• Title/Summary/Keyword: Riemannian submersion

Search Result 31, Processing Time 0.024 seconds

A NOTE ON THE EIGENFUNCTIONS OF THE LAPLACIAN FOR A TWISTED HOLOMORPHIC PRODUCT

  • Peter B.Gilkey;Park, Jeong-Hyeong
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.325-332
    • /
    • 1997
  • Let $Z = X \times Y$ where X and Y are complex manifolds. We suppose that projection $\pi$ on the second factor is a Riemannian submersion, that TX is perpendicular to TY, and that the metrics on Z and on Y are Hermetian; we do not assume Z is a Riemannian product. We study when the pull-back of an eigenfunction of the complex Laplacian on Y is an eigenfunction of the complex Laplacian on Z.

  • PDF

ALMOST HERMITIAN SUBMERSIONS WHOSE TOTAL MANIFOLDS ADMIT A RICCI SOLITON

  • Gunduzalp, Yilmaz
    • Honam Mathematical Journal
    • /
    • v.42 no.4
    • /
    • pp.733-745
    • /
    • 2020
  • The object of the present paper is to study the almost Hermitian submersion from an almost Hermitian manifold admits a Ricci soliton. Where, we investigate any fibre of such a submersion is a Ricci soliton or Einstein. We also get necessary conditions for which the base manifold of an almost Hermitian submersion is a Ricci soliton or Einstein. Moreover, we obtain the harmonicity of an almost Hermitian submersion from a Ricci soliton to an almost Hermitian manifold.

H-SLANT SUBMERSIONS

  • Park, Kwang-Soon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.329-338
    • /
    • 2012
  • In this paper, we define the almost h-slant submersion and the h-slant submersion which may be the extended version of the slant submersion [11]. And then we obtain some theorems which come from the slant submersion's cases. Finally, we construct some examples for the almost h-slant submersions and the h-slant submersions.

CLAIRAUT ANTI-INVARIANT SUBMERSIONS FROM COSYMPLECTIC MANIFOLDS

  • Tastan, Hakan Mete;Aydin, Sibel Gerdan
    • Honam Mathematical Journal
    • /
    • v.41 no.4
    • /
    • pp.707-724
    • /
    • 2019
  • We investigate the new Clairaut conditions for anti-invariant submersions whose total manifolds are cosymplectic. In particular, we prove the fibers of a proper Clairaut Lagrangian submersion admitting horizontal Reeb vector field are one dimensional and classify such submersions. We also check the existence of the proper Clairaut anti-invariant submersions in the case of the Reeb vector field is vertical. Moreover, illustrative examples for both trivial and proper Clairaut anti-invariant submersions are given.

SOME EIGENFORMS OF THE LAPLACE-BELTRAMI OPERATORS IN A RIEMANNIAN SUBMERSION

  • MUTO, YOSIO
    • Journal of the Korean Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.39-57
    • /
    • 1978
  • It is given in the Lecture Note [1] of Berger, Gauduchon and Mazet that, if ${\pi}$n: (${\tilde{M}}$, ${\tilde{g}}$)${\rightarrow}$(${\tilde{M}}$, ${\tilde{g}}$) is a Riemannian submersion with totally geodesic fibers, ${\Delta}$ and ${\tilde{\Delta}}$ are Laplace operators on (${\tilde{M}}$, ${\tilde{g}}$) and (M, g) respectively and f is an eigenfunction of ${\Delta}$, then its lift $f^L$ is also an eigenfunction of ${\tilde{\Delta}}$ with the common eigenvalue. But such a simple relation does not hold for an eigenform of the Laplace-Beltrami operator ${\Delta}=d{\delta}+{\delta}d$. If ${\omega}$ is an eigenform of ${\Delta}$ and ${\omega}^L$ is the horizontal lift of ${\omega}$, ${\omega}^L$ is not in genera an eigenform of the Laplace-Beltrami operator ${\tilde{\Delta}}$ of (${\tilde{M}}$, ${\tilde{g}}$). The present author has obtained a set of formulas which gives the relation between ${\tilde{\Delta}}{\omega}^L$ and ${\Delta}{\omega}$ in another paper [7]. In the present paper a Sasakian submersion is treated. A Sasakian manifold (${\tilde{M}}$, ${\tilde{g}}$, ${\tilde{\xi}}$) considered in this paper is such a one which admits a Riemannian submersion where the base manifold is a Kaehler manifold (M, g, J) and the fibers are geodesics generated by the unit Killing vector field ${\tilde{\xi}}$. Then the submersion is called a Sasakian submersion. If ${\omega}$ is a eigenform of ${\Delta}$ on (M, g, J) and its lift ${\omega}^L$ is an eigenform of ${\tilde{\Delta}}$ on (${\tilde{M}}$, ${\tilde{g}}$, ${\tilde{\xi}}$), then ${\omega}$ is called an eigenform of the first kind. We define a relative eigenform of ${\tilde{\Delta}}$. If the lift ${\omega}^L$ of an eigenform ${\omega}$ of ${\Delta}$ is a relative eigenform of ${\tilde{\Delta}}$ we call ${\omega}$ an eigenform of the second kind. Such objects are studied.

  • PDF

H-V-SEMI-SLANT SUBMERSIONS FROM ALMOST QUATERNIONIC HERMITIAN MANIFOLDS

  • Park, Kwang-Soon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.441-460
    • /
    • 2016
  • We introduce the notions of h-v-semi-slant submersions and almost h-v-semi-slant submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds. We obtain characterizations, investigate the integrability of distributions, the geometry of foliations, and a decomposition theorem. We find a condition for such submersions to be totally geodesic. We also obtain an inequality of a h-v-semi-slant submersion in terms of squared mean curvature, scalar curvature, and h-v-semi-slant angle. Finally, we give examples of such maps.

INFINITESIMAL HOLONOMY ISOMETRIES AND THE CONTINUITY OF HOLONOMY DISPLACEMENTS

  • Byun, Taechang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.365-374
    • /
    • 2020
  • Given a noncompact semisimple Lie group G and its maximal compact Lie subgroup K such that the right multiplication of each element in K gives an isometry on G, consider a principal bundle G → G/K, which is a Riemannian submersion. We study the infinitesimal holonomy isometries. Given a closed curve at eK in the base space G/K, consider the holonomy displacement of e by the horizontal lifting of the curve. We prove that the correspondence is continuous.

Construction of a complete negatively curved singular riemannian foliation

  • Haruo Kitahara;Pak, Hong-Kyung
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.609-614
    • /
    • 1995
  • Let (M, g) be a complete Riemannian manifold and G be a closed (connected) subgroup of the group of isometries of M. Then the union ${\MM}$ of all principal orbits is an open dense subset of M and the quotient map ${\MM} \longrightarrow {\BB} := {\MM}/G$ becomes a Riemannian submersion for the restriction of g to ${\MM}$ which gives the quotient metric on ${\BB}$. Namely, B is a singular (complete) Riemannian space such that $\partialB$ consists of non-principal orbits.

  • PDF