entails f0ag4a = 0. But since
ag4a 6= 0 we have f0 = 0, a contradiction. Thus we must have ag4a = 0 and
g(x) = ag5b+ ag6c+ bg7a+ bg8b+ bg9c+ cg10a+ cg11b+ cg12c. Proceeding in
this method, we finally obtain g(x) = 0. So f0 = 0.

Next we consider the assumption of f2b 6= 0. Then we also obtain g(x) = 0
similarly. Proceeding with this process, we finally obtain

f0 = f2b = f3c = af5b = af6c = bf8b = bf9c = cf11b = cf12c = 0.

This entails

f(x) = f1a+ af4a+ bf7a+ cf10a.
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Suppose f1a 6= 0. Then, from f(x)g(x) = 0, we obtain

g0 = g1a = g3c = ag4a = ag5b = ag6c = cg10a = cg11b = cg12c = 0

by using the method above, entailing

g(x) = g2b+ bg7a+ bg8b+ bg9c.

Next suppose that f1a = 0 and af4a 6= 0. Then we also obtain g(x) = g2b +
bg7a + bg8b + bg9c. Proceeding in this method, we can obtain g(x) = g2b +
bg7a+ bg8b+ bg9c in any case. Therefore every αi (resp., βj) is of the form sa

with s ∈ R (resp., bt with t ∈ R), and so αiβj = 0 for all i and j.

By Example 1.9, we can say that Armendariz and π-IFP are independent of
each other.

Note. We find the structure of idempotents in the rings in Example 1.9. Let
R be any ring which is constructed in Example 1.9 and f ∈ R. We can write
f = α+ f0 such that α ∈ K and f0 ∈ R with zero constant term. Put f2 = f .
Then α+ f0 = α2 + 2αf0 + f2

0 , so α = α2. This yields that α = 0 or α = 1.
Case 1. α = 0.
From α = 0, we have f0 = f2

0 . We can express f0 by

f0 = g1 + · · ·+ gk with gℓ ∈ R for ℓ = 1, . . . , k

such that the degree of gi is less than one of gi+1 for i = 1, . . . , k − 1. Then

g1 + · · ·+ gk = f0 = f2
0 = g21 + g1g2 + g2g1 + · · ·+ g2k

and so we must get g1 = 0, entailing f0 = g2 + · · · + gk. Thus we can also
obtain g2 = · · · = gk = 0 inductively, entailing f = f0 = 0.

Case 2. α = 1.
From α = 1, we have f0 + f2

0 = 0 and (−f0)
2 = −f0. We also obtain f0 = 0

by a similar method to Case 1. Thus f = 1 + f0 = 1.
Thus 0, 1 are all idempotents in R by Cases 1 and 2.

In the following we can see a method by which one can always construct
π-IFP rings but not IFP, over given any IFP ring.

Theorem 1.10. (1) A ring R is π-IFP if and only if Dn(R) is π-IFP for all

n ≥ 1.
(2) Let N be a nil algebra over a field F and R = F + N . Then Dn(R) is

π-IFP for all n ≥ 1.

Proof. (1) Suppose that R is a π-IFP ring. Let D = Dn(R) and x = (aij), y =
(bst) ∈ D such that xy = 0 and aii = a, bss = b. From xy = 0, we have ab = 0.
Since R is π-IFP, we get ahRbh = 0 for some h ≥ 1. Now we can write v = xh

and w = yh. For given z ∈ D, vzw and v2zw2 are elements of D such that
their diagonal entries are all zero. Moreover, the (i, i+ 1)-entries of v2zw2 are
contained in ahRbh = 0.
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We claim that every (i, j)-entries of vkzwk are all zero for j − i < k and
k = 1, 2, . . . , n. Assume that this holds for 2 ≤ k < l, that is, every (i, j)-
entries of vl−1zwl−1 are all zero for j − i < l − 1. Consider the case of k = l.
Set u = (cij) = vl−1zwl−1. Then every (i, j)-entries of vuw must be zero for
j − i < l− 1 by the hypothesis. For any i = 1, 2, . . ., (i, i+ l− 1)-entry of vuw
is equal to ahci(i+l−1)b

h = 0. Thus, every (i, j)-entries of vlzwl are all zero for

j−i < l. By induction, we have the claim. This implies vnDwn = xhnDyhn = 0
and so Dn(R) is π-IFP. The converse is obvious.

(2) Let D = Dn(R) and x = (aij), y = (bst) ∈ D such that xy = 0 and aii =
a, bss = b. We can write x = x1+x2, y = y1+y2 for x1, x2, y1, y2 ∈ D such that
the diagonals of x1, y1 are a, b respectively, and elsewhere zero. Then x1y1 = 0
and note that zn = 0 for all z ∈ Nn(R). We can write a = a1+a2, b = b1+b2 for
a1, b1 ∈ F and a2, b2 ∈ N . Say am2 = 0, bk2 = 0. x1y1 = 0 (hence ab = 0) gives
the relations a1b1 = 0, a1b2 + a2b1 + a2b2 = 0. So a1 = 0 or b1 = 0. Let a1 = 0.
Then am = am2 = 0 yields xm

1 = 0; hence we have xmn = (xm)n = 0 since
xm = (x1 + x2)

m = xm
1 +x3 = x3 for some x3 ∈ Nn(R). Thus xmnRyh = 0 for

all h ≥ 1. The computation of the case b1 = 0 is similar. �

Let R be any ring and D = Dn(R) with n ≥ 4. Since e12e34 = 0 but
e12e23e34 = e14, e12De34 6= 0 implies that D is not IFP. However D is π-IFP
by Theorem 1.10(1) when R is IFP.

To see another example, let A be any algebra over a field F and N = Nn(A)
for n ≥ 4. Then N is a nil algebra over F . Note that 1 ≤ i < j for any
eij ∈ N . Take e12, e34 in N . Then e12e34 = 0 but e12e23e34 = e14, entailing
e12Ne34 6= 0. Next letting R = F + N , then R is π-IFP by Theorem 1.10(2).
However R is not IFP by the computation above.

Note. If a ring R is IFP, then xnDn(R)yn = 0 by applying the proof of
Theorem 1.5 (indeed, h = 1 if R is IFP), whenever xy = 0 for x, y ∈ Dn(R).
But if R is a reduced ring, then we obtain xn−2Dn(R)yn−2 = 0 for n ≥ 3 by the
following computation. Let D = Dn(R). Then D is IFP by [15, Proposition
1.2] when n = 1, 2, 3. We first compute the case of n = 4. Let

x =









a a12 a13 a14
0 a a23 a24
0 0 a a34
0 0 0 a









, y =









b b12 b13 b14
0 b b23 b24
0 0 b b34
0 0 0 b









∈ R

such that xy = 0. Then we have ab = 0, ab12+a12b = 0, ab13+a12b23+a13b = 0,
ab23+ a23b = 0, ab14+ a12b24+ a13b34+ a14b = 0, ab24+ a23b34+ a24b = 0, and
ab34 + a34b = 0. We use the reduced condition of R and Lemma 1.3(4) freely.
By the computation in the proof of [15, Proposition 1.2], we get aRb = 0,
aRb12 = 0, a12Rb = 0, aRb13 = 0, a12Rb23 = 0, a13Rb = 0, aRb23 = 0,
and a23Rb = 0. Multiplying ab34 + a34b = 0 by b, we get a34Rb = 0 and
aRb34 = 0. Multiplying ab24 + a23b34 + a24b = 0 by a, we get aRb24 = 0 and
a23b34 + a24b = 0. Multiplying a23b34 + a24b = 0 by a23, we get a23Rb34 = 0
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and a24Rb = 0. Next multiplying ab14+a12b24+a13b34+a14b = 0 by b, we get
a14Rb = 0; and multiplying ab14 + a12b24 + a13b34 = 0 by b, we get aRb14 = 0.
Thus, using these results, we have

xry =









0 0 0 a12αb24 + a12ǫb34 + a13αb34
0 0 0 0
0 0 0 0
0 0 0 0









for r =

(

α β γ δ
0 α ǫ σ
0 0 α π
0 0 0 α

)

∈ R. So every element of x2Ry2 is of the form









0 0 0 a(a12αb24 + a12ǫb34 + a13αb34)b
0 0 0 0
0 0 0 0
0 0 0 0









= 0.

We next compute the case of n = 5 to find a formula. Let

x =













a a12 a13 a14 a15
0 a a23 a24 a25
0 0 a a34 a35
0 0 0 a a45
0 0 0 0 a













, y =













b b12 b13 b14 b15
0 b b23 b24 b25
0 0 b b34 b35
0 0 0 b b45
0 0 0 0 b













∈ R

such that xy = 0. Through a similar computation to the case of n = 4, we
obtain aRb = 0, aRb12 = 0, aRb13 = 0, aRb23 = 0, a12Rb23 = 0, a12Rb = 0,
a13Rb = 0, aRb14 = 0, aRb15 = 0, aRb23 = 0, aRb24 = 0, aRb25 = 0,
aRb34 = 0, aRb35 = 0, aRb45 = 0, and a12Rb = 0, a13Rb = 0, a14Rb = 0,
a15Rb = 0, a23Rb = 0, a24Rb = 0, a25Rb = 0, a34Rb = 0, a35Rb = 0,
a45Rb = 0, a34Rb45 = 0. Let r ∈ D. Then, using these results, we have

xry =













0 0 0 u v

0 0 0 0 w

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













for some u, v, w ∈ R. So

x2ry2 =













0 0 0 aub g

0 0 0 0 awb

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













=













0 0 0 0 g

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













for some g ∈ R. This yields x3Dy3 = 0.
Let x = (aij), y = (bst) ∈ Dn(R) with aii = a, bss = b such that xy = 0.

Then we inductively have

aRb = 0, aRbst = 0, aijRb = 0, and a(n−2)(n−1)Rb(n−1)(n) = 0
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for 1 ≤ i, s ≤ n− 1 and 2 ≤ j, t ≤ n. These results imply xry = (chk) for r ∈ D

such that chk = 0 for h = n − ℓ and k ≤ 3 + (n − 1 − ℓ) (ℓ = 0, 1, . . . , n− 1).
Then x(xry)y = x(chk)y = (dhk) such that

d14, d25, . . . , d(n−3)n ∈ aRb = 0.

Continuing this computation, we finally obtain xn−2Dyn−2 = 0.
It is well-known that semiprime IFP rings are reduced. But this is not valid

for π-IFP rings by the following.

Example 1.11. We refer the ring in [13, Theorem 2.2(2)]. Let S be a reduced
ring, n be a positive integer and Rn = D2n(S). Each Rn is a π-IFP ring by
Theorem 1.10(1). Define a map σ : Rn → Rn+1 by A 7→ (A 0

0 A ), then Rn can be
considered as a subring of Rn+1 via σ (i.e., A = σ(A) for A ∈ Rn). Notice that
D = {Rn, σnm}, with σnm = σm−n whenever n ≤ m, is a direct system over
I = {1, 2, . . .}. Set R = lim−→Rn be the direct limit of D. Note R = ∪∞

n=1Rn.
We claim that R is π-IFP. Suppose AB = 0 for A,B ∈ R. Then A,B ∈ Rm for
some m ≥ 1. Since Rm is π-IFP, AhRmBk = 0 for some h, k ≥ 1. Considering
A 7→ (A 0

0 A ) and B 7→ (B 0
0 B ), we can get AhRℓB

k = 0 for all ℓ ≥ m, entailing

AhRBk = 0 since R = ∪∞
n=1Rn. So R is a non-reduced π-IFP ring. But R is

semiprime by [13, Theorem 2.2(2)].

Let R be a ring and I be an ideal of R. Suppose that I is π-IFP as a ring
without identity and R/I is π-IFP. Then it is natural to conjecture that R is
also π-IFP. However the answer is negative. Consider R = Un(A) (n ≥ 2) for
an IFP ring A and let

I = {m ∈ Un(A) | every diagonal entry of m is zero}.
Then R is not π-IFP by Lemma 1.8(1). But R/I is IFP by Proposition 2.3(4)
to follow, and I is π-IFP by Lemma 1.8(2). Note that I is IFP when A is a
reduced ring and n ≤ 3. In the following we consider a stronger condition for
I than “(π-)IFP” for I.

Proposition 1.12. Let R be a ring and I be a proper ideal of R. If R/I is

π-IFP and I is a reduced ring without identity, then R is π-IFP.

Proof. Let ab = 0 for a, b ∈ R. Then we have amRbm ⊆ I since R/I is π-IFP.
We apply the proof of [12, Theorem 6]. Note that ab = 0 yields (bIa)2 =
0. Since I is reduced, bIa = 0. This gives aRbI = 0 since ((aRb)I)2 =
aRbIaRbI = aR(bIa)RbI = 0. Recall amRbm ⊆ I. Then (amRbm)2 ⊆ aRbI

implies (amRbm)2 = 0. Since I is reduced, we get amRbm = 0. Thus R is
π-IFP. �

Considering the condition “I is reduced” in Proposition 1.12, it is natural
to conjecture that R is π-IFP when I is IFP. However U2(F ) (with F a field)
provides a counterexample as can be seen by the computation in [12, Example
5].
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We see an application of Proposition 1.12 in the following. Let D be a
domain and

R =











(a, 0) (a, 0) (0, 0)
(0, 0) (0, b) (0, c)
(0, 0) (0, 0) (d, b)



 | a, b, c, d ∈ D







,

a subring of U3(D ⊕D). Consider I =

{(

(a,0) (a,0) (0,0)
(0,0) (0,0) (0,0)
(0,0) (0,0) (d,0)

)

∈ R

}

. Then I is a

proper ideal of R that is reduced as a ring. Moreover R/I ∼= D2(D) that is
π-IFP by Theorem 1.10(1), and hence R is π-IFP by Proposition 1.12. Note

that the identity of R is

(

(1,0) (1,0) (0,0)
(0,0) (0,1) (0,0)
(0,0) (0,0) (1,1)

)

.

2. Examples of π-IFP rings

In this section we concern several kinds of rings, either concluding that
they are π-IFP or finding necessary conditions under which they can be π-IFP.
Following to Huh et al. [11], a ring is called locally finite if every finite subset
generates a finite subring. It is obvious that every locally finite ring is of finite
characteristic. Finite rings are clearly locally finite. Note that an algebraic
closure of a finite field is locally finite but not finite. A ring R is usually called
semilocal if R/J(R) is semisimple Artinian, and R is usually called semiperfect

if R is semilocal and idempotents can be lifted modulo J(R).
Let R be a ring. Due to Marks [18], R is called NI if N(R) forms an

ideal in R, i.e., N(R) = N∗(R), where N∗(R) means the upper nilradical
of R. IFP rings are shown to be NI through a simple computation. NI
rings need not be π-IFP as can be seen by U2(A) over any reduced ring
A. A prime ideal P of R is usually called completely prime if R/P is a do-
main. Due to Rowen [24, Definition 2.6.5], an ideal P of R is called strongly

prime if P is prime and R/P has no nonzero nil ideals. Maximal ideals
and completely prime ideals are clearly strongly prime. N∗(R) is the unique
maximal nil ideal of R by [24, Proposition 2.6.2], and N∗(R) = {a ∈ R |
RaR is a nil ideal of R} =

⋂{P | P is a strongly prime ideal of R} =
⋂{P |

P is a minimal strongly prime ideal of R} by help of [24, Proposition 2.6.7].
Hong and Kwak showed that R is NI if and only if every minimal strongly
prime ideal of R is completely prime in [9, Corollary 13]. While, Shin proved
that N∗(R) = N(R) if and only if every minimal prime ideal of R is completely
prime in [25, Proposition 1.11].

Proposition 2.1. (1) Let R be a locally finite ring. Then R is Abelian if and

only if R is π-IFP. Especially finite Abelian rings are π-IFP.

(2) Suppose that every finitely generated subring of a ring R is semiperfect.

If R is π-IFP, then R is NI.

(3) Locally finite π-IFP rings are NI.
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Proof. (1) It suffices to prove the necessity by Lemma 1.8(1). Let ab = 0 for
a, b ∈ R. Since R is locally finite, am is an idempotent for some m ≥ 1 by the
proof of [12, Proposition 16]. If R is Abelian, then we can get amRb = 0 from
ab = 0. It is an immediate consequence that finite Abelian rings are π-IFP.

(2) Let R be a π-IFP ring such that every finitely generated subring of
R is semiperfect. Let a, b ∈ N(R) and r ∈ R. Set S be the subring of R
generated by 1, a, b, r. Then S is semiperfect by hypothesis. So S is semilocal,
and moreover S/J(S) is Abelian by Lemma 1.8(1) since idempotents can be
lifted modulo J(R). This yields that S/J(S) is a finite direct sum of division
rings, entailing that S/J(S) is reduced and J(S) = N(S). Thus we have
a− b, ra, ar ∈ J(S) ⊆ N(R) since a, b ∈ N(S). This result concludes that R is
NI.

(3) is shown by (2) and [16, Proposition 3.6.1]. �

Let A be any locally finite Abelian ring. Then Dn(A) is π-IFP for any n ≥ 1
by Proposition 2.1 and [10, Lemma 2]. There exist many locally finite NI rings
but not π-IFP as can be seen by U2(B) over an algebraic closure B of a finite
field.

Proposition 2.2. Let N be a nil ring.

(1) Adjoining an identity, the ring R = Z+N is π-IFP.

(2) If N is a K-algebra over a commutative domain K, then K+N is π-IFP.

Proof. (1) Let 0 6= a = a1 + a2, b = b1 + b2 ∈ R with a1, b1 ∈ Z and a2, b2 ∈ N .
If ab = 0, then a1 = 0 or b1 = 0, so we get that am = 0 or bm = 0 for some
m ≥ 1. This yields amRbm = 0, so R is π-IFP. The proof of (2) is similar. �

Proposition 2.3. Let I be an indexing set and Ri be rings for i ∈ I.

(1) Let I be finite. Then the direct product of Ri’s is π-IFP if and only if

so is every Ri.

(2) Let I be infinite. Then the direct sum of Ri’s is π-IFP (as a ring without

identity) if and only if so is every Ri.

(3) Let I be infinite. Then if the direct product of Ri’s is π-IFP, then so is

every Ri.

(4) The direct product of Ri’s is IFP if and only if so is every Ri.

Proof. (1) Let I = {1, . . . , n} and R be the direct product of Ri’s. Suppose
that every Ri is π-IFP. Let x = (xi), y = (yi) ∈ R such that xy = 0. Then
xiyi = 0 for all i, and since Ri is π-IFP we get xmi

i Riy
mi

i = 0. Put m =
max{m1, . . . ,mn}. Then xm

i Riy
m
i = 0 for all i and this yields xmRym = 0.

Conversely let ab = 0 in Rj for j ∈ I. Let x = (xi), y = (yi) ∈ R such that
xi = a, yi = b for i = j and xi = 0, yi = 0 for i 6= j. Then xy = 0. Since R is
π-IFP, xmRym = 0 for some m ≥ 1. This gives amRjb

m = 0. The proofs of
(2), (3) and (4) are similar to (1). �

The converse of Proposition 2.3(3) need not hold by the following.
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Example 2.4. Let A be an IFP ring and Rn = Dn(A) for n ≥ 6. Then
every Rn is π-IFP by Theorem 1.5(1). Set R be the direct product of Ri’s for
i = 6, 8, . . . , 2k, . . . (k = 3, 4, . . .). Take x = (xi), y = (yi) ∈ R such that

xi = e12 + · · ·+ e( i

2−1) i

2
and yi = e( i

2+1) i

2+2 + · · ·+ e(i−1)i.

Then xy = 0, but x
i

2

i = y
i

2

i = 0 and xt
i 6= 0, yti 6= 0 for any t < i

2 . Thus x, y are
both non-nilpotent such that xm = (ai), y

m = (bi) with

a2(m+1) = e1(1+m), a2(m+2) = e1(1+m) + e2(2+m), . . .

and

b2(m+1) = e(m+2)(2(m+1)), b2(m+2) = e(m+3)(2(m+2)−1) + e(m+4)(2(m+2)), . . . .

Thus the computation

a2(m+1)e(1+m)(m+2)b2(m+1) = e1(1+m)e(1+m)(m+2)e(m+2)(2(m+1)) = e1(2(m+1))

yields xmzym = (ci) for z ∈ R with z2(m+1) = e(1+m)(m+2) and zi = 0 for
i 6= 2(m+ 1) such that c2(m+1) = e1(2(m+1)) and ci = 0 for i 6= 2(m+ 1). This
yields xmRym 6= 0 for all m ≥ 1, concluding that R is not π-IFP.

In the following we show that the π-IFP condition does not go up to poly-
nomial rings.

Example 2.5. The construction follows Smoktunowicz [26]. Let Ā be the
algebra of polynomials with zero constant terms in noncommuting indeter-
minates a, b, c over a countable field K. Then Ā can be enumerated, say
Ā = {f1, f2, . . .}. By the argument in the proof of [26, Theorem 12], there
are natural numbers m1,m2, . . . such that (i) m1 > 108, mi+1 > mi2

i+101 for
i ≥ 1, (ii) each mi divides mi+1 and (iii) mi > 32 deg(fi)(deg(fi))

2402 for i ≥ 1.

Let I be the ideal of Ā generated by {f10mi+1

i | i = 1, 2, . . .} and N = Ā/I.
Then clearly N is a nil ring, so R = K + N is also NI. Moreover, R is π-IFP
by Proposition 2.2(2). Somktunowicz showed that ā+ b̄x+ c̄y is not nilpotent
in [26, Theorem 12], where x, y are commuting indeterminates over R. This
implies that R[x, y] is not NI since ā, b̄, c̄ are all nilpotent in R. This result also
yields the following two situations:

(1) If R[x] is π-IFP, then we have a π-IFP ring but not NI;
(2) If R[x] is not π-IFP, then we have a π-IFP ring over which the polynomial

ring is not π-IFP.
Here the statement (2) is shown to be true, essentially by help of Smok-

tunowicz. We can say that ā2t = 0 and ā2t−1 6= 0 for some t ≥ 2, based on
the construction of mi’s. Consider the polynomial f(x, y) = āt(ā+ b̄x+ c̄y) =
āt+1+ ātb̄x+ ātc̄y ∈ ātR[x, y]. Note that each of āt+1, ātb̄, ātc̄ is nonzero. Then
f(x, y) is not nilpotent by applying the proof of [26, Theorem 12]. Thus R[x, y]
cannot be π-IFP by Lemma 1.8(6), entailing that R[x] is not π-IFP.

Proposition 2.6. Let R be an IFP ring and f(x) = a0+a1x, g(x) =
∑n

j=0 bjx
j

∈ R[x]. If f(x)g(x) = 0, then f(x)2(n+1)R[x]g(x) = 0.
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Proof. Let f(x)g(x) = 0 for f(x) = a0+a1x, g(x) =
∑n

j=0 bjx
j . Then an+1

i bj =

0 for all i, j by [7, Lemma 5.4]. Since R is IFP, we obtain f(x)2(n+1)R[x]g(x) =
0 because some ai occurs at least n+1 times in every monomial of the expansion
of f(x)2(n+1). �

The π-IFP condition also does not go up to formal power series rings by
Example 2.5 and Lemma 1.8(5). But we can see such an actual example in the
following.

Example 2.7. The π-IFP condition does not go up to formal power series
rings. Let F be a field and

Nn = {a ∈ U2n(F ) | the diagonal entries of a are all zero}

for n ≥ 1. Next set N = ⊕∞
n=1Nn+1. Then N is a nil algebra over F and so

R = F +N is π-IFP by Theorem 1.10(2).
Take an = (αi), bn = (βi) ∈ N (n ≥ 1) such that

αn = e12 + e23 + · · ·+ e(n−1)n, βn = e(n+1)(n+2) + e(n+2)(n+3) + · · ·+ e(2n−1)2n,

and αi = 0, βi = 0 for i 6= n. Then αiβi = 0 for all i and anbn = 0; moreover
asbt = 0 for s 6= t. Now let

f(x) =

∞
∑

j=1

ajx
j and g(x) =

∞
∑

j=1

bjx
j ∈ R[[x]].

Then f(x)g(x) = 0. Note that

f(x)m = (γi)x
m2

+ · · · 6= 0 and g(x)m = (δi)x
m2

+ · · · 6= 0

with γm2 = e1(1+m), δm2 = e(2+m)(2+2m)

for all m ≥ 1. So, letting (σi) ∈ R such that σm2 = e(1+m)(2+m) and σi = 0 for

i 6= m2, we have

(ζi)x
2m2

+ · · · ∈ f(x)m(σi)g(x)
m

with ζm2 = e1(2+2m). Thus f(x)mR[[x]]g(x)m ⊇ f(x)mRg(x)m 6= 0 for all
m ≥ 1, concluding that R[[x]] is not π-IFP.

We end this note by raising the following.

Questions. (1) Is a π-IFP ring NI when it is not locally finite?
(2) If R is an IFP ring, then is R[x] π-IFP?
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